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Abstract
Background The quality of low-light endoscopic images involves applications in medical disciplines such as 
physiology and anatomy for the identification and judgement of tissue structures. Due to the use of point light 
sources and the constraints of narrow physiological structures, medical endoscopic images display uneven 
brightness, low contrast, and a lack of texture information, presenting diagnostic challenges for physicians.

Methods In this paper, a nonlinear brightness enhancement and denoising network based on Retinex theory 
is designed to improve the brightness and details of low-light endoscopic images. The nonlinear luminance 
enhancement module uses higher-order curvilinear functions to improve overall brightness; the dual-attention 
denoising module captures detailed features of anatomical structures; and the color loss function mitigates color 
distortion.

Results Experimental results on the Endo4IE dataset demonstrate that the proposed method outperforms existing 
state-of-the-art methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Learned 
Perceptual Image Patch Similarity (LPIPS). The PSNR is 27.2202, SSIM is 0.8342, and the LPIPS is 0.1492. It provides a 
method to enhance image quality in clinical diagnosis and treatment.

Conclusions It offers an efficient method to enhance images captured by endoscopes and offers valuable insights 
into intricate human physiological structures, which can effectively assist clinical diagnosis and treatment.
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Background
Endoscopic technology plays an important role in the 
diagnosis and treatment of diseases. However, the prac-
tical implementation of medical endoscopy is frequently 
impeded by low-light environments, stemming from 
the intricate physiological structures of internal organs 
and the utilization of point-directional light sources. 
This impedes the ability of physicians to accurately iden-
tify and localize lesions or areas of pathology. Low-light 
image enhancement has emerged as an effective method 
to address endoscopic image quality issues, aiming to 
enhance the visibility and interpretability of the images.

Image enhancement models include spatial domain-
based methods [1, 2], frequency domain-based methods 
[3, 4], Retinex model-based methods [5, 6], fusion-based 
methods [7, 8], deep learning methods [9, 10], etc. The 
principle of the spatial or frequency domain approach 
is to transform a low-light image into a specific feature 
space by adjusting its pixels’ distribution and dynamic 
range. The fusion-based model is designed to extract 
complementary details from a set of low-light images of 
the same scene. This method does not consider the cor-
relation between neighboring pixels and different chan-
nels, resulting in images with noticeable artifacts and 
blurred details. The Retinex theory is a computational 
model for human color vision that can adapted to be used 
as an image enhancer [11–14]. Retinex has inspired some 
illuminant and reflectance image decomposition meth-
ods [15, 16]. Deep learning approaches have the poten-
tial to learn complex nonlinear end-to-end mappings 
and have shown impressive performance in the field of 
image restoration [17]. Tan et al. [15] decomposed the 
endoscopic image into two layers: the detail layer and the 
base layer. The vascular information is extended through 
the channels in the detail layer, while adaptive light cor-
rection is applied to the base layer. In EIEN [16], the 
endoscopic image is decomposed into light and reflec-
tion components, which are then processed separately. 
Finally, the reconstructed image is obtained by multiply-
ing the enhanced illuminance and reflected components. 
Wang et al. [6] proposed an initial illumination weighting 
method to improve the illumination uniformity of endo-
scopic images by incorporating the inverse square law 
of illumination while maintaining exposure, chromatic 
aberration, and noise control. This method effectively 
improves the illumination and uniformity of endoscopic 
images from both visual perception and objective evalu-
ation. LR3M [18] considers noise generated during low-
light image or video enhancement and applies two stages 
to enhance the image and suppress noise, respectively. 
These traditional algorithms provide the benefits of high 
reliability and interpretability. Nevertheless, they often 
involve manual feature selection in their physical mod-
els, and the effectiveness of enhancement results depends 

on the accuracy of the selected features. Deep learning is 
used in a wide range of fields, such as computer vision 
[10, 19], biomedical signal processing [20], and drug dis-
covery [21, 22]. Low-light image enhancement, a subset 
of computer vision, has made significant progress and 
achieved excellent results. The pioneering LLNet [9] 
was the first deep learning network designed to enhance 
images captured in low-light natural scenes. Subse-
quently, numerous deep learning methods for enhancing 
image illumination have emerged [10, 23]. ExCNet [24] 
estimates the S-curve for the whole image, the curve can 
be simply parameterized by shadow amount and high-
light amount. Many researchers employed adversarial 
generative networks to generate synthetic datasets. Zero-
DCE [25] estimated the light intensity as a specific curve 
and designed a non-referenced loss function for deep 
training within a given image dynamic range, which is 
in line with the requirements of lightweight networks. 
FLW [26] designed a lightweight enhancement network 
with global and local feature extraction adjustments, 
proving effective for enhancing low-light images. SMNet 
[10] designed a multi-scale network considering both 
local details and global brightness for low-light image 
enhancement. MBPNet [23] designed a multi-branch 
network with different scales, which gradually enhanced 
low-light images from coarse to fine. While these algo-
rithms have yielded satisfactory outcomes in enhancing 
natural images, their efficacy is constrained when applied 
to medical endoscopic images. The special physiologi-
cal environment of endoscopes exhibits weak texture 
characteristics due to non-Lambertian reflections from 
tissues, and the structural configuration of the internal 
cavity, coupled with the use of point light sources, leads 
to images displaying uneven light and darkness. Utiliz-
ing existing algorithms directly in such environments 
proves ineffective in enhancing image luminance in cav-
ity depressions, and they fail to consider overall image 
luminance uniformity and overexposure, both critical for 
expanding the surgeon’s field of view and executing sur-
gical maneuvers. Existing algorithms enhance the dark 
parts of an image and increase the brightness, improv-
ing the image quality. However, there are deficiencies 
in overall brightness, texture details, and colors, such 
as inadequate representation of texture details, insuffi-
cient brightness, and color shifts. These aspects are very 
important for doctors to diagnose and treat. Current 
networks often cause detailed information about physi-
ological tissue structures in endoscopic images to be 
smoothed during the brightness enhancement process. 
However, anatomical details in weakly textured images 
are important for diagnosis and treatment and require 
special attention. Unlike natural images, the physiologi-
cal environment of endoscopic applications requires 
strict color fidelity, but existing methods typically exhibit 
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significant color deviations in this environment and are 
therefore not suitable for direct application to scene 
brightness enhancement. Noise in the input data is a 
common problem in medical imaging [27, 28]. The pres-
ence of noise can significantly degrade the quality and 
reliability of the data, leading to several challenges such 
as reduced signal clarity, increased error rates, compro-
mised data integrity, difficulties in feature extraction, 
and so on. While noise is generally seen as detrimental, 
the concept of stochastic resonance (SR) illustrates that 
noise can sometimes be harnessed to improve signal 
processing. In medical imaging, stochastic resonance 
can be used to enhance the visibility of faint structures 
in noisy images. By adding a controlled amount of noise, 
the contrast of these structures can be improved, aid-
ing in better diagnosis. In communication systems and 
signal processing, stochastic resonance can improve the 
detection of weak signals in noisy environments, leading 
to more robust data transmission. By understanding and 
leveraging this phenomenon, we can address some of the 
challenges posed by noise in input data and improve the 
performance of various systems in medical imaging [29, 
30], and beyond. Significant advances have been made 
in medical image processing[31–39], providing a solid 
foundation for medical diagnosis and treatment. We pro-
pose a new method for image enhancement that exploits 
an image decomposition approach inspired by Retinex 
theory. The network comprises a nonlinear luminance 
enhancement module and a denoising module. The loss 
function accounts for color difference, structure, and 
luminance aspects. Experimental results on the Endo4IE 
[40] dataset demonstrate that the proposed method out-
performs existing state-of-the-art methods in terms of 
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 
(SSIM) [41], and Learned Perceptual Image Patch Simi-
larity (LPIPS) [42].

In summary, this approach contributes the following 
key elements:

(1) A novel network architecture is proposed for the 
luminance and detailed feature enhancement of 
low-light images in endoscopic environments. The 
network addresses the global luminance imbalance 
and the weak organizational texture commonly 
found in endoscopic images by integrating global 
luminance, and local and spatial detail enhancement 
for noise reduction, thereby achieving a balanced 
enhancement of luminance in endoscopic images;

(2) The nonlinear luminance enhancement module 
mitigates the illuminance inhomogeneity in 
endoscopic images resulting from the use of point 
light sources and the physiological tissue structure 
environment. This is achieved by enhancing the 
overall image luminance perspective. Inspired by the 

Retinex methodology, the module extracts the overall 
image luminance through the decomposition of the 
model and optimizes the higher-order curve function 
using histogram information to automatically 
supplement the image luminance;

(3) Addressing the weak texture characteristics 
of endoscopic images, the denoising module 
incorporates a feature enhancement with a dual-
attention mechanism. This mechanism enhances the 
detailed feature expression of images by integrating 
curvilinear attention and spatial attention, effectively 
improving the detailed expression of the image 
organizational structure.

In this paper, Sect. 2 details the proposed image enhance-
ment method, Sect.  3 covers the related experiments, 
Sect.  4 provides the discussions, and Sect.  5 offers 
conclusions.

Methods
We first present the general framework of the method-
ology, and then follow the details of the method and the 
composition of the corresponding modules.

Overall pipeline
Figure  1 shows the comprehensive framework of the 
low-light image enhancement network. The nonlinear 
luminance enhancement module automatically improves 
light luminance by employing illumination separation 
and nonlinear enhancement, aiming at global luminance 
equalization and luminance enhancement of dark areas. 
The denoising module enhances physiological struc-
ture details by amplifying local and spatial dimensional 
interaction feature information through a dual atten-
tion mechanism. To ensure color realism, the loss func-
tion design prioritizes chromaticity loss. The proposed 
framework in this paper comprises two key components: 
the nonlinear luminance enhancement module and the 
denoising module. Given a low-light image, an illumi-
nation map and a reflection map can be obtained using 
an image decomposition approach. The decomposition 
process includes three convolutions with LeakyRelu 
functions and one convolution with the Relu function. 
Then, the illumination map is enhanced by using a non-
linear luminance enhancement module with high order 
curve function. Afterward, the denoising module extracts 
detailed features with dual attention and removes the 
noise generated in the previous processes. The denoising 
process includes seven Conv2D layers with Relu activa-
tion functions and one convolution with Sigmoid activa-
tion function. The network enables low-light images to 
be enhanced to improve the luminance of dark areas and 
maintain color fidelity. It outperforms existing methods 
in terms of visual effects and performance metrics.
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Nonlinear luminance enhancement module
To enhance the global luminance, a nonlinear lumi-
nance enhancement module is designed in this paper 
to enhance the illumination map by the higher-order 
curve function [25]. The method proposed in this paper 
operates at the pixel level, assuming each pixel follows a 
higher-order curve, i.e., the pixel-wise curve. With the 
fitting maps, the enhanced version image can be directly 
obtained by pixel-wise curve mapping. We design a 
decomposition method to obtain the illuminance map by 
the following equation:

 I = L · R  (1)

Where I  is the low-light image, L  is an illumination 
map, and R  is a reflection map. Inspired by the Zero-
DCE principle, a higher-order curve function operation 
is performed on the illumination map L  to achieve global 
luminance enhancement. The parameters of the higher-
order curve function are computed from the histogram 
of the illumination map and consist of a four-layer convo-
lution and a LeakyReLU activation function. According 
to the literature [25], the equation can be applied by the 
following equation:

 En (x) = En−1 (x) + α n (x) En−1 (x) − α n (x) E2
n−1 (x) (2)

where the parameter n is the number of iterations and 
controls the curvature of the curve; alpha is the train-
able curve parameter, the value ranges from − 1 to 1; E 
denotes the illuminance value at a coordinate x . Here, 
we assume that pixels in a local region have the same 
intensity (also the same adjustment curves), and thus the 
neighboring pixels in the output result still preserve the 
monotonous relations. We formulate alpha as a pixel-
wise parameter, i.e., each pixel of the given input image 
has a corresponding curve with the best-fitting alpha to 
adjust its dynamic range. So, both dark and bright pixels 
are adjusted according to this curve. In our method, we 
set the value of n to 7. The dimensionality of α n  matches 
that of the input image, ensuring adherence to the nec-
essary conditions. α n  is obtained from the illumination 
map of the low-light input image by calculating its histo-
gram. Then the enhanced illumination map Len  and the 
reflection map R  are multiplied to obtain a global lumi-
nance enhanced image Ig . The equation is as follows:

 Ig = concat ([Len, Len, Len]) × R  (3)

Fig. 1 Framework flowchart
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Denoising module
The image is adjusted with local attention and spatial 
attention. To better extract the physiological structural 
detail contrast of the image, a dual attention mechanism 
is adopted for local and spatial feature extraction. Dual 
attention includes curve attention and spatial attention, 
which operate parallel. Curve attention can better cap-
ture features near image pixel points, especially in com-
plex geometric structures or textures. This is particularly 
important for fine anatomical structures in medical 
images, such as blood vessels and nerve fibers. Spatial 
attention enhances the model’s ability to represent key 
features by focusing on the most important regions in 
the image while suppressing the interference of irrelevant 
information. Thus, a denoising effect is achieved. Curve 
attention proposed in the literature [43] can effectively 
extract the detailed features, the equation is as follows:

 

ILn(c)

ILn−1(c)
= Curven−1(1 − ILn−1(c)) (4)

Where ILn(c) is the curve function, and c  represents the 
feature location coordinates. Here, this curvilinear atten-
tion is used to improve the six-channel image obtained 
earlier, resulting in a curvilinear attention map of the 
overall image. It is estimated by three Conv2D layers and 
Sigmoid activation. The equation is as follows:

 CA (ID) = ILn(c) (ID) (5)

CA (ID)  denotes that curve attention is applied to image 
ID  to extract local features.

Spatial attention [44] adopted global average pooling 
and max pooling on input features respectively to get 
the interspatial dependencies of convolutional features, 
which are then concatenated for convolution and Sig-
moid operations. The equation is as follows:

 

SPA (ID)
= ID ⊗ Sig (Conv (concat (Max (ID) , Avg (ID))))

 (6)

SPA (ID)  denotes the computation of spatial atten-
tion on ID  to extract the global features of the image. 
CA (ID)  is concatenated with SPA (ID)  followed by a 
1 × 1 Conv2D layer, the equation is as follows:

 Idual = Conv1× 1 {concat (CA (ID) , SPA (ID))} ,  (7)

Then, there are seven layers of convolution and activation 
functions to extract detailed features.

Total loss
The loss functions in FLW mainly consider the relative 
loss to keep the structure, saturation, and brightness of 

the image consistent with the reference image. These loss 
functions are designed to ensure that the enhanced image 
retains as much structural information, i.e., luminance 
information, as possible. We add a color loss function to 
the loss function designed in FLW to recover more color 
information. The total loss is calculated as a combination 
of different loss functions for endoscopic low-light image 
enhancement, the total loss function is as follows:

 ltotal = l1 + lSSIM + lhs + lb + lstr+lcd  (8)

An explanation of the symbols in the formula will be pro-
vided later. CIELAB (also known as the CIE Lab* color 
space) is considered to be closer to human color percep-
tion because it was specifically designed to be perceptu-
ally uniform. This means that a given numerical change in 
CIELAB values corresponds to a roughly equal change in 
perceived color. The CIELAB color space models human 
vision by incorporating knowledge of the nonlinearities 
of human color perception, making it more accurate in 
representing how humans perceive color differences 
compared to other color spaces, such as RGB [45–48]. 
Given its alignment with human visual perception, the 
CIELAB color space enables more effective comparison 
and measurement of color differences. So, we convert 
the sRGB space to the CIELAB color space to more accu-
rately assess the color difference between the enhanced 
image and the reference image in this paper. The color 
difference equation lcd  is as follows:

 lcd = dl + dc/
(

(1 + 0.045c1)
2
)

+ dh/
(

(1 + 0.015c1)
2
)

, (9)

Where dl , dc , dh , c1  denote the square of the L  chan-
nel difference, the square of the c  channel difference, the 
color channel difference, and the mean value of the color 
channel about the enhanced image respectively.

l1 represents the pixel-level loss between the enhanced 
image and the reference image, the equation is as follows:

 
l1 =

1
mn

∑ m,n

i=1,j=1
|Ien (i, j) − Iref (i, j)| , (10)

lSSIM  is the SSIM loss, the equation is as follows:

 lSSIM = 1 − SSIM (Ien, Iref) ,  (11)

The structural similarity function is as follows:

 
SSIM (Ien, Iref) =

2µ 1µ 2 + c1

µ 2
1 + µ 2

2 + c1
•

2σ 1σ 2 + c2

σ 2
1 + σ 2

2 + c2
,

 (12)
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lhs  [26] measures the hue and saturation difference 
between two pixels, the equation is as follows:

 
lhs = 1 −

∑ m,n

i=1,j=1
< Ien (i, j) , Iref (i, j) >,  (13)

Where < • , • >  represents the cosine similarity of 
two vectors.

lb  [26] express the luminance relation, the equation is 
as follows:

 

lb =1 −
∑

c∈{R,G,B}

∑m,n

i=1,j=1
< Ic

en (i, j)

− minIc
en (i, j) , Ic

ref (i, j) − minIc
ref (i, j) >

 (14)

lstr  [26] is the gradient loss. lstr  includes the sum of the 
horizontal and vertical losses. The function calculates the 
gradient from the horizontal and vertical directions. To 
compute the gradient consistency loss, it first subtracts 
the smallest value in the image to ensure that no negative 
values interfere with the calculation. It then calculates 
the gradient consistency loss for each channel, both inde-
pendently between color channels and collectively. Spe-
cifically, it uses cosine similarity to measure the gradient 
consistency between the reference and enhanced images. 
The gradient consistency between the reference and 
enhanced images across different color channels and spa-
tial locations is ensured in greater detail. This approach 
is especially useful for processing color images because it 
captures and maintains the details and color information 
more accurately. The horizontal and vertical gradients of 
the enhanced image and the reference image in the R , G
, and B  channels are calculated by subtracting the cosine 
similarity by 1 to calculate the gradient consistency loss. 
The equation is as follows:

 

lstr =
∑

c∈{R,G,B}

∑m,n

i=1,j=1
< ∇Ic

en (i, j) − min∇Ic
en (i, j) ,

∇Ic
ref (i, j) − min∇Ic

ref (i, j) > (15)

Implementation details
The Endo4IE dataset is employed for training and testing. 
This dataset is developed from the EAD2020 Challenge 
dataset [49], EAD 2.0 from the EndoCV2022 Challenge 
dataset [50], and the HyperKvasir dataset [51], where 
the exposure images are synthesized by CycleGAN after 
the removal of non-informative frames to obtain the 
paired data. Each image in the dataset has dimensions of 
512× 512. This dataset consists of 690 pairs of low-light 
and reference images for training, 29 pairs for valida-
tion, and 266 pairs for testing. The proposed method is 

quantitatively compared with several benchmark experi-
ments: PSNR, SSIM, and LPIPS.

All experiments are implemented using PyTorch in 
Python on a system with an Intel i9-12900KF 3.20 GHz 
CPU, NVIDIA RTX 3090Ti GPU, and 32 GB RAM. 
Throughout the training process, a batch size of 100 was 
employed, and the model utilized the Adam optimizer 
with a learning rate of 0.0001. Visual comparisons with 
existing methods show that while these methods enhance 
the luminance of the image, they tend to fall short of 
preserving image details. The method presented in this 
paper demonstrates superior performance compared to 
state-of-the-art methods, as indicated by quantitative 
evaluations using PSNR, SSIM, and LPIPS metrics.

Results
The visual comparisons of results using the Endo4IE 
dataset are illustrated in Figs.  2 and 3, and 4. The vari-
ous indicators of quantitative comparison are displayed 
in Table  1. The results validate the effectiveness of our 
method, which can effectively brighten the dark area in 
endoscopic images, highlight structural details, and keep 
the images underexposed with natural colors. The other 
seven contrast methods can also enhance the bright-
ness of medical endoscopy images. However, the bright-
ness enhancement of the recessed area in the center of 
the cavity is insufficient, and the texture details of the 
recessed area are not fully displayed. As for the LIME and 
Zero-DCE methods, there is obvious color distortion in 
the enhanced images.

Table  1 provides the quantitative comparison results, 
where the method of this paper shows better results in 
PSNR, SSIM, and LPIPS values with seven methods 
including MBPNet and SMNet trained on the Endo4IE 
dataset. As indicated in Table  1, the PSNR, SSIM, and 
LPIPS values for the method presented in this paper 
are 27.2202 dB, 0.8342, and 0.1492, respectively. In the 
quantitative experiments that have been conducted, the 
index values of our proposed method exceed those of 
seven excellent algorithms including FLW, SMNet, and 
MBPNet. The results strongly indicate that the enhanced 
images produced through the methodology elucidated in 
this paper exhibit reduced disparities and superior struc-
tural resemblance when compared with the reference 
images.

In Fig.  2, the image generated by the Zero-DCE 
method has an overall grey appearance with insufficient 
enhancement of the central black areas, and the images 
tested with the LIME and LR3M methods tend to be 
reddish. The luminance of LIME and LR3M methods 
was improved, but there were some noise spots in the 
edge portion of the image, as in Fig. 3. From Fig. 3, the 
image enhancement results of Ying’s method were bet-
ter than those of LR3M and LIME, but there was still a 
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slight deficiency in terms of color maintenance when 
compared to the reference image. In Fig.  4, the lumi-
nance of the image enhanced by FLW was improved, 
but the color fidelity was not well controlled; the image 
tested by SMNet showed the same phenomenon as the 
two algorithms just described in the central dark area. 
MBPNet gives better results than the previous meth-
ods, with detail in darker areas needing to be enhanced. 
From Fig.  4, it can be seen that the luminance of the 

edge part can still be improved to get a more anatomi-
cally detailed texture. Compared with these methods, the 
method proposed in this paper outperforms the same 
training dataset. It ensures uniform luminance enhance-
ment in the central recessed region, improves detailed 
features and contrast, maintains color consistency, and 
enhances physicians’ visibility of complex physiological 
structures. This aids doctors in diagnosing and treating 
physiological abnormalities. Our training and testing 

Fig. 3 Visual comparison results on Endo4IE. a The lowlight image. b The reference image. c LIME. d LR3M. e Ying’s. f Zero-DCE. g SMNet. h FLW. i MBPNet. 
j Ours

 

Fig. 2 Visual comparison results on Endo4IE. a The lowlight image. b The reference image. c LIME. d LR3M. e Ying’s. f Zero-DCE. g SMNet. h FLW. i MBPNet. 
j Ours
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are done on the GPU. The proposed method has 0.13 M 
trainable parameters and 1.15G Flops for an input image 
of size 96 × 96 × 3. Currently, it can process 500 images 
per second. In the next step, if the platform is ported to 
a system-on-chip [53, 54], its performance will be further 
improved, enhancing the possibility of its application in 
clinical diagnostic therapy. Both qualitative and quanti-
tative experiments validate the efficacy of the proposed 
method in enhancing low-light endoscopic images.

Ablation study
The ablation study demonstrated the individual contribu-
tion of each component and color difference loss in the 
network. We designed a new network including a non-
linear luminance enhancement module and a denoising 
module. A color difference loss function is employed for 
the total loss function. Therefore, we performed ablation 
experiments on each module and color difference loss 
function using the Endo4IE dataset to demonstrate the 
effectiveness of each module, the quantitative compari-
sons are shown in Tables 2 and 3.

Ablation experiments were conducted to assess the 
individual contributions of various components of the 
proposed method. The quantitative metric values PSNR, 
SSIM, and LPIPS reflect the contribution of each mod-
ule in Table  2. Changes in PSNR and LPIPS metrics in 
particular are evident in Table  2. Sequence 1 removes 
the nonlinear luminance enhancement module, and the 
PSNR value obtained is 26.6236 dB, which is 0.7009 dB 
less than the whole algorithm, verifying the role of the 
nonlinear luminance enhancement module. Removing 
the nonlinear luminance enhancement module results in 
the LPIPS metric that is 0.0017 higher than the LPIPS of 
the proposed algorithm. Similarly, removing the denois-
ing module results in an LPIPS that is 0.0094 higher than 
that of the entire network framework. Applying either the 

Table 1 Quantitative comparison results on Endo4IE
Method Published PSNR (dB)↑ SSIM↑ LPIPS↓
LR3M [18] TIP 14.7685 0.6998 0.2630
LIME [5] TIP 19.8880 0.7039 0.2294
Ying’s [52] ICCV 18.0095 0.7128 0.1839
Zero-DCE [25] CVPR 15.0306 0.6751 0.3016
SMNet [10] TMM 22.3031 0.7902 0.1763
FLW [26] ArXiv 25.1273 0.8238 0.1513
MBPNet [23] TIP 25.4923 0.7950 0.2005
ours 27.2202 0.8342 0.1492

Table 2 Results of quantitative comparisons about different 
components of the model on training
Sequence Nonlinear lu-

minance En-
hancement 
Module

Denoising
Module

PSNR 
(dB)↑

SSIM↑ LPIPS↓

1 √ 26.5592 0.8324 0.1499
2 √ 26.8640 0.8274 0.1557
3 √ √ 27.2202 0.8342 0.1492

Table 3 Results of quantitative comparisons about color 
difference loss function on training
Sequence l1+lSSIM+lhs+lb+lstr lcd PSNR (dB)↑ SSIM↑
1 √ 25.6055 0.8333
2 √ √ 27.2202 0.8342

Fig. 4 Visual comparison results on Endo4IE. a The lowlight image. b The reference image. c LIME. d LR3M. e Ying’s. f Zero-DCE. g SMNet. h FLW. i MBPNet. 
j Ours
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nonlinear luminance enhancement module or the denois-
ing module for detailed feature individually resulted in a 
decrease in the PSNR of the test image. This decline indi-
cates that a larger disparity between the processed image 
and the reference image corresponds to a more signifi-
cant deviation in image quality from the reference stan-
dard. Furthermore, higher LPIPS values were observed 
when testing each module individually compared to the 
proposed network. This suggests an increased perceived 
difference between the processed image and the refer-
ence image, accompanied by a corresponding decrease in 
overall image quality.

The contribution of individual modules to image 
enhancement is shown in Fig.  5. As shown in Fig.  5(c), 
the lack of a local enhancement module leads to poor 
overall anatomical image detail enhancement, which 
can be improved in both luminance uniformity and con-
trast enhancement. Correspondingly, Fig.  5(d) shows 
the appearance of black dots in the image, which shows 
the inconsistency of the enhancement of the dark region 
and proves the contribution of the global enhancement 
module.

These ablation studies highlight the essential role 
played by individual modules within the network struc-
ture, underscoring their significance and interpretability 
in enhancing low-light endoscopic images.

Discussion
We propose an efficient luminance enhancement and 
denoising method specifically optimized for low-light 
endoscopic images. Experimental results (shown in 
Table 1; Figs. 2 and 3, and 4) indicate that our model has 

significant advantages in image enhancement. Although 
the method proposed in this paper can enhance endo-
scopic low-light images well, further efforts are needed 
to lighten the parameters and computation so that it can 
meet the requirements of clinical diagnosis and treat-
ment. Overall, the proposed method demonstrates strong 
potential in the field of endoscopic image enhancement, 
not only in terms of brightness and noise processing but 
also in maintaining color fidelity and detail sharpness. 
This provides an enhancement method for endoscopic 
low-light images.

Conclusions
This paper introduces a novel model for enhancing low-
light endoscopic images through Retinex theory-based 
nonlinear luminance and denoising for detailed features. 
Inspired by the Retinex traditional method, the model 
separated low-light images to obtain the illuminance 
map and iteratively optimized higher-order curve func-
tions using histogram information for balanced global 
luminance enhancement. To address the importance of 
detail organization structure, a denoising module with 
a dual attention mechanism is integrated to amplify 
interaction features in local and spatial dimensions. 
The training process includes a chromatic aberration 
loss function to preserve the color realism of the medi-
cal scene. Comprehensive experiments demonstrate the 
quantitative and qualitative superiority of the proposed 
method over existing approaches, providing an effective 
solution for low-light image enhancement in endoscopic 
scenes. Future work is planned to hardware the net-
work, enhancing real-time feasibility through hardware 

Fig. 5 Visual comparison results for the ablation experiment on Endo4IE. a The lowlight image. b The reference image. c Absence of the nonlinear lumi-
nance enhancement module. d Absence of the denoising module. e Our method
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implementation. Algorithm optimization will involve 
integrating endoscopic luminance enhancement as a pre-
processing step for subsequent tasks such as depth pre-
diction and target recognition in endoscopy.
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