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medicine, biology, archeology, geology, and astronomy. 
Edge detection is a vital component of image processing 
that involves identifying the boundaries between regions 
of varying gray levels in an image. These edges provide 
valuable information about objects and help in tasks such 
as object recognition and region segmentation. Numer-
ous mathematical algorithms have been developed for 
edge detection, including first-order differential algo-
rithms. For instance, the edge detection method was used 
in [1] to remove speckle noise while preserving diagnos-
tic information in images, while [2] used the Canny and 
Sobel algorithms. In [3], the Sobel edge detection algo-
rithm was used to analyze radar remote sensing images, 
and [4] applied the Roberts edge detector on both gray 

Introduction
Digital image processing is a constantly evolving field of 
research that is interrelated with other disciplines such 
as mathematics, computing, and human perception and 
image manipulation. Advancements in hardware and 
programming languages have made it possible to apply 
mathematical methods in various applications, including 
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Abstract
Recent improvements in artificial intelligence and computer vision make it possible to automatically detect 
abnormalities in medical images. Skin lesions are one broad class of them. There are types of lesions that cause 
skin cancer, again with several types. Melanoma is one of the deadliest types of skin cancer. Its early diagnosis is at 
utmost importance. The treatments are greatly aided with artificial intelligence by the quick and precise diagnosis 
of these conditions. The identification and delineation of boundaries inside skin lesions have shown promise 
when using the basic image processing approaches for edge detection. Further enhancements regarding edge 
detections are possible. In this paper, the use of fractional differentiation for improved edge detection is explored 
on the application of skin lesion detection. A framework based on fractional differential filters for edge detection 
in skin lesion images is proposed that can improve automatic detection rate of malignant melanoma. The derived 
images are used to enhance the input images. Obtained images then undergo a classification process based 
on deep learning. A well-studied dataset of HAM10000 is used in the experiments. The system achieves 81.04% 
accuracy with EfficientNet model using the proposed fractional derivative based enhancements whereas accuracies 
are around 77.94% when using original images. In almost all the experiments, the enhanced images improved the 
accuracy. The results show that the proposed method improves the recognition performance.
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and color images. However, these techniques can pro-
duce thick edges with poor detection quality.

Besides the use of computer vision, the machine 
learning (ML) and deep learning (DL) methods are well 
employed in automatic medical analysis. The study given 
in [5] uses machine learning algorithms to understand 
pharmaceutical permeability via the placenta, ensur-
ing safety for both mother and unborn chil. DL has the 
potential to revolutionize neurological disease treat-
ment by enabling drugs to cross the blood-brain barrier 
(BBB) [6]. DL has significantly improved the accuracy of 
estimating gender and age from ECG data over the past 
decade [7]. This expertise is crucial for creating person-
alized medical treatments and preventative measures, 
revolutionizing other biological research areas and dem-
onstrating its potential for estimating gender and age 
from ECG data [8]. DL’s non-invasive, effective, and pre-
cise instrument is crucial for future healthcare develop-
ments [9].

In image processing and computer vision, using identi-
fied edges to improve images is a frequent practice. Edge 
detection is a key stage in image analysis that includes 
locating the borders or transitions between various sec-
tions in an image. These borders frequently correspond 
to noticeable alterations in hue or intensity, which can 
convey crucial details about the boundaries and forms of 
objects in the image. Once the edges are found, they may 
be utilized in a number of ways to improve the image’s 
quality, which will affect the detection process as well. 
Edge detection helps eliminate irrelevant information, 
reducing the size of the image while preserving its struc-
tural properties.

Edge detection in color images presents a greater chal-
lenge than in grayscale images due to the vector defini-
tion of color images, which consists of three components 
(red, green, and blue) assigned to each pixel. While a dis-
continuity in intensity is considered an edge in grayscale 
images, it is not precisely defined in color images. It can 
be considered an edge in a color image if there is a dis-
continuity in the intensity of one of its channels.

One of the main challenges that edge detection faces is 
textural variability, making it challenging for edge detec-
tion algorithms to accurately capture the lesion bound-
aries [10, 11]. Skin lesions can exhibit a wide range of 
colors, making it difficult for edge detection methods to 
identify the lesion boundary [12]. Skin lesion images can 
contain significant background noise, such as hair, wrin-
kles, and other non-lesion structures, which can inter-
fere with the edge detection process [13, 14]. In addition, 
changes in illumination can affect the appearance of skin 
lesion images, making it difficult for edge detection algo-
rithms to accurately identify the lesion boundary [15].

Edge detection is a fascinating field in image process-
ing, driven by the idea of using the Grunwald-Letnikov 

definition, a non-integer differential, to detect edges. The 
application of non-integer differentials in image process-
ing, including edge detection, is a cutting-edge technique 
that is currently being explored by many researchers to 
enhance existing image processing methods and expand 
into other areas as well. The advantages of using edge 
detection with non-integer differentials include the abil-
ity to easily modify the order of derivation, resulting in 
improved edge detection outcomes, and the simplicity 
of the algorithms used. The goal of this study is to dem-
onstrate that the Grunwald-Letnikov definition satisfies 
these requirements and offers even more benefits in edge 
detection.

Medical imaging uses high-resolution images for diag-
nosis and treatment of various medical issues. Con-
vUNeXt, a convolutional neural network, improves 
precision and efficacy in medical image segmentation 
[16]. Liver Computerized Tomography (CT) segmenta-
tion uses a small neural network using multiscale feature 
augmentation for accurate identification of liver struc-
tures and diseases [17]. DRU-Net, a deep convolutional 
neural network, solves common problems in medical 
imaging, such as objects, noise, and artifacts [18]. Dense-
PSP-UNet optimizes liver ultrasound segmentation, inte-
grating dense connection patterns with U-Net structures 
and pyramid scene parsing [19]. CoTr, a groundbreaking 
3-Dimensional (3D) medical imaging technique, com-
bines convolutional neural networks with transformers 
to segment 3D images [20]. Accurate segmentation using 
Magnetic Resonance Imaging (MRI) and CT images 
enhances safety, effectiveness, and patient outcomes 
[21]. Fusion imaging outperforms single-modality imag-
ing for rapid post-ablation evaluation of malignant liver 
neoplasms [22, 23]. Deep learning techniques improve 
B-mode ultrasound segmentation, enabling accurate 
delineation of anatomical structures and diseased areas 
[24].

In this study, the classification abilities of Efficient-
Netv2 models are examined on the HAM10000 dataset 
with the use of proposed image enhancement technique, 
of dermatoscopic images [16, 17]. The collection includes 
10,015 images from seven types of skin cancer: Actinic 
keratoses and intraepithelial carcinoma (akiec), basal cell 
carcinoma (bcc), seborrheic keratoses and lichen-planus 
(bkl), dermatofibroma (df ), melanoma (mel), melanocytic 
nevi (nv), and vascular lesions (vasc). Transfer learning 
and Convolutional Neural Networks (CNN) fine-tuning 
for the HAM10000 dataset were accomplished using 
ImageNet pre-trained weights.

In this paper, our main objective is to enhance the 
image quality with fractional differentiations in order to 
robustly detect skin lesions causing melanoma. We can 
list our objectives as:
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  • Enrich the use of fractional derivatives in edge 
detection to include different frequencies that first 
and second derivatives cannot detect.

  • Use enhanced images with fractional derivatives to 
provide robust image representation.

  • Improve the accuracy of automatic detection of skin 
lesions causing melanoma through enhanced images 
by using deep learning.

  • Experimentally compare the performance of the 
enhanced images with the original images.

The structure of the paper is as follows: The paper starts 
with the introduction, including the motivations for the 
study. Then a brief literature review is given in the sec-
ond section, titled Related Work. The methodology is 
explained in details in Sect. 3. Section 4 presents experi-
mental results. Finally, the paper is concludes with the 
conclusion section.

Related work
Fractional differentiation, also known as non-integer 
differentiation, has a long history dating back to 19th-
century mathematicians and physicists such as Cauchy, 
Riemann, Liouville, and Letnikov. Since then, various 
mathematicians and physicists have explored fractional 
differentiation equations, particularly fractional-order 
linear differentiation equations. There are numerous 
works that delve into the mathematical study of these 
equations, such as [18, 19, 25, 26]. In recent years, frac-
tional differentiation has become increasingly important 
in fields such as mechanics, electricity, chemistry, biol-
ogy, economics, modeling, system identification in time 
and frequency domain control theory, mechatronics, and 
robotics [18, 27]. This study also utilized fractal image 
compression [5, 28–32].

In an effort to achieve efficient edge detection with 
good localization and minimal response, the Canny edge 
detector was developed using the calculus of variations. 
This technique optimizes a given function to produce 
the optimal function, which is defined as the sum of four 
exponential terms. However, this optimal function can be 
approximated by the first derivative of a Gaussian [33].

The Sobel operator calculates an approximation of the 
gradient of the image intensity at each pixel. The output 
of the Sobel operator can either be the gradient vector or 
the magnitude of the image vector at that particular pixel. 
The Sobel operator is computationally inexpensive due to 
its use of a small, separable, and integer-valued filter in 
the horizontal (x) and vertical (y) directions in a convolu-
tion operation with the image. However, this results in a 
relatively rough approximation of the gradient, particu-
larly in the presence of frequent changes in the image’s 
frequency [34].

The Prewitt edge detector is a discrete differentia-
tion operator that estimates the gradient intensity of an 
image. It works by applying a small, separable, integer-
valued filter to the image through convolution in both the 
horizontal and vertical directions. This operator is effi-
cient and fast at detecting edges, although it is best suited 
for use with noiseless and high-contrast images [35]. The 
filter calculates the light intensity gradient at each pixel 
of the image, showing the direction and rate of the larg-
est change in brightness. The output highlights abrupt 
changes in the image’s brightness and thus reveals the 
probable edges. This technique is practical, reliable, and 
simple to implement. The Roberts edge detector relies on 
the computation of the first derivative of the image [36].

The Marr and Hildreth operator is exclusively used 
in digital images and searches for zero crossings in the 
image’s second derivative. Multiple methods exist for 
performing these calculations, including convolution of 
the image with a Gaussian kernel and approximation of 
the second derivative (Laplacian method) using a 3 × 3 
mask, or convolution of the image using a mask derived 
from the Laplacian of Gaussian (LoG) function. The latter 
can also be achieved through the use of recursive Gauss-
ian filters [37]. To implement the algorithm, two steps are 
necessary: convolving the image and locating zero cross-
ing points in the filtered image. The image convolution 
stage can be further divided into two steps: using a LoG 
kernel or using a Gaussian kernel followed by a Laplacian 
operator. In the development of the Marr-Hildreth algo-
rithm, a Gaussian kernel, a Laplacian Gaussian kernel, 
and a 2-D mask are required for convolving the image 
with a kernel. The concept behind the Gaussian and 
Laplacian of the Gaussian kernel is to perform a convolu-
tion operation on the input image.

The Haralick operator, similar to the Marr-Hildreth 
operator, aims to locate zero crossing points in the sec-
ond derivative of an image. However, the Haralick opera-
tor uses a local bi-cubic polynomial approximation to 
smoothly approximate the input image. This analytical 
computation involves using an equivalent expression to 
identify zeros of the second derivative of a polynomial 
function, given its parameters [38].

Edge detection aims to identify key features in an 
image, such as sharp changes in gray-level values. One 
of the earliest edge detection methods was the Roberts 
cross operator, introduced by Roberts [39]. The Prewitt 
operator employs two kernels that are applied to the 
image through convolution, allowing for the estimation 
of derivatives in both horizontal and vertical directions 
[40]. The Sobel operator, a discrete differentiation opera-
tor, is used to approximate the intensity gradient of an 
image [41, 42]. Image data can also be reduced to a size 
suitable for edge detection analysis [43]. However, reduc-
ing noise is important to maintain image quality and 
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prevent unexpected results, as the performance of edge 
detection tasks relies on edge information [44, 45]. Skin 
cancer classification is the focus of Ali et al.‘s research 
[46], which places special emphasis on EfficientNets’ 
multiclass classification capabilities. Our research delves 
into a distinct approach by combining neural network 
designs with fractional differentiation approaches. Our 
goal is to improve edge recognition in skin lesion images. 
Despite their common goal of improving skin cancer 
detection using deep learning techniques, these studies 
use different methodologies. This shows how important it 
is to have multiple tactics to handle the difficulties of skin 
cancer analysis. Popescu et al. [47] looked at skin lesion 
classification with the use of many neural networks’ com-
bined intelligence in their study. Their method improves 
skin lesion analysis classification performance by using 
an ensemble of neural networks. On the other hand, 
we’ve been working on improving edge recognition in 
skin lesion pictures by combining fractional differen-
tiation methods with neural network topologies. Despite 
their differences in methodology, both studies aim to 
improve skin lesion analysis using modern computational 
tools. Our approach investigates the integration of frac-
tional differentiation techniques to refine feature extrac-
tion and improve classification accuracy, in contrast to 
Popescu et al.‘s emphasis on the collective intelligence of 
neural networks. These comparisons highlight how dif-
ferent perspectives are crucial for progress in skin lesion 
categorization and analysis.

Methodology
The proposed method uses fractional derivatives in two 
different degrees. The fractional derivatives are applied to 
the input images, and then the resulting images are added 
to the original images. In the last stage, two deep learning 
models are employed to train and detect melanoma.

The technique for this investigation comprises many 
essential components. At first, the main data source is the 
HAM10000 dataset, which contains dermatoscopic pic-
tures of skin lesions. After that, the pixel values are nor-
malized, the images are resized to a uniform dimension, 
and noise reduction algorithms are applied to ensure the 
data is consistent and of good quality. Following the pre-
processing, the images are improved by using fractional 
differentiation according to the Riemann-Liouville (R-L) 

and Grunwald-Letnikov (G-L) standards. This phase is 
designed to make lesion borders easier to read and to fur-
ther standardize the output.

A neural network architecture called EfficientNetV2 
is used during the feature extraction and model training 
phases. The model is trained using preprocessed and aug-
mented pictures. In the classification phase, the trained 
EfficientNetV2 model is used to assign each image in the 
dataset to a specific category.

HAM10000 dataset, which contains 10,015 dermato-
scopic pictures illustrating seven distinct skin cancer sub-
types. Fractional differentiation using the G-L and R-L 
definitions to improve edge detection.

The proposed method’s general block diagram is shown 
in Fig.  1. The technique is depicted in this graphic in a 
systematic fashion, beginning with data gathering and 
preprocessing and progressing through picture improve-
ment, feature extraction, model training, and finally, 
assessment and classification. The EfficientNetV2 model 
was used to increase classification accuracy and picture 
quality, with each block representing a vital phase of the 
process. The integration of several approaches used in 
the study may be easily understood thanks to the block 
diagram’s full description of the workflow.

The proposed method uses fractional calculus to 
design a fractional-order filter for edge detection in color 
images. The filter is applied to calculate the gradient of 
the input image. The method that suggested is based 
on edge detection in both rows and columns. Addition-
ally covered are the EfficientNet model design, model 
architecture changes, and the transfer-learning method 
used to train the HAM10000 dataset using ImageNet’s 
pre-trained weights. Better accuracy can be attained by 
scaling CNNs. It required an iterative manual tweak-
ing operation, either by arbitrary increasing the depth 
or breadth of the CNNs or by employing a higher input 
picture resolution. With the goal of finding an appropri-
ate way to scale CNNs for improved accuracy (i.e., model 
performance) and efficiency (i.e., model parameters), the 
EfficientNet family of architectures was created by [48].

Normally, to evaluate the performance of various edge 
detection algorithms, the images are taken, converted 
into the standard grayscale level of the image and the 
traditional edge detection algorithms are applied. In this 

Fig. 1 The general block diagram of the proposed method
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paper, six different algorithms are applied: RLR, RLC, 
GLR, GLC, Sobel, and Canny.

Fractional-order definition
The definitions of fractional calculus that are most fre-
quently used in digital image processing are those offered 
by Riemann-Liouville and Grunwald-Letnikov [49].

Our research improves edge recognition in skin lesion 
pictures by applying the G-L equation, a basic tool for 
fractional differentiation. In order to extract more com-
plex characteristics from the picture data, the G-L equa-
tion applies the idea of conventional differentiation to 
non-integer orders.

The mathematical expression of the G-L equation for 
fractional differentiation is:

 
Dα

x [f (x )] = limh→ 0
1

hα

∑ ∞

k=0
(−1)k

(α
k

)
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(

α

k

)
 are the binomial coefficients.

 Dα
x [f (x )] (2)

where Eq. (2) is the fractional derivative of the function 𝑓 
(𝑥) with respect to 𝑥, and 𝛼 is the ordered derivative.

Our method involves using the G-L equation on the 
picture data in order to calculate fractional derivatives, 
which pick up on small changes in pixel intensities all 
around the picture. The identification of minute features 
and boundaries within the skin lesion pictures may be 
improved by adding fractional differentiation to the edge 
detection procedure. This improves the overall quality 
and accuracy of the findings.

Each iteration of the G-L equation takes into account 
pixel values within the neighborhood indicated by the 
parameter h as it traverses the picture. A modified pic-
ture that better emphasizes critical edge characteristics is 
produced by iteratively computing fractional derivatives 
for each pixel.

All things considered, the G-L equation provides a 
strong mathematical basis for fractional differentia-
tion; this allows us to increase our edge detection skills 
for better analysis and classification and to extract more 
information from the skin lesion images.

The R-L equation serves as a fundamental tool for frac-
tional differentiation in our study, enhancing edge recog-
nition in skin lesion pictures. By extending differentiation 
to non-integer orders, the R-L equation enables a more 
intricate analysis of picture data.

For fractional differentiation, the mathematical expres-
sion of the R-L equation is:

 
Dα

x [f (x )] =
1

Γ (n − α )

dn

dxn

∫ x

0

(x− t)n−α −1f (t)dt  (3)

 Dα
x [f (x )] (4)

where Eq.  (4) denotes the fractional derivative of the 
function f(x) with respect to x, α represents the order of 
differentiation, and Γ(n) denotes the gamma function.

Applying the R-L equation to skin lesion pictures and 
computing fractional derivatives enables us to capture 
the intricate fluctuations in pixel intensities across the 
image. Adding fractional differentiation to the method 
enhances the quality and accuracy of edge identification 
results, enabling better recognition of fine features and 
boundaries within the images.

The R-L equation operates by integrating pixel values 
within a specified neighborhood surrounding each pic-
ture pixel. This process considers the contributions of 
nearby pixels to the fractional derivative computation. By 
computing fractional derivatives for every pixel, this inte-
gration technique generates a picture representation that 
highlights important edge characteristics more clearly.

The R-L equation offers a robust mathematical frame-
work for fractional differentiation, enhancing our edge 
recognition capabilities and allowing for the extraction of 
more detailed information from skin lesion images. This 
facilitates more effective analysis and classification of the 
images.

Dataset
The HAM10000 dataset and its distribution for training 
and testing are described in this section.

HAM10000 dataset
The HAM10000 dataset was released by Tschandl et al. 
in 2018 and is publicly available at [50]. This dataset was 
created to address challenges in the classification of der-
matoscopic images. It consists of 10,015 Red-Green-Blue 
(RGB) images, collected over a span of 20 years from two 
distinct medical sources: the Department of Dermatol-
ogy at the Medical University of Vienna, Austria, and the 
Cliff Rosendahl in Queensland, Australia. Each image 
has a resolution of 600 × 450 pixels and is stored in JPEG 
format.

This dataset is comprehensive in terms of the diag-
nostic categories it represents, covering a wide range of 
pigmented lesions such as actinic keratoses and intraepi-
thelial carcinoma (akiec), basal cell carcinoma (bcc), 
benign keratosis-like lesions (bkl), dermatofibroma (df ), 
melanoma (mel), melanocytic nevi (nv), and vascular 
lesions like angiomas and angiokeratomas. The diagnos-
tic categories, illustrated in Fig. 2, are designed to assist 
computer scientists who may not be familiar with derma-
tology literature.

Due to its well-organized and representative nature, the 
HAM10000 dataset has been widely utilized in the field. 
It served as the primary data source for the ISIC2018 
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classification challenge and continues to be included 
in the ongoing ISIC2019 challenge. The distribution 
of images across each diagnostic category is detailed in 
Table 1.

In Table 1, the distribution of the HAM10000 dataset 
by class is depicted, showcasing images classified based 
on diagnostic criteria. The dataset comprises 10,015 
images encompassing a diverse array of dermatologi-
cal disorders, including melanocytic nevi, melanoma, 
benign keratosis-like lesions, basal cell carcinoma, actinic 
keratoses, intraepithelial carcinoma, vascular lesions, 
and dermatofibroma. Notably, melanocytic nevi consti-
tute the largest category with 6,705 images, followed by 
melanoma with 1,113 images, and benign keratosis-like 
lesions with 1,099 images. Additionally, basal cell carci-
noma, actinic keratoses, vascular lesions, and derma-
tofibroma are represented with 514, 327, 142, and 115 
images, respectively. The dataset is partitioned into train-
ing and testing sets, comprising 9,010 and 1,005 images, 
respectively, facilitating comprehensive examination and 
evaluation within the realm of dermatological image 
classification.

The dataset is publicly available at the following link:
https://paperswithcode.com/dataset/ham10000-1.

Dataset organization
The HAM10000 dataset is split into two sections: training 
(90%) and testing (10%). The testing set assisted in evalu-
ating how well our trained models performed. Regarding 
the training and testing sets, it was ensured that there 
were no duplicate images. In Table 1, there are two sets of 
the HAM10000 dataset’s class-wise distribution.

Table  1 provides a detailed breakdown of the class-
wise distribution within the HAM10000 dataset. This 
distribution encompasses seven types of skin cancer, 
namely akiec, bcc, bkl, df, mel, nv, and vascular lesions. 
The table showcases the number of images present in 
each class, offering insights into the dataset’s composi-
tion and the prevalence of different skin conditions rep-
resented within it. The table indicates that 9,010 images 
are allocated to the training set, with specific counts for 
each category ranging from 6,034 for nv to 103 for df. 
Additionally, the testing set comprises 1,005 images, dis-
tributed among the diagnostic categories as shown in the 
table.

Proposed edge detection method
Fractional derivative engine
The first step involves specifying the differential equa-
tion to solve, which in this case is the simple (𝑥)=𝐼^𝑎 (𝑥) 
where I is the image and ⍺ is the fractional order. Given 
the digital input, a discrete solution was approximated 
numerically. Subsequently, functions for RL and GL 
operations were implemented and optimized. This frac-
tional engine will be used to perform all image processing 
operations.

Processing HAM10000
The HAM 10,000 images are read and converted to gray-
scale. The fractional engine is then used to produce RL 
(row-wise) and GL (column-wise) operation results at 
alpha = 0.5. Canny and Sobel filters are also applied, and 
the results are stored in our data store. All the filters are 
run at default parameters, as detailed in the illustration 
in Fig. 3.

Efficientnetv2s Architecture
Skin cancer is a major worldwide health problem due 
to its increasing incidence rate and potential for deadly 
results if left untreated. Increased survival rates and less 
strain on healthcare systems are directly correlated with 
early identification. Deep learning models have demon-
strated potential in a number of medical image process-
ing applications, including the diagnosis of skin cancer.

Table 1 Class wise distribution of the HAM10000 dataset
Diagnostic category Number of images Training Testing
nv
mel
bkl
bcc
akiec
vasc
df

6705
1113
1099

514
327
142
115

6.034
1001
989
462
294
127
103

671
112
110

52
33
15
12

Total 10,015 9010 1005

Fig. 2 Example of Skin lesions in HAM10000 dataset [50]

 

https://paperswithcode.com/dataset/ham10000-1
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With the architecture of EfficientNetV2S, the potential 
of transfer learning for skin cancer diagnosis is inves-
tigated. Transfer learning makes it possible to use the 
information gained from pre-training on big datasets 
to improve performance on smaller target datasets and 
shorten training times. The goal is to improve overall 
classification accuracy and identify minority classes by 
optimizing EfficientNetV2S on the HAM10000 dataset 
and employing class weight methodologies.

The EfficientNetV2S architecture, which has demon-
strated exceptional performance across a variety of com-
puter vision workloads, is at the heart of our technique. 
Starting the model using weights that have already been 
trained on a sizable dataset (ImageNet) and then refining 
it on the HAM10000 dataset takes advantage of transfer 
learning. To mitigate the consequences of data imbal-
ance, class weighting strategies are used that assign more 
weight to minority classes during model training. With 
greater attention paid to the underrepresented classes, 
the model performs better at spotting skin cancer in all 
classes as a result of this strategy [51].

In Fig.  4, the EfficientNetV2S design is shown in a 
cohesive fashion, with components (a) and (b) standing 
for various levels or characteristics of this architecture. 
Part (a) shows the first few layers of the EfficientNetV2S 
model, which are in charge of taking in data and extract-
ing fundamental features. These levels include the input 
layer, convolutional layers, and pooling layers. Part (b), 
on the other hand, stands for the architecture’s sub-
sequent layers or modules, such as dense layers, skip 

connections, and output layers. These layers combine the 
retrieved information and provide classifications or pre-
dictions. The EfficientNetV2S architecture is shown in 
Fig. 4 in a unified fashion, which helps to comprehend its 
design and operational flow better by providing a thor-
ough overview of the model’s structure and functional 
components.

Linear blending (weighted sum)
The study employs linear blending, or weighted sum, to 
enhance skin lesion categorization precision by applying 
weights to image components and multiple edge detec-
tion algorithms.

Two different weighted-sum configurations are 
explored. In the first configuration, equal weights are 
assigned to the original image and the combined edge 
detection methods, distributing the weight evenly (0.5) 
among all components. This approach balances edge 
clarity and overall texture, resulting in enhanced lesion 
boundaries without losing important details from the 
original image.

By contrast, the second setup gives the original picture 
a larger weight of 0.8 and gives the edge detection com-
ponents a combined weight of 0.2. Thanks to this setup, 
we can boost classification accuracy significantly while 
keeping the original image’s fundamental elements intact 
and making use of improved edge detection.

The research shows that a weighted combination of 
initial pictures and improved edge detection methods 

Fig. 3 Block diagrams of the methods employed

 



Page 8 of 14Anber and Yurtkan BMC Medical Imaging          (2024) 24:231 

enhances the model’s generalizability and accuracy in 
labeling skin lesions.

Weighted sum is a mathematical operation that com-
bines image pixel values using specific weights, com-
monly used for enhancement and filtering techniques. It 
multiplies each pixel’s weight and sums them [52].

 g (x) = (1− α )f0 (x) + α f1 (x) (5)

The weighted sum equation is a basic tool for combining 
various picture components in our investigation. In this 
case,

𝑓0(𝑥) and 𝑓1(𝑥) are two separate functions or repre-
sentations of images, and 𝛼 is a weighting parameter that 
decides how much each function contributes to the final 
blended output 𝑔(𝑥). When the value of 𝛼 is zero, the 
function (𝑥) largely reflects 𝑓0(𝑥), whereas 𝑓1(𝑥) does 
not affect the outcome. Alternatively, if 𝛼 is equal to 1, 

Fig. 4 (a) and (b) Block diagrams related to proposed method
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then (𝑥) replicates 𝑓1(𝑥), but 𝑓0(𝑥) becomes insignificant. 
The equation determines the degree to which each func-
tion contributes by interpolating between 𝑓0 (𝑥) and 𝑓1 
(𝑥) for values of α between 0 and 1. This interpolation 
algorithm provides a flexible method for mixing, mor-
phing, and filtering images, among other areas of image 
processing.

Our work improves skin lesion picture classification 
accuracy by utilizing the weighted sum equation and 
edge detection algorithms. Composite images are gen-
erated, balancing original image characteristics with 
edge enhancements. The model’s accuracy is enhanced 
by meticulous selection of α values. The weighted sum 
equation is used to compare original images with differ-
ent edge detection output configurations, systematically 
exploring the impact of different emphasis on edge detec-
tion characteristics.

The weighted sum equation enhances skin lesion analy-
sis classification accuracy by integrating picture compo-
nents, providing a versatile approach to medical image 
analysis tasks.

A weighted sum has been calculated for both RL and 
GL, representing horizontal and vertical edge detectors, 
to create a combined matrix of the four edge detectors. 
Moreover, a weighted sum has been computed between 
the combined matrix and the original image using vary-
ing addition factors (degrees of blending), as illustrated in 
Table 2.

Experimental results
Images of skin cancer were used to conduct and test the 
experiment to using the fractional differentiator to obtain 
the clean edge map. Here, a variety of experiments have 
been conducted with and without a noisy environment in 
order to identify and extract edges. Figure 5 displays the 
outcomes from using several edge detection algorithms 
on the original picture displayed after applying 0.5 differ-
entiation in both directions (row and column).

Experiments based on the HAM10000 dataset are per-
formed in order to compare fractional differentiation 
based on the images. In Fig. 5, the visual results of apply-
ing various edge detection techniques to the original 
image and the experiment are presented.

Network reconstruction edge detection algorithm
CNNs is a neural network that feeds data forward. Its 
artificial neurons can react to the nearby units of partial 

coverage, perform well for massive image processing, and 
seek accuracy and speed by recreating network struc-
tures such as CNNs is a neural network that feeds data 
forward. Its artificial neurons perform well for processing 
huge images, seek accuracy and speed by recreating net-
work structures, and may react to the surrounding units 
of a partial coverage [49] such as EfficientNetV2S.

In this paper, a neural network, EfficientNetV2S, is 
implemented to classify skin cancer images. Efficient-
NetV2S is a state-of- the art feature extractor that is 
trained on the ImageNet dataset. The main components 
and architecture of the proposed approach are described 
in Fig. 4.

A weighted sum has been applied to both G-L and 
R-L with alpha equal to 0.5, multiplied by the values of 
both detected edge pixels. Subsequently, a weighted 
sum is applied between the total image and the original 
image, with alpha equaling 0.5 for both total and original 
images, and another weighted sum is applied, multiplying 
the total image pixels by 0.2 and the original image pixels 
by 0.8.

Figure  6 displays the visual outcomes of various edge 
detection and enhancement approaches on skin can-
cer images, showcasing their successful identification of 
lesion borders.

The original skin cancer image is compared with 
Sobel and Canny edge detection algorithms, resulting in 
improved visibility of edges, with Sobel producing more 
distinct edges and Canny reducing breakage.

Techniques for fractional calculus Image improve-
ments with more texture characteristics and well-defined 
edges are produced by RLc + RLr and GLc + GLr, respec-
tively, by using the Grunwald-Letnikov and Riemann-
Liouville criteria. Images enhanced using RLc + RLr have 
a balanced enhancement, keeping more texture features, 
but those treated with GLc + GLr have well-defined edges 
and little noise.

The graphic shows pictures resulting from a weighted 
sum algorithm, balancing edge clarity and texture. The 
most noticeable improvement is seen when the original 
image is given a larger weight, enhancing lesion border 
visibility without compromising image quality.

The study demonstrates that combining original images 
with classical and fractional calculus-based edge detec-
tion methods enhances the visibility of lesion borders, 
making skin cancer images more useful for diagnosis. 
The proposed technique, based on a study on a skin 

Table 2 Performance results after applying Weighted Sum
image_type Training loss Training Accuracy Test loss Test Accuracy F1 score
(Weighted Sum (total, 0.5) 0.3615 9658 7.2377 0.7944 0,79
‘glc + glr+ ‘rlc + rlr + Original Image ‘
(Weighted Sum (total, 0.2, original_image, 0.8) 0.2358 0.9621 5.3341 0.8104 0,81
‘glc + glr+ ‘rlc + rlr + Original Image ‘
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cancer lesion, uses various image processing techniques 
to reveal detailed borders and contours, making it eas-
ier to spot abnormal areas, and emphasizes edges while 
reducing noise interference.

The study explores enhanced image edge detection 
using fractional derivatives of Grunwald-Letnikov and 
Riemann-Liouville. The method, which can be imple-
mented individually or in tandem, allows for picture 
analysis beyond traditional limitations and improves 
visual quality, with encouraging results.

Table  3 presents the results of various edge detection 
methods for skin cancer pictures. Sobel’s moderate train-
ing loss and equal accuracy suggest overfitting or train-
ing process concerns, while Canny’s training accuracy 
and test accuracy are lower but stronger, with a higher 
test loss indicating stronger generalization. The G-L cri-
teria method achieves training accuracy of 0.9424 and 
loss of 0.4798, indicating strong learning and excellent 
generalization to unseen data. The R-L criteria approach 
achieves training accuracy of 0.9042 and reasonable test 
performance with test loss of 6.4744 and F1 score of 0.77. 
Edge detection approaches improve model durability and 
accuracy.

GLr + GLc provided the greatest overall performance, 
indicating its excellent generalization potential; other 
advanced edge detection approaches, such as RLr + RLc 
and GLr + GLc, show a better balance between the train-
ing and testing phases.

Table  2 shows a weighted sum approach for improv-
ing classification performance on skin cancer pictures. 
The model achieved a training accuracy of 96.58% with 
a training loss of 0.3615, using a total weight of 0.2 for all 
components and 0.8 for the original image. This approach 
combines edge detection approaches with the original 
image.

The study found that combining edge detection tech-
niques with the original image can improve the model’s 
generalizability to fresh data. In a second setup, the origi-
nal picture had a heavier weight, resulting in a higher 
training accuracy of 96.21% and a lower training loss of 
0.2358. This approach led to optimal training and test 
performance, reducing overfitting and increasing the 
model’s resilience.

The weighted sum technique enhances classifica-
tion outcomes by adding additional weight to the origi-
nal image, suggesting that the optimal approach is to 

Fig. 5 Sample images used and obtained from fractional differentiations
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retain more information and incorporate edge detection 
features.

Discussion
This part examines the findings, draws comparisons to 
other studies, and showcases the results produced by 
deep learning models on the HAM10000 dataset. The 
performance of previous attempts using deep learn-
ing models is reviewed to set the stage and establish 
standards.

According to Table  4, EfficientNetV2S outperforms 
other CNNs architectures with an accuracy of 81.04%, 
outperforming Xception, DenseNet-201, Inception-
ResNet-V2, GoogLeNet-Places365, AlexNet, and 
GoogLeNet. It also outperforms MobileNet-V2, with an 
accuracy of 80.59%. EfficientNetV2S is effective in pic-
ture categorization tasks, with ResNet-101 achieving the 
highest accuracy of 83.99%, making it a strong contender 
in image classification tasks.

Table 3 Performance metrics of several edge detection approaches on images of skin cancer with and without noise
image_type Training loss Training Accuracy Test loss Test Accuracy F1 score
(Sobel, 0.5, original_image, 0.5) 0.3195 0.3195 8.4766 0.7794 0,77
(Canny, 0.5, original_image, 0.5) 0.4973 0.9132 5.5792 0.7515 0.75
Glr + GLc 0.4798 0.9424 7.4650 0.7764 0,77
RLr + RLc 0.7527 0.9042 6.4744 0.7715 0,77
Original Image 0.3195 0.9605 8.4766 0.7794 0,77

Fig. 6 Original skin cancer image with sobel (original image), Canny (original image), and Fractional Calculus (GLc, GLr), (RLc, RLr), and (GLc, GLr + RLc, RLr) 
by applying 0.5 differentiation in both directions (row and column)
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Table 5 illustrates how the EfficientNetV2S model com-
pares to other studies that have used the HAM10000 
dataset and various approaches for skin lesion catego-
rization. The results demonstrate that EfficientNetV2S 
achieves the highest accuracy at 81.04%, surpassing pre-
vious research’s accuracies.

The study compares DenseNet201, MobileNet, and 
VGGNet models for skin lesion classification accuracy. 
DenseNet201 has a 73.5% accuracy rate, while MobileNet 
has a 78.5% rate. VGGNet has a 78% accuracy rate. The 
EfficientNetV2S model outperforms all combined tech-
niques due to its innovative architecture and feature-
leveraging capabilities, offering a robust solution.

The proposed edge detection enhancements improve 
performance and strengthen representations of skin 
lesions in images. Experimental setups and deep learning 
training may enhance performance. Fractional deriva-
tives are effective in edge detection, extracting geometric 
information better than other texture identifiers. Future 
work could integrate fractional derivatives with texture 
identifiers.

Conclusion
The advancement in image processing leads to the appli-
cation of edge detectors in feature detection or feature 
extraction. Edge detectors are more important because 
they provide a lot of information about the geometry 
of the objects in the scene. The paper proposes the use 
of fractional derivatives, a non-integer differentiation 
implementation of the Grunwald-Letnikov definition, for 
image enhancement in the automatic detection of mela-
noma. Two approaches that use the Grunwald-Letnikov 
definition are developed and evaluated. The Grunwald-
Letnikov (G-L) and Riemann-Liouville (R-L) definitions 

derive the equation at the given order of derivative, 
which is the main asset of the two developed algorithms. 
Then, the derivatives are added to the original images 
for enhancement. Furthermore, the deep learner classi-
fies the enhanced images. The proposed methodology 
is adapted for automatic malignant melanoma detec-
tion, which is a recent problem in medical imaging. The 
system achieves an encouraging and comparable rate of 
81.04% recognition accuracy. The results show that the 
proposed technique achieves inspiring results and is 
open to further development.

Limitations and future works
The paper proposes a fractional derivative-based image 
enhancement for improved automatic melanoma detec-
tion. The experiments are done on the dataset. The sys-
tem undergoes training on a single dataset, which poses 
a significant limitation. Therefore, it is limited by the 
variations of this dataset and also inherits errors from 
the dataset. The study’s expert classification of the images 
provided in the dataset is another limitation. As a result, 
these two points—obtaining datasets that sufficiently 
cover all types of samples and labeling with expert opin-
ions—are general limitations of such systems.

There are some future directions in which a researcher 
can improve the system proposed in this paper. One of 
them is to use all the fractions of the derivative and com-
bine them. Another clear direction we can identify is the 
fusion of fractional derivative information with texture 
information. Thus, having a robust geometric representa-
tion using fractional derivatives in the proposed way and 
a well-performing texture identifier (e.g., LBP) can even 
improve the robustness of the representations.
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