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Abstract 

A recent global health crisis, COVID-19 is a significant global health crisis that has profoundly affected lifestyles. 
The detection of such diseases from similar thoracic anomalies using medical images is a challenging task. Thus, 
the requirement of an end-to-end automated system is vastly necessary in clinical treatments. In this way, the work 
proposes a Squeeze-and-Excitation Attention-based ResNet50 (SEA-ResNet50) model for detecting COVID-19 utiliz-
ing chest X-ray data. Here, the idea lies in improving the residual units of ResNet50 using the squeeze-and-excitation 
attention mechanism. For further enhancement, the Ranger optimizer and adaptive Mish activation function are 
employed to improve the feature learning of the SEA-ResNet50 model. For evaluation, two publicly available COVID-
19 radiographic datasets are utilized. The chest X-ray input images are augmented during experimentation for robust 
evaluation against four output classes namely normal, pneumonia, lung opacity, and COVID-19. Then a comparative 
study is done for the SEA-ResNet50 model against VGG-16, Xception, ResNet18, ResNet50, and DenseNet121 archi-
tectures. The proposed framework of SEA-ResNet50 together with the Ranger optimizer and adaptive Mish activa-
tion provided maximum classification accuracies of 98.38% (multiclass) and 99.29% (binary classification) as com-
pared with the existing CNN architectures. The proposed method achieved the highest Kappa validation scores 
of 0.975 (multiclass) and 0.98 (binary classification) over others. Furthermore, the visualization of the saliency maps 
of the abnormal regions is represented using the explainable artificial intelligence (XAI) model, thereby enhancing 
interpretability in disease diagnosis.
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Introduction
Being a contagious and deadly disease, COVID-19 has a 
hazardous impact on the human respiratory system. Due 
to this, on March 11, 2020, the World Health Organiza-
tion (WHO) declared this illness as a global pandemic 
severity with the origin of Wuhan, China [1]. Then the 
disease was recognized as a corona virus with around 
75% similar to the SARS variant [1]. Additionally, the 
disease was almost similar to the bat corona virus that 
was recognized on earlier time of 2020. The symptoms 
of the disease vary from lower to higher risk of severity 
and cause multi-organ impairment. The resultant dam-
ages are associated with respiratory disorders such as 
Severe Acute Respiratory Syndrome (SARS) and Middle 
East Respiratory Syndrome (MERS) [2]. The initial indi-
cations of this disease start with a heavy cough, fever, 
respiratory issues, and breathing problems [2]. Until now, 
clinicians have used the following methods for diagnos-
ing COVID-19 victims: the first one involves clinical tests 
namely reverse transcription polymerase chain reaction 
(RT-PCR) and the second one involves the utilization of 
antigen testing [3]. Due to more false reports provided 
by the antigen tests, RT-PCR has become the wider and 
more popular one for diagnosis. However, its require-
ment involves experienced clinicians with extensive labo-
ratory work for obtaining and analyzing the results [4]. 
This makes this RT-PCR as a time-consuming and expen-
sive test. Thus making a demand among researchers for 
addressing this concern [4].

Medical imaging and analysis using Artificial Intelli-
gence (AI) algorithms have become an efficient tool for 
several biomedical problems. As an important point, 
the integration of AI methods into existing clinical 
workflows for COVID-19 classification enhances diag-
nostic capabilities, optimizes resource utilization, and 
improves patient care delivery. AI plays a crucial role 
in combating the COVID-19 pandemic and alleviat-
ing its impact on healthcare systems by complement-
ing human expertise with advanced computational 
techniques. In this way, several researchers have been 
enthused with the development of AI-assisted Com-
puter-Aided Diagnosis (CAD) frameworks for the 
robust classification of COVID-19. On the other hand, 
CAD frameworks with fewer false reports are needed 
for the diagnosis utilizing medical image databases. For 
this, radiographic images such as Computed Tomog-
raphy (CT) and chest X-rays have proven to be more 
promising modalities. Extensive research and investiga-
tion have been conducted to portray the significance of 
CT image analysis for COVID-19 classification [5]. But, 
because of the good availability, lower cost, and the 
involvement of less radiation, chest X-ray images are 
preferred for detecting COVID-19 [5]. This makes this 

study to utilize public datasets that contain chest X-ray 
images with multiple classes for the robust COVID-19 
classification.

The work proposes an automated residual deep-
learning architecture based on the Squeeze-and-Exci-
tation Attention mechanism. And the model is named 
as SEA-ResNet50 utilizing the Ranger optimizer and 
adaptive Mish activation function for multiclass clas-
sification of COVID-19 severities. For comparative 
experimentation, the work explored distinct transfer 
learning models namely VGG-16, Xception, ResNet18, 
ResNet50, and DenseNet121 architectures. Moreover, 
the input images are preprocessed and augmented for 
better evaluation of the proposed model. Figure 1 illus-
trates the aforementioned points regarding the pro-
posed work for the multiclass classification of chest 
X-ray images.

As shown in Fig.  1, this paper makes the following 
contributions:

•	 Proposes an end-to-end CAD framework based on 
the improved ResNet50 (SEA-ResNet50) model.

•	 Implements the backbone of the architecture using 
the Squeeze-and-Excitation Attention (SEA) mecha-
nism, with the inclusion of the Ranger optimizer and 
adaptive Mish activation function.

•	 Evaluates the study using two COVID-19 chest X-ray 
image datasets.

•	 Conducts comparative experimentation with seven 
popular transfer learning architectures for multiclass 
classification of COVID-19 severity.

•	 Represents the visualization of the saliency maps of 
the abnormal regions in the chest X-ray images using 
the explainable artificial intelligence (XAI) model.

The rest of the sections of the paper are structured as 
follows:   "Related works" section will signify the back-
ground study and its related works, "Materials and meth-
ods" section will illustrate the materials and methods 
used for the proposed study such as dataset selection, 
composition, and preprocessing techniques, "Transfer 
learning models for multiclass classification of COVID-
19 chest X-ray images" section will discuss about the 
details of the transfer learning models, "Proposed 
Squeeze-and-Excitation Attention—based ResNet50 
(SEA-ResNet50) model for COVID-19 detection" section 
will provide a detailed discussion on the proposed SEA-
ResNet50 for COVID-19 classification, "Experimental 
outcomes and analysis" section will illustrate the experi-
mental investigation followed by comparative analysis, 
and finally the conclusion and future extension of the 
proposed methodology will be detailed in "Conclusion 
and future work" section.
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Related works
As reviewed in the previous section, COVID-19 is a 
cruel and deadly disease affecting several human lives 
all around the world. Several researchers have exten-
sively proposed different approaches for the multiclass 
classification of COVID-19. Out of which, some of the 
significant contributions are discussed next. Wenqi 
et  al. [6] proposed an explainable attention-transfer 
architecture for COVID-19 classification. Their pro-
posed model is implemented as knowledge distillation 
structures and they evaluated on both CT and chest 
X-ray image databases. Soumya et  al. [7] performed a 
comprehensive study with eight distinct transfer learn-
ing models for COVID-19 detection. They compared 
the classification outcomes using SqueezeNet, AlexNet, 
VGG-16, two ResNet variants, Inception, GoogleNet, 
and MobileNetV2 architectures with chest X-ray image 
database. They experimented with different parameters 
such as optimizer type, size of the batch, epochs, and 
learning rate. Accordingly, they found that ResNet34 
architecture provided a maximum of 98.3% classifica-
tion accuracy. Lucas and Cesar [8] experimented with 
their work on convolutional neural networks (CNN) 
for automated identification of COVID severity. Their 
evaluation is done through chest X-ray image data-
sets. The maximum performance of 96% was obtained 
by Inception architecture without any preprocessing 
approaches. By utilizing a COVID-19 radiographic 
database, Amit et  al. [9] experimented with three dis-
tinct transfer learning architectures and averaged the 

obtained performance for the binary classification of 
COVID-19. This binary classification of the disease 
involves dual cases of COVID-19 negative and posi-
tive cases. The research attained a supremacy of 91.6% 
classification accuracy as compared with other mod-
els. Additionally, Maram et  al. [10] exposed that the 
adoption of image augmentation and optimizing the 
CNN parameters should yield better classification per-
formance as compared with other approaches used 
for identifying COVID-19. Furthermore, the above 
approach improved the classification attainment of 
ResNet50 and VGG-19 architectures for the problem. 
In addition to this, they proposed CovidXrayNet archi-
tecture and attained a maximum classification accuracy 
of 95.8% with only thirty training epochs. Here, they 
evaluated their proposed model using two distinct chest 
X-ray image datasets. Another study [11] proposed a 
framework for the multiclass problem of COVID-19 
detection. Their framework was organized into three 
phases. First, transfer learning-based ResNet50 was 
employed for obtaining 2048 feature vectors. Then fea-
ture selection was done using Principal Component 
Analysis (PCA) so that a total of only 64 features were 
selected. The attributes of the above two steps were 
then combined and classified finally to attain 98% clas-
sification accuracy. Aayush et al. [12] developed a dedi-
cated deep-learning model named SARS-Net to detect 
COVID-19 severity using chest X-ray image datasets. 
Here, they employed the COVIDx image dataset with 
chest X-ray images for experimentation. This leads 

Fig. 1  Workflow for COVID-19 (Chest X-ray images) classification
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their proposed work to obtain a maximum classifica-
tion accuracy of 97.6% for COVID-19 detection.

In recent days, a type of deep learning called Transfer 
Learning (TL) has become widely used particularly in 
the field of biomedical image analysis. By employing five-
fold cross-validation and resampling approaches, Ahmad 
et al. [13] experimented with a study employing a smaller 
dataset containing 50 positive and 50 negative COVID-19 
severities and obtained 98% as maximum accuracy. Luca 
et al. [14] utilized the power of CNN models for identi-
fying COVID-19 severities with the adoption of three 
distinct TL networks namely ResNet, VGG, and Xcep-
tion models. They evaluated their proposed models on a 
chest X-ray dataset containing pneumonia, normal, and 
COVID-19 as output classes. Their outcomes revealed 
that the above-mentioned TL models yielded higher per-
formance whereas the VGG model outperformed other 
networks. As an extension, the authors proposed further 
experimentation to boost the TL model’s performance by 
data augmentation and parameter optimization. Wang 
et  al. [15] proposed a TL-based deep-learning architec-
ture called Covid-Net and evaluated it on a database 
containing approximately 8000 normal, 5530 pneumo-
nia, and 180 COVID-19 cases. In this work, they attained 
an accuracy of 92% as compared with the existing TL 
models. Muhammad et  al. [16] utilized the widely used 
ResNet50 model and they concentrated more on fine-
tuning the above model to yield better performance. The 
database that they have employed contains chest X-ray 
images containing viral pneumonia, bacterial pneumo-
nia, and COVID-19 classes. Shervin et  al. [17] adopted 
a TL-based deep architecture for COVID-19 detection 
using chest X-ray images. They evaluated this architec-
ture with five thousand X-ray images on the following 
TL architectures, two ResNet-based models, DenseNet, 
and SqueezeNet models. Ferhat et  al. [18] developed a 
SqueezeNet-based TL model optimized using the Bayes-
ian algorithm for COVID-19 diagnosis. Due to additional 
data evaluation and optimal fine-tuning, their work 
attained improved accuracy and performance. Dian Can-
dra et  al. [19] employed a fusion of deep learning and 
Support Vector Machines (SVM) to classify COVID-19 
severities using chest X-ray image databases.

To make the evaluation model more robust, almost all 
works employing smaller and medium-sized datasets, 
the images are augmented appropriately and partitioned 
into training and testing data. In addition, the usage of 
the attention mechanism has become popular with the 
intention of enhancing the performance of deep learn-
ing architectures. Sivaramakrishnan et al. [20] proposed 
a methodology involving the augmentation of COVID-19 
images with weaker data labels. Asif et al. [21] developed 
a deep-learning model termed as CoroNet for COVID-19 

classification of chest X-ray images. And they adopted 
a pretrained Xception network evaluated using a four-
fold cross-validation strategy. After extracting features, 
machine learning classification models namely K-nearest 
neighbor (KNN), SVM, Decision Tree (DT), and Random 
Forest (RF) models were employed for the COVID-19 
task. Rodolfo et al. [22] proposed an approach of strati-
fied analysis for the classification of chest X-ray images 
corresponding to COVID-19 detection and attained a 
better performance with an F1 score of 89%. Lal et al. [23] 
performed COVID-19 classification employing a chest 
X-ray image dataset with multiclass outputs of Normal, 
bacterial, and viral pneumonia cases. Chiagoziem et  al. 
[24] developed a CNN-based architecture with second-
order pooling, attention mechanism, and dual-path net-
works for the image analysis of COVID-19 diagnosis. 
Here, they utilized this dual path for extracting features 
and second-order pooling for capturing the next-order 
derivative of the generated feature vectors. And this was 
done before the implementation of the attention mecha-
nism, thereby attaining better performance outcomes 
at both the training and testing phases. Recently, Kainat 
et al. [25] proposed a framework employing nine different 
TL models for COVID-19 diagnosis utilizing X-ray image 
datasets. Their results revealed that the VGG-16 model 
provided maximum performance as compared with other 
TL architectures. Additionally, the recent studies [26–33] 
contribute to the classification of COVID-19 severities 
using neural networks, fine-tuned and optimized transfer 
learning models for classification using X-ray, CT, and 3D 
scan images.

From the above discussion, it is apparent that the prob-
lem of COVID-19 classification demands reliable and 
promising methodologies for saving several human lives. 
Along with the above-discussed reliable methodologies, 
the work in this paper proposed an improved ResNet50 
model i.e., SEA-ResNet50 which includes an attention 
mechanism, ranger optimizer, and adaptive mish acti-
vation function for classifying the chest X-ray images. 
In this way, the proposed methodology introduced an 
improved transfer learning approach for tackling over-
fitting and improving the architecture performance. 
Hence the research adopted the aforementioned steps to 
improve the overall performance of the ResNet-50 model 
substantially.

Materials and methods
The section provides a detailed discussion of the back-
ground of the study, chest X-ray image datasets, pre-
processing methods, image augmentation, and proposed 
transfer learning SEA-ResNet-50 architecture for the 
employed multiclass classification task.
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Background
As from the literature discussed in "Related works" sec-
tion, COVID-19 is a brutal disease all over the world. 
Thus, there is always a demand for the development of a 
robust CAD framework for the classification of COVID-
19 severity. With the advent of several machine learning 
(ML) and Deep Learning (DL) algorithms, the research 
community has been introducing various promising 
solutions for the severity classification of COVID-19. 
The background of the study requires a comprehensive 
understanding of selecting appropriate imaging modal-
ity, dataset, preprocessing methods, and classification 
models.

As follows, several authors as discussed in the previ-
ous section have developed promising CAD frameworks. 
However, the problem still requires a more robust and 
accurate framework for timely diagnosis. In this way, the 
work introduces the ResNet50 architecture and attention 
mechanisms as potential solutions for improving fea-
ture representation and classification performance. For 
COVID-19 severity classification, motivated by the need 
for a robust CAD framework amidst the pandemic, the 
study proposes integrating the Squeeze-and-Excitation 
(SE) mechanism into the ResNet50 model for enhanc-
ing its classification performance. This sets the founda-
tion for the research, aiming to design a promising CAD 
framework for fighting against COVID-19.

Chest X‑ray image datasets
The proposed study is evaluated on a combined data-
set comprising chest X-ray images attained using two 
public COVID-19 datasets. This integrated dataset 
of chest images provides more robustness with lesser 
prone to variance. The combined dataset contains chest 
X-ray images with four distinct targets of Normal, 

Pneumonia, Lung_opacity, and COVID-19 cases. The 
number of X-ray images of the chest available in the two 
datasets is regularly updated by the dataset developers, 
and thus the amount of image availability may likely be 
dynamic in the future. The combined two chest X-ray 
image repositories are the COVID-19 radiographic 
dataset [34] publicly available on the Kaggle website 
and the Chest X-ray radiographic dataset [35] publicly 
available at the GitHub repository. A research team 
from the University of Qatar and Dhaka collaborated 
with medical doctors of Malaysia and Pakistan devel-
oped the first dataset containing chest X-ray images 
with COVID-19-positive, normal, and viral Pneumonia 
cases. The dataset is composed of 1345 viral Pneumo-
nia, 6012 lung_opacity, 10,192 healthy (normal), and 
3616 COVID-positive chest X-ray images. The sec-
ond dataset which got approval from the University 
of Montreal’s Ethics Committee contains chest X-ray 
images of patients who are suspected of COVID-19. 
Here, the data has been acquired from the public and 
also involves image acquisition from physicians and 
hospitals indirectly. From this dataset, 142 COVID-
19-positive case chest X-ray images are selected for 
the research. Thus, the employed chest X-ray images 
are composed of 10,192 normal, 1345 pneumonia, 
6012 lung_opacity, and 3758 COVID-19 cases. Fig-
ure 2 illustrates the chest X-ray data composition of the 
combined dataset. In addition to this, both the dataset 
contains chest X-ray images of variable resolution. And 
it is important to note that the above-selected data-
sets have no missing values or data for processing. The 
combined data is then preprocessed for further phases. 
The sample visualization of chest X-ray images with 
data labels taken from the combined dataset is given in 
Fig. 3.

Fig. 2  Image composition of the combined dataset
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Preprocessing of chest X‑ray images
In the design of every CAD model employing medi-
cal image analysis, the significance of the preprocess-
ing step is very crucial for attaining better results [36]. 
The paper employed a simple adaptive median filtering 
approach [37] for removing any noises included dur-
ing the acquisition. After filtering, the contrast of the 
X-ray images is enhanced without any overexposure 
using Contrast-Limited Adaptive Histogram Equali-
zation (CLAHE) [38]. This is performed for the gray-
scale equalization of the chest X-ray images. Figure  4 
illustrates the chest X-ray images of each stage of pre-
processing where 4(a) denotes the raw image with the 
COVID label, 4 (b) represents the noise-removed image 
using an Adaptive Median Filter (AMF), and 4 (c) indi-
cates the Contrast-Limited Adaptive Histogram Equali-
zation (CLAHE) image. The histogram visualization of 
the adaptive median filtered and the CLAHE processed 
images are illustrated in Fig.  5. The steps involved in 
CLAHE processing are given below. Let H(i) be the 
histogram of pixel intensity values in the input image, 
where i ranges from 0 to L− 1 . Here, L indicates the 
amount of intensity levels of the input image. The 
cumulative distributed function ( CDF  ) is then com-
puted as the cumulative sum of the histogram [39] as 
given in Eq. (1).

The transformation function T (i) maps the original 
intensity values to the enhanced intensity [39] as given in 
Eq. (2).

In Eq.  (2), CDFmin indicates the minimum CDF 
value in the local neighborhood, (M × N ) represents 
the size of the local neighborhood, and the number 
of intensity levels is indicated as L . The work employs 
the value of 16 for both M and N  . The Eqs. (1) and (2) 
illustrate the process of computing the cumulative dis-
tribution function and the transformation function 
used in CLAHE. This provides the enhancement of 
local contrast of chest X-ray images, which is vital for 
accurate classification of different medical conditions 
in a multiclass classification problem. The next step of 
CLAHE involves clipping the transformation function 
to limit the amplification of noise as shown in Fig.  5. 
After CLAHE transformation, the chest X-ray images 
of the combined dataset are augmented for increas-
ing the amount of data and for robust evaluation of the 

(1)CDF(i) = H j ; j = 0,1 . . . i

(2)T (i) = round

(

CDF(i)− CDFmin

(M × N )− CDFmin

)

× (L− 1)

Fig. 3  Chest X-ray samples from the combined dataset
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research work. This image augmentation is carried out 
by varying the zoom and shear parameters of the pro-
cessed inputs. In this way, the work made five copies 

of each processed chest X-ray image. Then, the aug-
mented data are applied to the different transfer learn-
ing models.

Fig. 4  Preprocessing of Chest X-ray data (a, d) original images (COVID label) of datasets 1 and 2 (b, e) adaptive median filtered images of datasets 1 
and 2 (c, f) CLAHE images of datasets 1 and 2

Fig. 5  Histogram of a sample chest X-ray Image, (a, c)—adaptive median filtered output of a sample image of datasets 1 and 2; (b, d)—CLAHE 
output of a sample image of datasets 1 and 2
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Transfer learning models for multiclass 
classification of COVID‑19 chest X‑ray images
The details on different transfer learning models 
employed for multiclass classification of chest X-ray 
image data are discussed in this section. After cropping 
the processed images to 224 × 224 × 3 , they are fed 
to the deep learning models as discussed below. These 
transfer learning models exist with already pretrained 
on the ImageNet database [40]. This database is made of 
14,197,122 generic image data with around a thousand 
object classes. This makes this dataset benchmark data 
for detecting objects, visual recognition, and image clas-
sification [40].

Transfer learning model: VGG‑16
Due to the ability to learn discriminative features from 
the input images, the VGG-16 model is employed for the 
COVID-19 classification. The architecture consists of 13 
convolutional layers followed by 3 fully connected lay-
ers [41]. Here, the convolutional layers are organized in 
blocks with each one containing multiple convolution lay-
ers followed by a max-pooling layer. Accordingly, the pre-
processed images are passed through the convolutional 
layers, applying activation functions (ReLU), and down-
sampling through max-pooling layers [41]. After the con-
volutional layers, the feature maps are then flattened into 
a vector and applied through fully connected layers. Those 
attained outputs are then applied through a softmax acti-
vation function for obtaining class probabilities [41].

Transfer learning model: Xception
The proposed work employs the Xception transfer learn-
ing model due to its excellence in better feature extrac-
tion and representation. The Xception architecture is 
actually an extension of the Inception model and is well-
known for its unique feature i.e., depth-wise separable 
convolutions [42]. This uniqueness of the model helps 
in reducing computational complexity while preserv-
ing representational capacity. The architecture consists 
of a series of depth-wise separable convolutional layers, 
followed by global average pooling (GAP) and fully con-
nected (FC) layers [42]. Herein, the depth-wise separable 
convolutions should be used to split the standard convo-
lution operation into two separate operations: the first 
one is depth-wise convolution and the next one is point-
wise convolution. This point-wise convolutional opera-
tion helps the model to have reduced computational 
complexity [42].

Transfer learning models: ResNet18 and ResNet50
In conventional CNNs, each layer is expected to learn 
a direct mapping from inputs to outputs. The concept 
of residual learning introduces a shortcut connection 
as illustrated in Fig.  6. These shortcut connections are 
also termed as skip connections in the Residual trans-
fer learning model. The skip connection as illustrated in 
Fig. 6 bypasses one or more layers, enabling the residual 
architecture to learn residual functions [43]. Thus, the 
architecture helps in the problem of vanishing gradi-
ent problem in deep learning models. The output of the 
residual block H(x) can be calculated [43] as shown in 
Eq. 3.

In Eq. (3), x portrays the residual block’s input, and F(x) 
indicates the residual function to be learned within the 
block. This equation represents the core idea of a residual 
block. And this signifies the concept that by adding the 
input x directly to the output F(x) , the original informa-
tion is preserved and propagated through the network. 
As a result, this helps in training stability and accuracy.

As shown in Fig.  6, the basic residual block structure 
contains two convolutional layers with batch normaliza-
tion and ReLU activation functions. In the first convolu-
tional layer, the convolution operation is done followed 
by batch normalization and ReLU activation function. 
Let W1 as the weight matrix corresponds to the first con-
volution layer, and b1 as the bias vector. This makes the 
output (OFirst) of the first convolution layer [44] as given 
in Eq. (4).

(3)H(x) = F(x)+ x

(4)OFirst = ReLU(W1 ∗ x + b1)

Fig. 6  Concept of residual model (skip connection)
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In Eq.  (4), the ReLU (Rectified Linear Unit) activa-
tion function is applied to introduce non-linearity and 
this helps the network to learn complex patterns. In the 
second convolution layer, another convolution opera-
tion is performed followed by batch normalization. Here, 
consider W2 as the weight matrix corresponding to the 
second convolution layer, and b2 as the bias vector. This 
makes the output (OSecond) of the second convolution 
layer [44] as given in Eq. (5).

The Eqs.  (4) and (5) state that batch normalization 
is typically applied after the convolution and before 
the ReLU activation to normalize the activations and 
improve training. In this way, the input x will be summed 
with the outputs of the second convolution layer while 
preserving the original information. Thus the final output 
of the residual block [44] can be given as represented in 
Eq. (6).

Equation (6) states that by adding x , the original input 
information is preserved and helps in gradient flow which 
enables the training of deeper networks. ResNet18 and 
ResNet50 consist of several residual blocks, each contain-
ing multiple convolutional layers. Here, ResNet18 con-
sists of eighteen layers (18 weight layers) and ResNet50 
consists of fifty layers [45]. Thus, both ResNet18 and 
ResNet50 architectures comprise convolutional layers, 
batch normalization, ReLU activations, and skip connec-
tions. The architectural diagram of the ResNet50 trans-
fer learning model is illustrated in Fig.  7. This diagram 
shows that the ResNet50 model has five stages with 50 
deep layers. As shown, it is a powerful CNN architecture 
used for addressing the challenges of training very deeper 
networks. This could be achieved by introducing residual 
connections as shown in Figs. 6 and 7. The model seems 
to be effective in learning intricate patterns and features 
from any complex datasets. Due to these advantages, the 

(5)OSecond = W2 ∗ ReLU(W1 ∗ x + b1)+ b2

(6)H(x) = W2 ∗ ReLU(W1 ∗ x + b1)+ b2 + x

model has become popular in several image recognition 
problems [46]. Finally, the residual mapping F(x) can be 
expressed [46] as given in Eq. (7).

In Eq. (7), W1,W2, and W3 represent the weight matri-
ces of the convolutional layers within the blocks, b1, b2, 
and b3 denote the respective bias vectors, the symbol ∗ 
indicates the convolution operation, and ReLU repre-
sents the rectified linear unit activation function. The 
aforementioned equations discussed in this sub-section 
illustrate the flexibility and capability of ResNet architec-
tures to model intricate patterns and features from com-
plex datasets. Several recent studies [47–50] in medical 
image analysis have demonstrated the superior perfor-
mance of ResNet50 compared to other architectures and 
the model is noteworthy for biomedical image analysis 
due to its balance between depth and efficiency.

Transfer learning model: DenseNet121
This type of pretrained architecture is well-known for its 
deep convolution neural network with densely connected 
layers. That is, DenseNet stands for densely connected 
neural networks in which they introduce dense connec-
tivity patterns between layers. This provides the advan-
tages of feature reuse and gradient flow throughout the 
network [51]. The architecture contains several dense 
blocks, each containing multiple convolution layers. This 
implies that within a dense block, each layer is intercon-
nected to all others in a feed-forward fashion. And the 
outcome of each layer should be concatenated with the 
inputs of all subsequent layers within the similar block 
[51]. In addition, transition layers are included to control 
the spatial dimensions of feature maps between dense 
blocks. Between dense blocks, these layers are utilized 
for down-sampling feature maps. This is done by exercis-
ing convolution and average pooling operations. This will 
help to reduce the spatial dimensions of feature maps and 
control model complexity [51].

(7)H(x) = W3 ∗ ReLU(W2 ∗ ReLU(W1 ∗ x + b1)+ b2)+ b3

Fig. 7  The architecture of ResNet50 transfer learning model
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Proposed Squeeze‑and‑Excitation Attention—
based ResNet50 (SEA‑ResNet50) model 
for COVID‑19 detection
The proposed work intends to improve the ResNet50 
transfer learning architecture for improving the perfor-
mance of multiclass COVID-19 classification utilizing 
chest X-ray data. To attain the efficient utilization of fea-
ture vectors across the channels according to their signif-
icance, the Squeeze-and-Excitation Attention (SEA) [52] 
model is introduced. At first, this SEA unit has to be inte-
grated with the residual units, and the implementation is 
similar to the simple attention concept. Additionally, the 
adaptive Mish activation function is introduced into the 
architecture. This step is required in the proposed work 
for avoiding neuron necrosis occurring due to the forced 
sparse mechanism of the rectified linear unit activation 
function. Consequently, an effective Ranger optimizer 
is taken for further improving the performance of the 
ResNet50 architecture.

Why Squeeze‑and‑Excitation Attention (SEA) unit?
In deep CNN models, several research works are 
intended to improve their performance through the 
stacking of convolution layers. This is done to concat-
enate more special feature maps for the considered prob-
lem. However, this will increase the depth of models 
resulting in complex training. Additionally, the existing 
CNNs have the rare ability to discriminate the signifi-
cance of each channel while performing feature concat-
enation. This will result in under-appreciation of some 
significant feature channels and hence the overall per-
formance will be reduced. To overcome these issues, 
the Squeeze-and-Excitation Attention (SEA) module is 
employed for fusing features from the channel dimen-
sions. This is a useful imitation of biological attention 
mechanisms that have the ability to concentrate highly on 
informative channel features and neglect the least signifi-
cant features for enhancing classification performance.

Squeeze‑and‑Excitation Attention (SEA) unit
This type of attention unit belongs to an attention mecha-
nism that can be integrated into deep CNNs such as the 
ResNet50 model. This is done to enhance feature repre-
sentations and improve model performance, especially for 
the employed multiclass classification task of COVID-19 
detection using chest X-ray images. The representation of 
the squeeze-and-excitation attention (SEA) module used 
in the residual units of the work is illustrated in Fig. 8. As 
shown, this module consists of only two operations namely 
squeeze and excitation operations. This starts with the 
compression of the input features, I in the spatial dimen-
sion for each channel, C . And this operation is termed as 
squeezing operation, Fsqu . Afterward, in excitation opera-
tion, Fexc , these compressed vectors are passed to two FC 
layers. Accordingly, the weights of each feature channel 
will be created using the Sigmoid equation. Then, the origi-
nal feature maps are multiplied (scaling operation) by the 
channel-wise weights learned during the excitation opera-
tion. In this way, the proposed model focuses more on 
informative channels and suppresses less relevant ones. 
This will lead the work to attain enhanced feature represen-
tations for COVID-19 classification utilizing chest X-ray 
data. Thus, the SEA module is utilized to capture channel-
wise dependencies and for enhancing feature representa-
tion adaptively. This makes the architecture to focus on 
informative regions of the input feature maps while sup-
pressing non-significant ones. The mathematical represen-
tation can be given as follows.

In Eq.  (8), Zc and σ represent the values of the fea-
ture vectors corresponding to distinct cth channel 

(8)Zc = Fsqu(uc) =
1

H ×W

∑H

i=1

∑W

j=1
uc(i, j)

(9)s = Fexc(Z,W ) = σ(W2σ(W1Z)

(10)O = Fscale(uc, sc) = sc.uc

Fig. 8  Representation of Squeeze-and-Excitation Attention (SEA) module
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and sigmoid function. Fsqu , Fexc , and Fscale denote the 
operations of squeezing, excitation, and scaling, uc(i, j) 
denotes the eigenvalue at (i, j) of cth channel, and W1 , 
W2 indicate the weights corresponding to two FC lay-
ers. Here, Eq.  (8) signifies the way of obtaining a sin-
gle scalar value ( Zc ) for each channel through squeeze 
operation. As illustrated, this operation condenses the 
spatial information of each channel into a single value 
and provides the ability to capture the global distribu-
tion of features in that channel. Conversely, this results 
in the reduction of spatial dimensions while retaining 
crucial channel-wise information. Equation  (9) signi-
fies the concept of excitation operation that allows the 
model to learn and emphasize the importance of dif-
ferent channels dynamically, based on the global con-
text. Finally, Eq.  (10) illustrates the scaling operation 
which signifies that by individual scaling of each chan-
nel, the model can enhance or suppress certain fea-
tures. This will improve the model’s ability to focus on 
relevant information and ignore irrelevant details. On 
the whole, the aforementioned equations illustrate the 
operations of the SEA unit which highlights its role in 
recalibrating channel-wise feature responses through 
squeezing, excitation, and scaling operations.

Adaptive mish activation function
In convolutional neural networks, the activation func-
tions play a significant role in deciding the activation 
and deactivation of neurons. This is done by computing 
the weighted sum of inputs and biases in a network. As 
compared with the standard non-linear activation func-
tions such as ReLU, Leaky ReLU, and Swish, the Mish 
activation function aims to provide smoother gradients 
and better generalization performance for classification 
tasks [53]. It is mathematically represented [53] as given 
in Eq. (11).

The exponential term of Eq. (11) ensures that for larger 
positive inputs, the function can grow rapidly. The loga-
rithmic term moderates the exponential growth and 
helps in making the function remains positive. The hyper-
bolic tangent term in the equation helps to squashes the 
output and thus adding smooth non-linearity. Hence, the 
mathematical formulation of the Mish activation func-
tion combines the aforementioned functions to achieve 
a smoother, non-monotonic alternative to traditional 

(11)Mish(x) = x.tanh(ln(1+ ex)

activation functions. This, in turn, provides benefits such 
as better gradient flow, improved generalization, and 
the ability to capture complex patterns. This makes it a 
powerful tool for improving the performance of convolu-
tional neural networks in classification tasks and beyond.

Adaptive parameter (α)
The proposed work introduced an adaptive Mish activa-
tion function as represented in Eq.  (12). The Adaptive 
Mish activation function is introduced to adaptively adjust 
in accordance with the characteristics of input data. The 
idea is to introduce learnable parameters as shown in 
Eq. (12). This is used in such a way that dynamically mod-
ulates the Mish function’s response so that this setup will 
capture the intricate features present in COVID-19 chest 
X-ray images.

In Eq.  (12), α represents the introduced learnable 
parameter. This α is used to control the adaptive behav-
ior of the activation function whereas tanh denotes the 
hyperbolic tangent function. As in Eq.  (12), α allows the 
Mish activation to adapt its curvature and slope based on 
the applied input images. Here, the value of α has been 
adjusted adaptively based on the learning rate during 
training epochs. And during backpropagation, the gradi-
ents of the loss function with respect to α are computed. 
These gradients guide the updates to α using a gradient 
descent-based optimization algorithm. This makes the 
activation function to have two significant advantages. 
The first one is able to capture varying degrees of non-
linearity effectively and the next one is ensuring smoother 
gradients during training. Within the SEA modules, the 
adaptive parameter α can be learned alongside other 
parameters. This enables the SEA-ResNet50 architec-
ture to dynamically adjust attention weights based on 
the input features. This adaptability will lead to obtain 
enhanced model performance and improved generaliza-
tion capacity and thus influence more accurate multiclass 
classification results for the employed problem. Figure 9 
portrays the comparison of Mish [53] and Adaptive Mish 
activation functions for different alpha values. This plot 
illustrates the adaptability of the Adaptive Mish func-
tion, which can be tuned adaptively based on the applied 
chest X-ray images. The final overall structure of the 
SEA-ResNet50 with modified Mish activation function 
is illustrated in Fig. 10. The algorithmic summary of the 
proposed model is given below.

(12)AdaptiveMish(x) = x.tanh
[

α.(ln(1+ ex)
]
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Algorithm 1. SEA-ResNet50 with adaptive Mish activation and ranger optimizer for COVID-19 detection

Fig. 9  Comparison of Mish and adaptive Mish activation function for different alpha values
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Experimental outcomes and analysis
The analysis of the attained results utilizing the proposed 
approach for the multiclass COVID-19 classification has 
been portrayed here. The implementation and evalu-
ation of the proposed work are executed with Jupyter 
Notebook on a recent version of the Windows operating 
system having 16  GB RAM. For comparative study, the 
paper utilized the five existing TL models namely VGG-
16, Xception, ResNet18, ResNet50, and DenseNet121 
architectures. The evaluation of the study is done using 
a partition ratio of 70% training and 30% testing data of 
preprocessed X-ray images. The above-mentioned ratio 
follows the stratified partition of splitting data. To tackle 
the problem of class imbalance, a fivefold cross-validation 
is applied within the 70% training data for tuning, and the 
final model is evaluated on the 30% testing set. Based on 
the experimental validation, the learning of the model is 
considered to be 1.0× 10−3 with 16 as batch size, opti-
mizer as Ranger (combining RAdam and Lookahead), 
activation function as Adaptive Mish, and 20 as number 
of epochs. The above hyperparameters are chosen care-
fully through a combination of grid searches, prelimi-
nary experiments, and benchmarking. Thus, the paper 
ensured the optimal performance of the SEA-ResNet50 

model in detecting COVID-19 from chest X-ray images. 
To mitigate the class imbalance problem, data augmenta-
tion, attention mechanism, cross-validation, and robust 
performance metrics such as precision, F1 score, and 
Cohen’s kappa score are employed.

Impact of individual modules used to improve 
the ResNet50 architecture
In this sub-section, 5 individual ablation tests are done 
for further exploring the effectiveness of the proposed 
methodology. This tests the impact of the employed SEA 
units, modified Mish activation function, and Ranger 
optimizer for the employed task using preprocessed 
COVID-19 chest X-ray images. Table 1  summarizes the 
outcomes of these ablation tests for COVID-19 detection 
using ResNet50 architecture.

At first, in Test_1, the ResNet50 model is evaluated 
without any changes using the image inputs, and 94.31% 
classification accuracy is obtained. In Test_2, the resid-
ual units in the standalone ResNet50 architecture are 
replaced with the residual blocks enhanced using the 
SEA block. This is done to ensure the effectiveness of the 
SEA unit in ResNet50 for this problem. As in Table 1, the 
test provided an improved accuracy of 2.22% for using 

Fig. 10  Overall structure of the SEA-ResNet50 with adaptive Mish activation function
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only the SEA module in ResNet50. This test result indi-
cates that the employment of this SEA block for distin-
guishing the significance between the channel features 
has an impact on building a better classification model 
for COVID-19 detection. In Test_3, the ReLU activation 
functions are replaced with the adaptive Mish activa-
tion function. This enhanced the classification accuracy 
improvement of 0.81% over the standalone ResNet50. 
This implies that the replaced activation provides a strong 
regularization effect for chest X-ray data classification. In 
Test_4, the combination of SEA block and adaptive Mish 
activation function is utilized in the ResNet50 model 
and so an accuracy improvement of 3.64% is obtained. In 
Test_5, the most commonly employed Adam optimizer is 

replaced with the Ranger optimizer [54] in the ResNet50 
model. This provides an accuracy improvement of 0.43% 
over the previous test. This is due to the fact that the 
Ranger is simply the combination of Rectified Adam and 
Lookahead [54]. The above ablation test results indicate 
that the combination of the SEA model, adaptive Mish 
activation function, and the Ranger optimizer is found to 
be reliable and effective for COVID-19 chest X-ray image 
classification.

Multiclass classification: outcomes of the proposed 
approach and its comparative analysis
After the implementation of the SEA_ResNet50 model 
for the considered problem, the confusion matrix is 

Table 1  Ablation tests to know the impactness of the individual modules used in the resnet-50 architecture

Fig. 11  Confusion matrix obtained for multiclass classification using SEA-ResNet50 model
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obtained. To attain these results, a five-fold cross-val-
idation strategy is employed. From this matrix cor-
responding to four classes namely Normal (Class_1), 
Pneumonia (Class_2), Lung_Opacity (Class_3), and 
COVID-19 (Class_4) cases, the performance metrics 
are calculated. This includes recall, precision, accuracy, 
F1-score, macro-F1, and weighted-F1 measures [55]. And 
these attained outcomes are then validated using Cohen’s 
kappa (κ) validation score [56]. Figure  11 illustrates the 
confusion matrix for the employed multiclass classifica-
tion problem using the SEA-ResNet50 architecture.

Figure 12 illustrates the validation and training plots 
of the SEA-ResNet50 model applied for multiclass 
COVID-19 detection. As shown in this plot, the pro-
posed model provided supreme performance at epoch 
14. The attained results in the testing phase for this 
four-class classification of COVID-19 severity are tabu-
lated in Table 2. Here, Macro-F1 represents the average 
F1 score across all four classes so that equal weightage 
to each class is given. And Weighted-F1 represents the 
weighted average of the F1-score across all classes, con-
sidering the class imbalance. This metric accounts for 

Fig. 12  Training and validation plots of SEA-ResNet50 for multiclass COVID-19 classification problem



Page 16 of 23Sannasi Chakravarthy et al. BMC Medical Imaging          (2024) 24:206 

Ta
bl

e 
2 

C
la

ss
ifi

er
’s 

pe
rf

or
m

an
ce

 fo
r m

ul
tic

la
ss

 C
O

VI
D

-1
9 

de
te

ct
io

n

D
L 

m
od

el
s

Pr
ec

is
io

n 
(%

)
Re

ca
ll 

(%
)

F1
-S

co
re

 (%
)

O
ve

ra
ll 

ac
cu

ra
cy

 
(%

)

M
ac

ro
-F

1 
(%

)
W

ei
gh

te
d-

F1
 (%

)

Cl
as

s_
1

Cl
as

s_
2

Cl
as

s_
3

Cl
as

s_
4

Cl
as

s_
1

Cl
as

s_
2

Cl
as

s_
3

Cl
as

s_
4

Cl
as

s_
1

Cl
as

s_
2

Cl
as

s_
3

Cl
as

s_
4

VG
G

-1
6

92
.6

2
80

.6
7

91
.6

6
90

.0
5

96
.1

6
66

.7
2

92
.2

8
86

.9
5

94
.3

6
73

.0
4

91
.9

7
88

.4
7

91
.1

4
86

.9
6

90
.9

9

Xc
ep

tio
n

93
.7

3
83

.6
5

92
.7

5
90

.9
3

96
.6

3
70

.4
5

93
.3

1
88

.8
1

95
.1

6
76

.4
8

93
.0

3
89

.8
6

92
.3

3
88

.6
3

92
.2

1

Re
sN

et
18

95
.0

4
85

.6
3

93
.8

8
91

.6
4

97
.0

9
74

.4
2

94
.2

6
90

.7
6

96
.0

6
79

.6
3

94
.0

7
91

.2
0

93
.5

2
90

.2
4

93
.4

4

Re
sN

et
-5

0
95

.7
0

86
.6

2
94

.3
6

93
.2

4
97

.4
3

77
.1

4
95

.1
4

91
.6

5
96

.5
5

81
.6

1
94

.7
4

92
.4

4
94

.3
1

91
.3

4
94

.2
5

D
en

se
N

et
12

1
96

.5
5

88
.1

1
95

.0
2

94
.8

4
97

.8
5

80
.7

1
96

.0
2

92
.9

7
97

.1
9

84
.2

5
95

.5
2

93
.9

0
95

.2
8

92
.7

1
95

.2
4

Pr
op

os
ed

 S
EA

-R
es

N
et

50
98

.7
7

95
.1

4
98

.5
6

98
.2

1
99

.2
9

93
.2

0
98

.6
1

97
.4

6
99

.0
3

94
.1

6
98

.5
9

97
.8

4
98

.3
8

97
.4

0
98

.3
6



Page 17 of 23Sannasi Chakravarthy et al. BMC Medical Imaging          (2024) 24:206 	

the number of samples in each class and offers a more 
accurate measure of DL architecture performance. As 
listed in Table 2, the VGG-16 model provided a macro 
F1 score of 86.96%, an overall accuracy of 91.14%, and 
a weighted F1 score of 90.99%. However, the Xception 
model provided a better classification performance 
than VGG16 for multiclass COVID-19 classification. 
That is, it provided a macro F1 score of 88.63%, an 
overall accuracy of 92.33%, and a weighted F1 score of 
92.21%.

The classification performance has been increased fur-
ther when skip connections-based deep learning mod-
els are employed. This reveals that the skip connections 
used in the ResNet18 and ResNet50 models make a sig-
nificant contribution to the employed problem. In this 
way, the ResNet50 model provided a better classifica-
tion performance of 94.31% overall accuracy, macro F1 
score of 91.34%, and weighted F1 score of 94.25%. And 
also noted that the class-wise performance is substan-
tially improved over the aforementioned transfer learn-
ing models.

Afterward, the densely connected DenseNet121 
architecture was utilized but found that the results of 
multiclass classification for the employed problem 
notably overlapped with the previous ResNet50 model. 
So, the performance of the ResNet50 model is further 
improved using the SEA blocks, modified mish activa-
tion, and Ranger optimizer. Thus, the proposed SEA-
ResNet50 architecture provided a macro F1 score of 
97.40%, an overall accuracy of 98.38%, and a weighted 

F1 score of 98.36%. Also, the individual class-wise per-
formance is substantially improved over other models. 
Consequently, the proposed SEA-ResNet50 model’s 
superior performance could be attributed to its integra-
tion of the Squeeze-and-Excitation attention mecha-
nism, effective feature representation capabilities, 
usage of ranger optimizer, and experimental setup. 
The above-discussed factors contributed collectively 
to the model’s ability to attain higher precision, accu-
racy, recall, and F1 scores in the problem of multiclass 
COVID-19 detection. The above performances of DL 
models are validated using Cohen’s score and plotted 
graphically in Fig.  13. The plot validates the superior 
performance of the proposed model with a kappa score 
of 0.975.

Binary classification: outcomes of the proposed model 
and its comparative analysis
The results obtained for binary classification of COVID-
19 detection, i.e., considering only two cases, Normal 
(Class_1) and COVID-19 (Class_2) are summarized 
in Table  3. Herein, it is revealed that the skip connec-
tion-based ResNet models provided better classifica-
tion performance for the binary class problem. That is, 
ResNet50 provided a better classification performance 
of 94.91% sensitivity, 96.60% specificity, 96.14% accu-
racy, 91.14% precision, and 92.99% F1-score. After intro-
ducing the squeezing-and-excitation attention blocks, 
modified mish activation, and Ranger optimizer, the 
SEA-ResNet50 model outperformed others with 99.13% 

Fig. 13  Comparative plot analysis of transfer learning models for multiclass classification of COVID-19 using kappa validation
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of sensitivity, 99.35% of specificity, 99.29% of accuracy, 
98.24% of precision, and 98.68% of F1-score values. Fig-
ure 14 illustrates the comparison of accuracy and kappa 
scores for binary classification of COVID-19 detec-
tion. As from the plot, the proposed work attained the 
supreme kappa validation score of 0.98 as compared with 
the existing models.

Saliency map visualization and interpretation
The visualization of salient class activation maps influ-
enced for COVID-19 multiclass classification using the 
proposed model is illustrated in Fig.  15. This visualiza-
tion is done using Grad-CAM-based [57] Explainable AI 
which reveals that the proposed SEA-ResNet50 provides 
supreme classification performance over others. The 
steps involved are given as follows.

	(i)	 Gradient Calculation: Grad-CAM computes the 
gradient of the score for a target class yc (e.g., 
pneumonia, COVID-19) for an applied input chest 
X-ray image. This calculation is done by consider-
ing the feature maps Ak of the final convolutional 
layer. The resultant gradients (∂yc/∂Ak) will signify 
how important each feature map is for the output 
target.

	(ii)	 Weighted Feature Maps: The above-resultant gra-
dients are then averaged (global average pooling) 
for obtaining the weights αc

k [58] as given below.

Equation (13) characterizes the importance of each fea-
ture map k for the target class c and Z denotes the num-
ber of pixels in the feature map. Equation (13) provides a 
way to quantify the importance of each feature map in a 
convolutional neural network for a specific target class. 
By averaging the gradients of the class score for the fea-
ture map activations, it captures the overall influence of 
the feature map on the class prediction. This information 
is essential for understanding, interpreting, and improv-
ing the performance of deep learning models, particu-
larly in complex tasks like image classification.

	(iii) 	Class Activation Map: The above weights are then 
utilized for performing a weighted combination of 
the feature maps. Next, a ReLU activation function 
is employed to make sure to consider only the posi-
tive contributions. As a result, a coarse heatmap is 

(13)αc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak

Table 3  Binary classification outcomes of the proposed approach for COVID-19 diagnosis

DL models Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 Score (%)

VGG-16 88.88 93.83 92.49 84.15 86.45

Xception 91.91 94.52 93.82 86.08 88.90

ResNet18 94.00 95.29 94.94 88.04 90.92

ResNet-50 94.91 96.60 96.14 91.14 92.99

DenseNet121 95.80 97.38 96.96 93.10 94.43

Proposed SEA-ResNet50 99.13 99.35 99.29 98.24 98.68

Fig. 14  Accuracy and kappa score comparison for binary classification of COVID-19 detection
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obtained that highlights the regions of the image 
that are most relevant for the SEA-ResNet50 mod-
el’s prediction.

	(iv)	 Overlaying Heatmaps: With respect to the input 
image, the above heatmaps are then upsampled 
accordingly and overlaid on the original chest 
X-ray images. This supports in visualizing the 
areas that the proposed model deems important as 
given in Fig.  15. For interpretations, these visuali-
zations are crucial since they allow clinical people 
to understand and verify the decision-making abil-
ity of the employed model. Thus, the highlighted 
areas as shown in Fig. 15 ensure that the model has 
focused correctly on relevant features. This results 
in improved trust and confidence in the automated 
diagnosis system.

Comparison with the recent existing works
The SEA-ResNet50 approach is finally compared with 
the state-of-the-art works, and it is listed in Table  4. 
This listed comparison summary includes the recently 
published and its associated research studies. And these 
summarized works have taken either CT or chest X-ray 
images as input. The comparison summary listed in 
Table  4 reveals that the proposed SEA-ResNet50 archi-
tecture together with the adaptive mish activation and 
ranger optimizer outperforms other recent approaches. 
This is due to the appropriate choice of transfer learn-
ing model with the right choice of activation and 

optimization functions for the multiclass classification of 
the COVID-19 problem.

Discussion of the findings
The outline plot of the research aims in improving the 
performance of ResNet-50 architecture for the COVID-
19 multiclass classification task as summarized next. 
Here, since the problem involves multiclass classification, 
the complexity and challenges involved are class imbal-
ance, feature dimensionality, preprocessing methodolo-
gies, complex relationships between input features and 
target classes, inter-class variability, model selection and 
tuning, and evaluation metrics.

◦  The originality of the work lies in improving the 
ResNet50 model’s performance for COVID-19 clas-
sification through the proposed SEA-ResNet50 deep 
learning architecture.
◦ This is done through the utilization and successful 
integration of the squeeze-and-excitation attention, 
adaptive mish activation and ranger optimization 
functions with the ResNet50 model.
◦ The study utilized the ResNet50 [46] as compared 
with the VGG16 [41], Xception [42], ResNet18 [45], 
and DenseNet121 [51].
◦  The ResNet50 model is chosen in this research 
because it provides a balance between depth and 
computational complexity. In addition, the model is 
deeper than VGG16 and ResNet18 but still compu-

Fig. 15  Visualization of class activation map using the proposed model
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tationally efficient as compared with more complex 
architectures such as DenseNet121 and Xception 
models. This balance makes the ResNet50 model a 
good choice for the employed COVID-19 classifica-
tion problem.
◦ The above CAD model is evaluated in this study for 
both binary (Normal Vs COVID-19) and multiclass 
(Normal, Pneumonia, Lung_Opacity, and COVID-
19) classification tasks.
◦  As compared with recent research works, the 
proposed CAD approach outperforms and thereby 
establishes the novelty of the framework.

Limitations of the study
Various real-time social crises always expect more prom-
ising outcomes through imaging analysis and algorithms 
using artificial intelligence. For all problems and the sake 
of saving lives, researchers all around the world are devel-
oping models for several real-world tasks. In this manner, 
the proposed CAD model is implemented successfully, 
and precise outcomes have been attained. However, as 
from Table 2, all the employed and proposed deep learn-
ing architectures have struggled to discriminate the chest 
X-ray images belonging to Pneumonia (Class_2) dur-
ing multiclass classification. This implies that the pro-
posed DL architecture further requires to be improved 
to attain more promising results i.e., minimizing the 
risk of discriminating pneumonia inputs as either of the 
other three classes. Subsequently, the employed dataset 

contains lesser image inputs of pneumonia as compared 
with other classes. Accordingly, this problem could be 
tackled in the future extension of this work.

Conclusion and future work
In today’s era, the risk to human lives is increasing due 
to several diseases. However, the research community 
has developed different promising algorithms for saving 
human lives. The negative impact on human lives was 
severe due to coronavirus and its subsequent pandemic. 
The research in this paper intended to design a CAD 
for both multiclass and binary classification of COVID-
19 severities. The classes considered in our problem are 
Normal, Pneumonia, Lung_Opacity, and COVID. For 
this, a combined dataset of chest X-ray image data are 
taken for assessment. The proposed method starts with 
the robust and popular transfer learning architecture, 
ResNet50. The model’s classification performance is fur-
ther improved using the Squeeze-and Excitation Atten-
tion (SEA) modules, adaptive Mish activation function, 
and Ranger optimizer. Different experiments with appro-
priate ablation studies were conducted for ensuring the 
robustness of the proposed SEA-ResNet50 model. A new 
learnable and adaptive parameter (α) is introduced in the 
activation function for attaining robust classification. In 
addition, the experimentation using VGG16, Xception, 
ResNet18, ResNet50, and DenseNet121 models is done 
for the comparative analysis of the proposed CAD model. 
The results of the research are validated using Kappa vali-
dation. Accordingly, the attained outcomes reveal that 

Table 4  Comparative summary of the proposed approach with the recently published studies for COVID-19 classification problem

Research work Dataset Architecture Class Classification 
accuracy (%)

[21]—Asif Iqbal et al Chest X-ray images taken from GitHub and Kaggle CoroNet 4
3

89.6
95.0

[59]—Tanvir et al Chest X-ray images collected from Guangzhou Medical 
Center, China, and Sylhet Medical College, Bangladesh

CovXNet 2
4
3
2

99.0
90.3
89.6
94.7

[60]—Tulin et al Chest X-ray images of CohenJP and Wang databases DarkCovidNet 3
2

98.0
87.0

[61]—Marko et al ChestXRay2017 dataset ResNetCOVID19 3 94.1

[62]- Prabira et al Chest X-ray images of CohenJP database ResNet50 +  2 95.3

[63]—Shahin et al COVID-CT-MD dataset COVID-Fact 3 90.8

[64]—Xiaowei et al Own dataset collected from three distinct hospitals ResNet with Attention 3 86.7

[65]—Himadri et al Chest X-ray images taken from GitHub and Kaggle Deep Neural Architecture 2 96.13

[66]—Emin Sahin Chest X-ray images taken from Kaggle Deep Convolutional Architecture 2 96.7

[67]—Umair et al COVID X-ray images taken from Kaggle CODISC-CNN 2
3
4

97.0
89.0
84.0

[68] – Patro et al Chest X-ray images taken from GitHub and Kaggle SConvNet50 2 97.33

Proposed Architecture Chest X-ray images taken from GitHub and Kaggle SEA-ResNet50 Model with Adaptive 
Mish Activation and Ranger Optimizer

2
4

99.29
98.38
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the proposed approach SEA-ResNet50 outplayed the 
performance of other DL models in both binary and mul-
ticlass classification of COVID-19 severity. That is the 
proposed model provided maximum overall classification 
accuracies of 98.38% (multiclass) and 99.29% (binary) 
as compared with the existing works. The robustness of 
the proposed model is evaluated with respective kappa 
validation and the scores obtained are 0.975 and 0.98 for 
multiclass and binary classification of COVID-19 sever-
ity. The direction of our future work will be implement-
ing the proposed SEA-ResNet50 model with different 
chest X-ray image datasets with distinct image preproc-
essing approaches. Also, future research will include the 
evaluation of the proposed model with both X-ray and 
CT images for COVID-19 diagnosis.
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