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Abstract 

Background Non-Alcoholic Steatohepatitis (NASH) is a crucial stage in the progression of Non-Alcoholic Fatty Liver 
Disease(NAFLD). The purpose of this study is to explore the clinical value of ultrasound features and radiological analy-
sis in predicting the diagnosis of Non-Alcoholic Steatohepatitis.

Method An SD rat model of hepatic steatosis was established through a high-fat diet and subcutaneous injection 
of  CCl4. Liver ultrasound images and elastography were acquired, along with serum data and histopathological results 
of rat livers.The Pyradiomics software was used to extract radiomic features from 2D ultrasound images of rat livers. 
The rats were then randomly divided into a training set and a validation set, and feature selection was performed 
through dimensionality reduction. Various machine learning (ML) algorithms were employed to build clinical diagnos-
tic models, radiomic models, and combined diagnostic models. The efficiency of each diagnostic model for diagnos-
ing NASH was evaluated using Receiver Operating Characteristic (ROC) curves, Clinical Decision Curve Analysis (DCA), 
and calibration curves.

Results In the machine learning radiomic model for predicting the diagnosis of NASH, the Area Under the Curve 
(AUC) of ROC curve for the clinical radiomic model in the training set and validation set were 0.989 and 0.885, 
respectively. The Decision Curve Analysis revealed that the clinical radiomic model had the highest net benefit 
within the probability threshold range of > 65%. The calibration curve in the validation set demonstrated that the clini-
cal combined radiomic model is the optimal method for diagnosing Non-Alcoholic Steatohepatitis.

Conclusion The combined diagnostic model constructed using machine learning algorithms based on ultrasound 
image radiomics has a high clinical predictive performance in diagnosing Non-Alcoholic Steatohepatitis.

Keywords Non-Alcoholic Steatohepatitis, Radiomics, Ultrasound, Machine Learning

Introduction
NAFLDis the most common chronic liver disease in 
humans, and its prevalence continues to rise [1].NAFLD 
comprises Non-Alcoholic Fatty Liver (NAFL) and NASH 
[2].NASH is considered a progressive form of NAFLD, 
characterized by liver fat deposition, inflammation, 
hepatocyte injury, and varying degrees of fibrosis. It is 
associated with disease progression, the development 
of cirrhosis, and the need for liver transplantation.It is 
estimated that 20% of NASH patients will progress to 
cirrhosis. The mortality rate among NASH patients is 
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significantly higher than that of the general population or 
non-inflammatory subtypes of NAFLD patients. Despite 
its significance, NASH remains insufficiently understood 
in clinical practice [3, 4].

For a long time, the majority of research efforts have 
primarily focused on viral hepatitis and liver fibrosis, with 
limited reports on NAFLD. However, early and accurate 
diagnosis of NASH is beneficial for halting or reversing 
the progression of NAFLD [5].Percutaneous liver biopsy 
has been considered the gold standard method for stag-
ing fat deposition and fibrosis. However, it has several 
drawbacks, including invasiveness, the risk of bleeding, 
the potential for sampling errors due to the heterogeneity 
of disease distribution, and it may not be readily accepted 
by patients and their families [6, 7].Currently, non-inva-
sive methods for detecting and assessing NAFLD in clini-
cal practice include CT, MRI, and ultrasound. However, 
none of these methods can detect NASH specifically. CT 
involves ionizing radiation, and MRI is expensive. Both of 
these methods have limitations in their clinical applica-
tion, making them challenging to use extensively [8, 9].
Hence, there is an urgent need for a reliable, convenient, 
and non-invasive diagnostic tool for assessing liver fat 
deposition.

In the field of imaging techniques, some studies have 
indicated a correlation between the grading of fat deposi-
tion obtained through abdominal ultrasound and the risk 
of developing NASH [10, 11].Radiomics, on the other 
hand, can detect extremely subtle regional changes and 
analyze the overall condition of an organ or tissue, mak-
ing it suitable for assessing the extent and severity of dif-
fuse conditions like liver fat deposition [12].In this study, 
we based our research on the "two-hit hypothesis" for the 
development of NASH and utilized a combined model 
of high-fat diet (HFD) feeding and CCl4 administration 
as proposed by Kubota and others [13, 14].We employed 
a rat liver injury model that closely resembles human 
NAFLD by inducing liver damage through a combination 
of HFD feeding and CCl4 administration, following the 
approach outlined in references [15, 16].We hypothesized 
that by categorizing rats based on the histopathologi-
cal results of liver inflammation and using radiomics to 
extract additional quantitative feature information from 
NASH ultrasound images, combined with relevant clini-
cal parameters, we could generate a joint detection model 
for NASH, thereby improving NASH detection.

Materials and methods
Animal model
This study was approved by the Clinical Medicine 
Research Ethics Committee of the First Affiliated Hos-
pital of Anhui Medical University, China, and complies 
with the National Guidelines for Animal Care and Use 

in China. Ethics approval number: 5101114.Ninety 
male SD rats (initial weight: 140-170g) were selected. 
Choosing male SD rats was to avoid hormonal fluc-
tuations, as female rats undergo hormonal fluctuations 
during their estrous cycles, which could potentially 
affect experimental outcomes.After a three-day adap-
tation period and numbering, the rats were randomly 
divided into two groups: a normal control group con-
sisting of 30 rats fed a standard diet and a high-fat 
group consisting of 60 rats fed a high-fat diet.The high-
fat diet with the following nutritional composition: 20% 
protein, 20% carbohydrates, and 60% fat.The high-fat 
group was administered a mixture of CCl4 in oil (1:4) 
from the 8th week until the 14th week (0.2 mL/kg; 
twice a week; intraperitoneally).In the normal control 
group, 10 rats were randomly selected at the 4th, 10th, 
and 14th weeks for imaging examination. In the high-
fat group, 10 rats were randomly selected at the 4th, 
6th, 8th, 10th, 12th, and 14th weeks after anesthesia 
for imaging examination. Subsequently, blood samples 
were collected from the abdominal aorta, and finally, 
under anesthesia, the rats were euthanized by cervical 
dislocation, and liver tissue was obtained.

Ultrasound data acquisition
Examination is performed using the ACUSON Sequoia 
real-time shear wave elastography ultrasound diagnostic 
system (Brand: Siemens, Origin: USA), equipped with a 
standard linear array 10L4 transducer (4-10MHz), and 
an animal experiment-specific V6 ultrasound diagnostic 
system (Brand: FiNo, Origin: China), equipped with an 
X4-12L transducer (4-12MHz).Before the examination, 
all rats had a one-day period of fasting. Anesthesia was 
initiated by administering pentobarbital sodium by an 
intraperitoneal injection, using a solution of 3% saline at 
a dosage of 40mg/kg. Subsequent to undergoing ultra-
sonic scanning, once anesthetized, the rats’ abdomi-
nal fur was surgically extracted while they remained 
immobile on the operating table. The evaluation began 
with a conventional B-mode ultrasound scan. Follow-
ing the standard scan, the liver lobes were consistently 
recorded as bigger two-dimensional images. Afterward, 
the mode was changed to 2D-SWE and P-SWE in order 
to get liver lobe elastography data. Utilizing the 2D-SWE 
mode, the elasticity values of adjacent liver and kidney 
tissue were ascertained. These results were then used to 
determine the liver-to-kidney elasticity ratio. The gray-
scale ultrasonography and SWE findings were stored 
as duplex pictures in Digital Imaging and Communica-
tions in Medicine (DICOM) format for further radiomics 
investigation.
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Blood and tissue sampling
Following the completion of the ultrasound scans, the 
rats’ body weights were measured. Subsequently, blood 
samples were collected through abdominal aorta punc-
ture, and the rats were euthanized. Blood was collected 
into anticoagulant tubes, centrifuged at 4000rpm for 15 
min, and the serum was stored at -80  °C for later use. 
Simultaneously, the liver was quickly separated, rinsed 
with physiological saline, and the central lobe of the liver 
was fixed in 10% neutral formalin for further processing.

Serum and histopathological analysis
The collected serum samples were labeled and sent to the 
laboratory at our Hospital for analysis. The serum sam-
ples were tested for the following parameters: alanine 
transaminase (ALT), aspartate transaminase (AST), AST/
ALT ratio, gamma-glutamyl transferase (GGT), total 
cholesterol (CHOL), triglycerides (TG), high-density 
lipoprotein cholesterol (HDL-C), and low-density lipo-
protein cholesterol (LDL-C).

The liver tissue was preserved in a solution of 10% neu-
tral formalin for 24 h and then underwent standard tis-
sue processing. Subsequently, the specimen was treated 
with hematoxylin and eosin (H&E) to facilitate histologi-
cal examination. The SAF score system was employed 
to diagnose NAFLD pathologically. NASH is diagnosed 
when there is a concurrent presence of ballooning degen-
eration, hepatic steatosis, and lobular inflammation, 
with each component scoring 1 point and the total score 
being ≥ 3 points. Significant fibrosis is characterized by a 
fibrosis score of F2 or above. Fibrosis scores range from 
F0 (no fibrosis) to F4 (cirrhosis), with F2 indicating the 
presence of both peri-sinusoidal and portal/periportal 
fibrosis, while F3 manifests bridging fibrosis.

Radiomic feature extraction and selection
The ultrasound images were exported from our imag-
ing system.Then, ITK-SNAP 3.8.0 (www. itksn ap. org/) 
was used to delineate the contours of the Region of 
Interest (ROI) for radiomic feature extraction, model 
building, and evaluation. Radiomic features were auto-
matically extracted from each image using the "pyra-
diomics" toolkit.To select radiomic features with good 
reproducibility and low redundancy, the following 
steps were taken:①Independent sample t-tests were 
performed on all extracted features, and features with 
p > 0.05 were removed.②For highly repetitive features, 
the Pearson correlation coefficient was calculated to 
express the relationship between features, and only one 
of any pair of features with a correlation coefficient > 0.9 
was retained.③The Least Absolute Shrinkage and Selec-
tion Operator (LASSO) algorithm was applied, and 

ten-fold cross-validation was used to determine the opti-
mal λ value. Based on the model corresponding to the 
best λ value, non-zero coefficient radiomic features were 
selected.④All selected features were standardized using 
the Z-score method.⑤Finally, radiomic features and 
their corresponding coefficients were selected based on 
the LASSO algorithm.

Establishment of clinical models, radiomic models, 
and clinical radiomic models
After feature selection, various machine learning (ML) 
classification algorithms were used to establish clinical 
models, radiomic models, and clinical radiomic models. 
These algorithms included Logistic Regression (LR), Sup-
port Vector Machine (SVM), K Nearest Neighbor (KNN), 
Random Forest (RF), Extremely Randomized Trees 
(ExtraTree), eXtreme Gradient Boosting (XGBoost), 
Light Gradient Boosting Machine (LightGBM), and 
Multi-Layer Perceptron (MLP).Fig. 1 in the analysis pipe-
line illustrates the workflow for establishing the clinical 
radiomic model.

Model evaluation
ROC, AUC and DCA were used to evaluate the perfor-
mance and clinical utility of the radiomic model, clinical 
model, and clinical radiomic model in both the training 
and validation sets. Additionally, accuracy, sensitivity, 
specificity, PPV, and NPV were also assessed.

Statistical analysis
Statistical analysis was conducted using R software (ver-
sion 4.3.2) and Python (version 3.7.2).Continuous data 
were evaluated for consistency between the training and 
validation sets using independent sample t-tests. The per-
formance of the models was evaluated using ROC curves, 
and the AUC of each prediction model was compared 
using the DeLong test. The clinical value of various pre-
diction models was compared using DCA. Model fitting 
was assessed using calibration curves. The calculations 
for DCA mainly utilized the "rms" and "rmda" packages 
in R. Statistical significance for all two-tailed tests was set 
at P < 0.05.

Results
Clinical features
Out of the 90 rats, three rats died unexpectedly, leav-
ing a total of 87 rats. The basic clinical information 
of the rats is presented in Table  1. Among these, 58 
rats were diagnosed with NASH, and 29 rats were 
diagnosed as non-NASH (Fig.  2 shows macroscopic 
images of rat liver and pathological images under a 
microscope). These rats were randomly divided into 
a training set (60 rats) and a validation set (27 rats).

http://www.itksnap.org/
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The two groups did not show significant differences 
in various clinical features such as weight (p = 0.261), 
ALT(p = 0.238), AST(p = 0.256), AST/ALT (p = 0.489), 

GGT (p = 0.050), etc. Therefore, these clinical features 
were included in the model-building process. The clin-
ical features of the rats were summarized into a shape 
value plot using the LightGBM algorithm (Fig. 3). The 
shape value plot indicated that weight, P-SWE-E, and 
LDL-C played a major role in predicting the diagnosis 
of NASH in the model.

Selection of radiomic features
A total of 1288 features were extracted from each image, 
and after feature preprocessing, the remaining 91 fea-
tures were used for dimension reduction using LASSO 
algorithm. Finally, a radiomic model was established 
using the remaining 25 features. Figure 4 displays the fea-
ture selection using the LASSO algorithm, and the corre-
lations of various features are shown in Fig. 5.

Construction of clinical model, radiomic model, and clinical 
radiomic model
Based on the ROC results of various machine learning 
classification algorithms, a comprehensive comparison of 
each model’s AUC, ACC, sensitivity, specificity, and other 

Fig. 1 The overall conceptual process of this study’s model.ROI, region of interest; LASSO, least absolute shrinkage and selection operator; ROC, 
receiver operating characteristic curve; DCA, Decision Curve Analysis

Table 1 Clinical baseline features of rats in the training and 
validation sets

Training set Validation set P

Weight(mean ± SD) (g) 499.17 ± 90.73 524.00 ± 104.41 0.263

ALT(mean ± SD)(u/l) 84.68 ± 126.13 119.04 ± 122.02 0.238

AST(mean ± SD)(u/l) 232.08 ± 256.10 301.67 ± 276.14 0.256

AST/ALT(mean ± SD) 3.77 ± 6.30 2.92 ± 1.47 0.4886

GGT(mean ± SD)(u/l) 2.22 ± 3.18 4.19 ± 5.83 0.050

CHOL(mean ± SD)(mmol/l) 1.85 ± 0.40 1.81 ± 0.45 0.699

TG(mean ± SD)(mmol/l) 0.70 ± 0.28 0.78 ± 0.37 0.258

HDL-C(mean ± SD)(mmol/l) 0.93 ± 0.41 0.90 ± 0.29 0.782

LDL-C(mean ± SD)(mmol/l) 0.29 ± 0.13 0.31 ± 0.16 0.506

PSWE-Vs(mean ± SD)(m/s) 1.09 ± 0.14 1.13 ± 0.19 0.219

PSWE-E(mean ± SD)(kpa) 3.62 ± 0.98 3.97 ± 1.33 0.176

2DSWE(mean ± SD)(kpa) 4.78 ± 1.17 4.93 ± 1.48 0.601

ratio(mean ± SD) 0.85 ± 0.24 0.90 ± 0.25 0.340
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indicators was conducted. The ROC results for each 
machine learning algorithm are shown in supplemen-
tary materials. In the end, both the clinical model and 
the radiomic model were selected to use KNN algorithm, 

while the clinical radiomic model used the Light GBM 
algorithm. The ROC results for the three models are pre-
sented in Table 2.

Fig. 2 A Gross macroscopic image of a normal rat liver, B Gross macroscopic image of a NASH rat liver, C Pathological image of normal rat 
liver tissue (H&Estaining, × 200 magnification), D Pathological image of NASH rat liver tissue (H&E staining revealing severe hepatic steatosis, 
hepatocellular ballooning, and lobular in flammation, × 200 magnification)

Fig. 3 Shape Value Plot of Clinical Features



Page 6 of 11Xia et al. BMC Medical Imaging          (2024) 24:221 

Model evaluation
The ROC curves for the radiomic model, clinical model, 
and clinical radiomic model are shown in Fig.  6.Accord-
ing to the DeLong test, the clinical radiomic model out-
performs the clinical model in the training set, and the 
difference is statistically significant (p = 0.013). However, 
in the training set, there is no statistically significant dif-
ference between the clinical radiomic model and the radi-
omic model (p = 0.169). In the validation set, there is no 

statistically significant difference between the clinical radi-
omic model and the clinical model (p = 0.369) or the radi-
omic model (p = 0.508).Using DCA, the clinical utility of 
the models can be directly assessed. Figure  7 shows that 
if the threshold probability is greater than 65%, using the 
clinical radiomic model to predict the diagnosis of NASH 
in this study will result in a greater net benefit. At the same 
time, the predictive abilities and actual performance of 
each model were assessed using calibration curves. In the 

Fig. 4 Using the Least Absolute Shrinkage and Selection Operator (LASSO) regression, a total of 25 key radiomic features were determined. A The 
25 non-zero coefficients were obtained based on the λ values. B LASSO coefficient profiles are plotted against the log (λ) sequence

Fig. 5 The 25 features and their coefficients developed for the radiomic model
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training set, the p-value for the H–L test of the combined 
model was 0.52, and in the validation set, the p-value for 
the H–L test of the combined model was 0.83. This indi-
cates that the combined model is highly suitable for both 
the training and validation sets. Additionally, the calibra-
tion curve in the validation set shows that the clinical-radi-
omics combined model is the best method for diagnosing 
NASH (Fig. 8).

Discussion
NASH is a crucial stage in the progression of NAFLD, 
and only NASH patients among those with NAFLD can 
develop severe conditions such as cirrhosis and liver can-
cer [17]. Therefore, the early and effective clinical diag-
nosis of NASH is of significant importance. This study 
utilized a NAFLD animal model for research. Animal 
models can provide complete liver tissue samples for 

Table 2 Diagnostic Performance of Radiomic Model, Clinical Model, and Clinical Radiomic Model in the Training and Validation Sets

Abbreviations: ACC  Accuracy, AUC  Area Under the Receiver Operating Characteristic Curve, SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value, NPV Negative 
Predictive Value

AUC(95%CI) ACC SEN SPE PPV NPV

Training set

 Radiomics model 0.967 0.900 0.842 0.927 0.842 0.927

(0.932–1.000)

 Clinical model 0.900 0.783 0.947 0.707 0.600 0.967

(0.830–0.969)

 Clinical radiomics model 0.989 0.983 0.947 1.000 1.000 0.976

(0.967–1.00)

 Validation set

 Radiomics model 0.850 0.815 0.900 0.765 0.692 0.929

(0.702–0.998)

 Clinical model 0.759 0.778 0.600 0.882 0.750 0.789

(0.555–0.962)

 Clinical radiomics model 0.885 0.852 0.800 0.882 0.800 0.882

(0.731–1.000)

Fig. 6 ROC curves of the radiomics model, clinical model, and clinical-radiomics combined model in the training and validation sets. A ROC curves 
of the three models in the training set. B ROC curves of the three models in the validation set
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accurate pathological diagnosis, avoiding the limita-
tions of limited tissue sampling and incorrect pathologi-
cal diagnosis in patients due to biopsy [18].In our study, 
we established a model of liver fat deposition through a 
high-fat diet and subcutaneous injection of CCL4. This 
method partially replicates the development pattern of 
NAFLD and has been widely used in research [19, 20].

In this study, we utilized ML models due to their abil-
ity to handle complex nonlinear relationships between 
variables and outcomes, surpassing traditional linear 

prediction models [21].The shape value analysis obtained 
through the ML LightGBM algorithm revealed that body 
weight and LDL-C play a primary role in predicting 
NASH, which aligns with the findings of Vilar-Gomez E’s 
research. They discovered a correlation between weight 
loss and improvement in histological features of NASH 
tissue. Additionally, previous studies have indicated that 
72% of NASH patients exhibit lipid abnormalities [22, 
23].Furthermore, this study highlights the significant 
value of P-SWE in the non-invasive assessment of NASH. 

Fig. 7 Decision Curve Analysis (DCA) of the radiomics model, clinical model, and clinical-radiomics combined model in the training and validation 
sets. A DCA of the three models in the training set. B DCA of the three models in the validation set

Fig. 8 Calibration curves of the radiomics model, clinical model, and clinical-radiomics combined model in the training and validation sets. A 
Calibration curves of the three models in the training set. B Calibration curves of the three models in the validation set
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Recent research has also indicated that measuring liver 
stiffness using ultrasound elastography may serve as a 
biomarker for non-invasive diagnosis of fatty liver dis-
ease, aligning with the findings presented in this study 
[24–26].Based on these clinical factors, we established a 
clinical model, which had an AUC of 0.900 in the training 
set and an AUC of 0.759 in the validation set.

Radiomics utilizes advanced statistical algorithms to 
extract and transform deep, imperceptible imaging fea-
tures [27]. Studies have shown that radiomics based on 
image features can extract objective characteristics and 
provide valuable insights in predicting clinical outcomes 
[28].Indeed, both domestic and international research-
ers have been exploring the clinical utility of radiomics 
in diagnosing hepatic steatosis. For example, Chou and 
colleagues classified the severity of hepatic steatosis using 
patient ultrasound images [29, 30], while Sim and others 
used radiomics derived from MR-PDFF to diagnose the 
degree of hepatic fat deposition in NAFLD patients [31].
Ultrasound grayscale images indeed contain a wealth of 
raw image information, including reflections and scatter-
ing of small structures within the liver parenchyma [32]. 
In this study, ultrasound radiomics was used to extract 
image features from these grayscale ultrasound images.
After dimension reduction using LASSO, a total of 25 
features were retained, and a radiomics model was devel-
oped using the KNN algorithm. This radiomics model 
achieved an AUC of 0.967 in the training dataset and an 
AUC of 0.850 in the validation dataset.

The radiomics model outperformed the clinical model 
in both the training and validation datasets with AUC 
values greater than the clinical model. Furthermore, 
the clinical radiomics model developed using the Light-
GBM algorithm exhibited even better performance, 
achieving an AUC of 0.989 in the training dataset and 
an AUC of 0.885 in the validation dataset.The DeLong 
test showed that in the training dataset, the clinical 
radiomics model performed better than the clinical 
model (p = 0.013), indicating that including radiomics 
factors improved predictive performance. Although 
there was no statistically significant difference between 
the clinical radiomics model and the radiomics model 
in the training dataset (p = 0.169), there was no statis-
tically significant difference in the validation dataset 
between the clinical radiomics model and the clinical 
model (p = 0.369) or the radiomics model (p = 0.508).
However, the clinical radiomics model had higher AUC 
and accuracy than the other two models. DCA showed 
that within the threshold probability range of > 65%, the 
clinical radiomics model had the highest net benefit. 
The calibration curve in the validation dataset indicated 

that the clinical radiomics model was the best method 
for diagnosing NASH.The above findings suggest that 
the clinical radiomics model, which combines clini-
cal features, elasticity imaging, and radiomic features 
extracted from ultrasound, can further improve the 
diagnostic performance of NASH. This can potentially 
reduce the need for unnecessary biopsies and pro-
vide strong evidence for clinicians to diagnose NASH 
and initiate early intervention and treatment.The idea 
of combining radiomics with clinical information for 
better diagnostic assistance in various clinical settings 
has been validated by previous studies, including those 
conducted by Huang YQ et  al. and Meng F et  al. [21, 
33]. This supports the notion that radiomics, when 
integrated with clinical data, can enhance diagnostic 
capabilities across different clinical scenarios.

While our study provides promising results, it is 
important to acknowledge several limitations.Sample 
Size: The size of the animal model used in this study 
may not fully represent the complexity and variabil-
ity seen in human patients with NASH. Expanding the 
study to a larger and more diverse sample, including 
human subjects, would enhance the generalizability 
of the findings.Data Collection: The data used in this 
study were collected from animal models, and there 
may be variations between animal and human physiol-
ogy. Future studies should incorporate human data to 
validate the model’s performance in a clinical setting.
Model Validation: Although the models showed prom-
ising performance in the validation set, external valida-
tion using independent datasets from different sources 
or populations is essential to assess the model’s robust-
ness and generalizability.Our future plan is to collect 
clinical patient cases to use ultrasound imaging data. 
We will utilize a pre-trained radiomic models to auto-
matically analyze liver conditions and identify potential 
NASH cases.

Conclusions
In conclusion, this animal study demonstrates that we 
have successfully established a model combining radi-
omics and clinical features, which can effectively pre-
dict the diagnosis of NASH.

This model provides potential opportunities for timely 
and effective therapeutic interventions, but further 
research is needed to validate its applicability and fea-
sibility in human patients. This study offers valuable 
insights for the development of more accurate methods 
in the diagnosis and management of NASH in the future.
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