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Abstract
High-Intensity Focused Ultrasound (HIFU) ablation represents a rapidly advancing non-invasive treatment modality 
that has achieved considerable success in addressing uterine fibroids, which constitute over 50% of benign 
gynecological tumors. Preoperative Magnetic Resonance Imaging (MRI) plays a pivotal role in the planning and 
guidance of HIFU surgery for uterine fibroids, wherein the segmentation of tumors holds critical significance. The 
segmentation process was previously manually executed by medical experts, entailing a time-consuming and 
labor-intensive procedure heavily reliant on clinical expertise. This study introduced deep learning-based nnU-Net 
models, offering a cost-effective approach for their application in the segmentation of uterine fibroids utilizing 
preoperative MRI images. Furthermore, 3D reconstruction of the segmented targets was implemented to guide 
HIFU surgery. The evaluation of segmentation and 3D reconstruction performance was conducted with a focus 
on enhancing the safety and effectiveness of HIFU surgery. Results demonstrated the nnU-Net’s commendable 
performance in the segmentation of uterine fibroids and their surrounding organs. Specifically, 3D nnU-Net 
achieved Dice Similarity Coefficients (DSC) of 92.55% for the uterus, 95.63% for fibroids, 92.69% for the spine, 
89.63% for the endometrium, 97.75% for the bladder, and 90.45% for the urethral orifice. Compared to other state-
of-the-art methods such as HIFUNet, U-Net, R2U-Net, ConvUNeXt and 2D nnU-Net, 3D nnU-Net demonstrated 
significantly higher DSC values, highlighting its superior accuracy and robustness. In conclusion, the efficacy of the 
3D nnU-Net model for automated segmentation of the uterus and its surrounding organs was robustly validated. 
When integrated with intra-operative ultrasound imaging, this segmentation method and 3D reconstruction hold 
substantial potential to enhance the safety and efficiency of HIFU surgery in the clinical treatment of uterine 
fibroids.
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Introduction
Uterine fibroids, constituting approximately 52% of 
benign gynecological tumors, are benign tumors origi-
nating from smooth muscle tissue and can impact up 
to 70–80% of women [1–3]. Treatment modalities for 
uterine fibroids encompass invasive approaches such 
as abdominal myomectomy [4], laparoscopy [5], hys-
teroscopy [6], uterine artery embolization (UAE) [7], 
microwave (radiofrequency) ablation [8], high-intensity 
focused ultrasound (HIFU) ablation [9], and other micro-
non-invasive interventional therapies. HIFU, guided by 
ultrasound or MRI, employs high-intensity ultrasound to 
focus on the interior of uterine fibroids in vivo, creating a 
focal point with high energy density. This leads to a tran-
sient temperature rise above 60 degrees in the focal area, 
inducing thermal solidification and necrosis of tissues, 
while minimizing damage to tissues outside the focal 
region. Ensuring safety and efficacy is crucial in HIFU 
surgery for treating uterine masses [10].

MRI serves as a non-invasive and precise modal-
ity employed by medical practitioners in the diagno-
sis of uterine fibroids and guidance of High-Intensity 
Focused Ultrasound (HIFU) procedures. However, uter-
ine fibroids manifest diverse morphological and size 
variations in magnetic resonance images. Therefore, the 
meticulous formulation of personalized HIFU surgi-
cal treatment plans for each patient is imperative. The 
segmentation of uterine fibroids, involving the precise 
measurement of the uterine and fibroid states on MRI 
images, encompassing volume, shape, and spatial loca-
tion, constitutes the primary step in the HIFU treatment 
plan. Nevertheless, this constitutes a laborious and time-
intensive undertaking, susceptible to variances arising 
from intra-expert and inter-expert differences, both pre- 
and post-treatment. Consequently, there is a pressing 
need for an automated and accurate segmentation meth-
odology for uterine fibroids in practical applications. 
However, designing a precise uterine fibroid segmenta-
tion system remains a persistently challenging issue, yet 
to be resolved.

A meticulous approach was employed in selecting 
the segmentation labels, including the uterus, uterine 
fibroids, urethral orifice, bladder, sacrococcygeal bone, 
symphysis pubis, and endometrium. This approach 
aimed to accurately segment the tissues and organs 
within the uterine region, allowing for a comprehensive 
analysis of their interrelationships. An efficient assess-
ment of the therapeutic range and effectiveness of HIFU 
was achieved, taking into account all pertinent factors in 
a thorough and unbiased manner. However, significant 
variations in the size, shape, and appearance of uterine 
fibroids present considerable challenges. These tumors’ 
irregular and complex shapes make segmentation diffi-
cult [11]. Additionally, due to varying degrees of contrast 

agent uptake or intrinsic tissue properties, the intensity 
levels of tumors in MRI images also vary. These factors 
increase imaging variability, necessitating advanced seg-
mentation techniques to accurately delineate tumors 
[12]. Furthermore, MRI images often contain noise and 
artifacts, such as motion artifacts caused by patient 
movement or streak artifacts, which can obscure tumor 
boundaries [13]. These issues pose significant challenges 
for accurate segmentation, requiring robust algorithms to 
mitigate the impact of noise and enhance image clarity.

Therefore, the precise delineation of uterine fibroids 
and associated tissues is crucial in planning HIFU treat-
ments, as it has a direct bearing on the ultimate suc-
cess and surgical quality. The task of segmenting uterine 
fibroids poses significant challenges due to several fac-
tors. Firstly, the inherent anisotropy of the uterus and 
fibroids results in MRI images exhibiting a high degree 
of non-uniformity and irregular shapes. Consequently, 
the regions of interest exhibit considerable variations in 
both shape and size, as evident in Fig.  1. Secondly, the 
application of deep learning-based segmentation meth-
ods necessitates extensive annotated data. However, 
available data on uterine and fibroids is typically limited 
and complex, with inherent high heterogeneity lead-
ing to intra-class differences between the uterus and 
fibroids. These issues collectively impact the accuracy of 
uterine and fibroids segmentation. Furthermore, achiev-
ing rapid, precise, and reproducible segmentation of the 
uterine area remains a challenging task. Given these rea-
sons, existing methods for uterine fibroid segmentation 
are often employed post-treatment, while pre-treatment 
segmentation is still performed manually by operators 
to mark the uterus, fibroids, and surrounding organs. 
Consequently, preoperative segmentation is essential to 
facilitate the development of effective treatment plans. 
Automatic segmentation techniques for uterine fibroids 
and associated tissues have the potential to overcome 
these challenges and provide precise outcomes.

In recent years, the application of deep learning algo-
rithms in medical image segmentation has demonstrated 
significant performance compared to previous meth-
ods. These algorithms have the potential to achieve fully 
automated segmentation tasks. Several researchers have 
developed tailored deep learning models for the auto-
matic segmentation of uterine fibroids. The majority of 
these approaches have utilized the U-Net convolutional 
architecture and achieved promising outcomes, with 
reported Dice similarity coefficients (DSC) ranging from 
80 to 86%. However, while the proposed method exhib-
its encouraging results, there may still be instances of 
boundary inaccuracies, particularly in patients with mul-
tiple fibroids.

Recently, the nnU-Net framework [14] has been pro-
posed as an out-of-the-box tool for deep learning-based 
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biomedical image segmentation, particularly in the con-
text of uterine fibroid segmentation in routine MRI scans 
for computer-assisted HIFU surgery. This tool, publicly 
available, has demonstrated superior performance over 
existing models across 23 public datasets used in inter-
national biomedical segmentation competitions. Its 
accessibility and effectiveness make it potentially valu-
able for direct clinical applications, as it does not neces-
sarily require expert knowledge to achieve competitive 
results. However, its performance specifically in uterine 
fibroid segmentation in clinical settings has yet to be 
fully assessed. In this study, our primary objective was to 
evaluate the performance of the nnU-Net framework for 
automatically segmenting uterine fibroids in routine MRI 
scans conducted for computer-assisted HIFU surgery. 
We utilized a dataset comprising 550 magnetic resonance 
images for this purpose. The nnU-Net model was trained 
to accurately segment uterine fibroids along with their 
surrounding tissues and organs. Performance evaluation 
of the model was conducted using the Dice similarity 
coefficient. The workflow encompassing patient selec-
tion, training, and evaluation processes is illustrated in 

Fig. 2. Furthermore, we compared the segmentation per-
formance of the 3D nnU-Net with that of HIFUNET, with 
the comparison results presented in Table 2. In summary, 
this research employed a trained 3D nnU-Net model to 
achieve important advancements in the segmentation 
of uterine fibroids and surrounding organs using MRI 
images.  The primary contributions of this work are as 
follows:

(1)	Construction of a high-quality uterine fibroid 
imaging dataset:  A dataset comprising 550 MRI 
cases, meticulously annotated by professional 
physicians, providing a reliable data foundation for 
future research and clinical applications.

(2)	Achieved precise segmentation of uterine fibroids 
and their surrounding organs: The 3D nnU-Net 
model effectively and accurately segmented the 
uterus, fibroids, spine, endometrium, bladder, 
and urethral orifice in early examinations, with 
Dice Similarity Coefficients of 92.55%, 95.63%, 
92.69%, 89.63%, 97.75%, and 90.45%, respectively, 
significantly outperforming existing methods.

Fig. 2  Data flow of patient selection, training, and evaluation process

 

Fig. 1  Exemplary uterus MR images
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(3)	Enhanced HIFU Surgery Planning Through 3D 
Reconstruction: By performing 3D reconstruction to 
the segmented targets, detailed spatial information 
was provided to guide HIFU surgery planning, 
enhancing the safety and efficacy of the procedure.

(4)	Demonstration of the Model’s Scalability and 
Potential for Clinical Integration: This study not 
only validated the effectiveness of the 3D nnU-Net 
in uterine fibroid segmentation but also highlighted 
its potential for real-time surgical guidance. 
The 3D nnU-Net model can be integrated into 
various medical management system as a decision 
support tool, improving segmentation accuracy, 
reproducibility, and operational efficiency in clinical 
settings.

The structure of this paper is as follows: In Section II, we 
provide an overview of related work. Section III intro-
duces our proposed solution. Our experiments, along 
with performance comparisons with conventional and 
other deep learning methods, are detailed in Section IV. 
In section V, we draw some conclusions and perspectives.

The paper is structured as follows: In Section II, we 
provide an overview of recent related work. Section III 
introduces our proposed solution. Our experiments, 
along with performance comparisons with conventional 
and other deep learning methods, are detailed in Sec-
tion IV. In Section V, we present conclusions and discuss 
future perspectives.

Related work
Advancements in medical machine learning techniques
In recent years, significant advancements have been 
made in the application of deep learning in the field of 
computer-aided diagnosis, particularly in medical imag-
ing, biomedical signal processing, and drug discovery. 
For example, in the study of drug permeability, machine 
learning models have shown outstanding performance. 
For instance, Chandrasekar et al. [15] investigated various 
machine learning models for predicting drug permeabil-
ity across the placental barrier, finding that KNN, SVC, 
and multilayer perceptron achieved prediction accuracies 
of 82%, 86.4%, and 90.8%, respectively. Ansari et al. [16] 
conducted a comprehensive analysis of machine learn-
ing models for predicting blood-brain barrier (BBB) per-
meability, revealing that random forest and extra trees 
models, using mol2vec fingerprints, achieved AUC_ROC 
values of 0.9453 and 0.9601, respectively. Al-Kababji et 
al. [17] have summarized key studies from recent years, 
showcasing the application of various machine learning 
algorithms in the segmentation of liver tissues, hepatic 
tumors, and hepatic vasculature structures. These 
algorithms include both supervised and unsupervised 

learning methods, reflecting the challenges posed by dif-
ferent segmentation tasks.

In the realm of biomedical signal processing, deep 
learning has similarly demonstrated excellent perfor-
mance. Ansari et al. [18] reviewed methods for estimat-
ing age and gender from electrocardiogram (ECG) signals 
over the past decade, highlighting that elevated ECG-
estimated age is associated with atherosclerotic cardio-
vascular disease, peripheral endothelial dysfunction, and 
high mortality rates. Additionally, deep learning has been 
applied to dietary recognition systems. Ansari et al. [19] 
developed a large-scale dataset of everyday foods from 
the Middle East to advance food recognition systems, 
showing that EfficientNet-V2 performed exceptionally 
well on this dataset while maintaining minimal resource 
utilization.

Noise handling is a critical issue in medical image pro-
cessing, as noise can degrade image quality and negatively 
impact subsequent image analysis. Common denoising 
techniques include spatial domain denoising, frequency 
domain denoising, and deep learning-based denoising 
methods. For instance, Mohanty et al. proposed an inno-
vative non-rigid image registration method that utilizes a 
diffeomorphism-based framework to address image reg-
istration between different modalities [20]. This method 
employs a non-stationary velocity field to minimize the 
impact of forces derived from image gradients and uses 
a similarity energy function based on gray-scale distribu-
tion to limit fluctuations and prevent local minima. The 
presence of noise not only affects registration accuracy 
but also has a significant impact on the segmentation 
process. In the realm of image segmentation, Regaya et 
al. introduced a method combining multi-resolution and 
statistical approaches for cerebral aneurysm segmenta-
tion [21]. This method uses Contourlet Transform in the 
2D domain to extract image features and employs Hid-
den Markov Random Field with Expectation Maximiza-
tion for segmentation. Their approach demonstrated high 
segmentation accuracy on Three-Dimensional Rotational 
Angiography datasets, underscoring its effectiveness 
in handling noise and enhancing segmentation qual-
ity. These advancements have significantly improved the 
quality and efficiency of medical image segmentation.

Hardware acceleration and parallel processing have 
become crucial for optimizing efficiency. Abbes et al. 
[22] demonstrated that using Zynq SoC to accelerate the 
Lattice Boltzmann Method (LBM) resulted in a 52-fold 
speed increase compared to a dual-core ARM proces-
sor. Mohanty et al. [23] enhanced LBM by developing a 
pipeline integrating blood flow simulation and real-time 
visualization, optimizing HemeLB with CUDA GPUs to 
process over 30 frames per second for 3D visualization. 
Additionally, Abbes et al. [24] ran HemeLB on hetero-
geneous system-on-chip platforms, showing that the 
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Jetson TX1 implementation provided 19 times higher 
update rates than the Zynq SoC. These studies high-
light that hardware acceleration and parallel process-
ing significantly enhance the efficiency of medical image 
processing, offering new avenues for real-time clinical 
applications.

Moreover, other studies have addressed noise handling 
methods in medical image processing and segmentation. 
Han et al. [25] proposed an efficient model based on Con-
vNeXt, significantly reducing the number of parameters 
while performing well on various datasets. Ansari et al. 
[26] introduced a lightweight neural network (Res-PAC-
UNet) for liver CT segmentation, which demonstrated 
excellent performance with a reduced number of param-
eters. Jafari et al. [27] combined the strengths of residual 
networks (ResNet) and densely connected networks 
(DenseNet) to propose an efficient network architecture 
that performed well on skin lesion segmentation and 
brain MRI datasets, with the code available on GitHub. 
Ansari et al. [28] also proposed an improved pyramid 
scene parsing (PSP) module for real-time liver ultra-
sound segmentation, achieving high Dice coefficients 
and real-time performance. Xie et al. [29] introduced a 
novel framework combining CNN and Transformer for 
3D medical image segmentation, significantly improving 
multi-organ segmentation tasks, with the code also avail-
able on GitHub. Additionally, Ansari et al. [30] reviewed 
liver segmentation methods in clinical surgeries and 
interventions, emphasizing the importance of precision, 
accuracy, and automation. Akhtar et al. [31] assessed the 
risks of computer-aided diagnostic systems in hepatic 
resection, highlighting the potential of CAD systems in 
improving postoperative patient outcomes. Rai et al. [32] 
systematically reviewed the efficacy of fusion imaging for 
immediate post-ablation assessment of malignant liver 
neoplasms, underscoring its clinical potential. Finally, 
Ansari et al. [33] reviewed advancements in deep learn-
ing for B-mode ultrasound segmentation, analyzing the 
advantages and disadvantages of various neural network 
architectures.

Deep learning techniques for biomedical image processing
Recent years have seen the emergence of Convolutional 
Neural Networks (CNNs) as a groundbreaking addition 
to the field of Computer Vision [34], with deep CNNs 
demonstrating excellent results in the segmentation and 
classification of medical images [35]. Research has been 
shown that CNNs can be used to aid in the diagnosis of 
prostate cancer [36], and Brosch et al. [37] applied a deep 
three-dimensional convolutional network to perform 
multi-scale feature fusion and segment multiple sclero-
sis lesions. Ranneberger et al. [38] proposed the U-Net, 
which achieved good cell wall structure segmentation 
on the pathological tablet of He La cell suspension. In 

2014, Long et al. [39] proposed the Fully Convolutional 
Network (FCN), which takes inputs of arbitrary size and 
produces correspondingly-sized outputs. FCNs have 
been widely successful and have been applied to dense 
prediction problems such as semantic segmentation, per-
forming end-to-end image segmentation, particularly in 
encoder-decoder architectures.

U-Net, proposed by Ronneberger et al. [38], is one of 
the most renowned networks for medical image segmen-
tation tasks [40]. It employs the same number of convolu-
tion operations as the FCN but features skip connections 
that link the encoder and decoder layers by copying and 
cropping feature maps from the encoder layer to the 
decoder layer. This makes U-Net the most advanced 
biomedical image segmentation method currently avail-
able. However, there is still has room for improvement. 
For instance, a deep residual U-Net network (ResUnet) 
for automatic myocardial segmentation was proposed 
in 2017 [41], while MultiResUNet [42] was designed to 
tackle multi-scale problems, and R2U-Net [43] was pro-
posed to extract features of images using a residual struc-
ture multiple times. U-Net has been highly successful in 
a variety of medical applications, such as cardiac segmen-
tation [44] and liver and tumor segmentation. nnU-Net 
[11] is a self-adapting CNN framework that enhances 
architecture for automated medical image segmentation, 
which proves to be highly complementary to one another 
when used in model ensembles. The authors of nnU-Net 
argued that a simple U-Net, if tuned properly and com-
bined with adapted data preprocessing techniques, can 
outperform more complex CNNs. This framework was 
entered into 19 international competitions, and set a new 
state-of-the-art in the majority of 49 tasks.

Uterine fibroids segmentation
We outline here the traditional methods of segmenting 
uterus and uterine fibroids that have been proposed so 
far, and review the state-of-the-art MR image segmenta-
tion methods based on the CNN architecture.

Traditional methods of uterus and uterine fibroid 
segmentation
Traditional methods are mainly based on level sets, FCM, 
region-growing and so on. Ben-Zadok et al. [45] pro-
posed a two-step semiautomatic method based on the 
level set, followed by an interactive level set segmentation 
framework to allow user feedback. This is a semi-auto-
matic method where the user selects the seed-points, and 
the precision level of segmentation is comparable to that 
of all manual expert segmentation. Khotanlou et al. [46]. 
proposed a two-stage method that combines the region-
based level set with the hybrid Bresen methods. Yao et al. 
[47] proposed a semiautomatic approach based on the 
level set for robustly segmenting fibroids on MRI and 
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accurately measuring 3D volume. This method is based 
on a cascade of fast-moving and Laplacian level sets, 
rather than a single level set. Fallahi et al. [48]. used the 
FCM method in T1 and T1-Enhanced image and some 
morphological operations to segment uterine fibroids. 
Then, on the basis of [48], Fallahi et al. [49]proposed a 
two-step method is proposed, where in the second step, 
an improved probability fuzzy C-means (MPFCM) is 
adopted [35]. Militello et al. [50]. proposed a new fully 
automatic method for uterine and fibroid segmentation 
based on unsupervised fuzzy C-means clustering and 
iterative optimal threshold selection algorithm. Addition-
ally, Militello et al. [51]performed both quantitative and 
qualitative evaluation of HIFU therapy by providing 3D 
models of fibroid areas using a semi-automatic approach 
based on area growth. Rundo et al. [52] proposed a new 
region-growth based approach for myoma segmenta-
tion in MRgHIFU therapy. The first stage of this method 
is automatic seed region selection and region detection, 
and the second stage is for uterine fibroid segmentation. 
Antila et al. [53] designed an automatic segmentation 
pipeline without user input, applying the active contour 
mode (ASM) to obtain deformed surfaces, and classify-
ing PV (amount of perfusion: untreated tissue) and NPV 
(amount of perfusion: treated tissue) using the expecta-
tion maximization (EM) algorithm. Guyou et al. [54] 
developed VETOT, which used active contours and a 
fast marching level set to segment the fibroids and track 
the volume of fibroids over time. However,  as far as we 
know, no single method can handle all complex fibroids 
and obtain accurate segmentation. Sasidharan et al. [55]. 
proposed the watershed algorithm for automatic fibroids 
segmentation, applying some post-processing operations 
to solve the over-segmentation issues.

These methods can be performed only in homogeneous 
and connected boundary regions while the fibroids are a 
calcified and infarct region presents. Compared with tra-
ditional methods, deep learning method does not require 
manual labeling of features, saving more work and time. 
In addition, the traditional image segmentation methods 
mostly use the surface information of the image, making 
them unsuitable for tasks that require extensive semantic 
information. Most methods based on deep learning are 
end-to-end learning. The whole segmentation process 
can be divided into two parts: training and testing. Usu-
ally, a set of data with manual labels is input into the deep 
learning network for training to get the network model, 
and then the image data in the test set is input into the 
network model to get the segmentation result.

Deep learning methods for uterus and uterine fibroid 
segmentation
Kurata et al. [56] were the first to use U-net for auto-
matic MRI uterine segmentation, and concluded that 

automatic hysterectomy modified by U-net was clinically 
feasible, with the model’s segmentation performance 
unaffected by uterine lesions. Similarly, TANG et al. [57] 
proposed a novel Attention Res Net101-unet (Attention 
Res Net101-unet) for MRI T2W image segmentation 
of uterine fibroids. This network uses deep neural net-
work Res Net101 as the feature extraction front end to 
extract image semantic information, and constructs the 
network structure combined with U-net design idea. An 
attention module is added before the up-sampling and 
down-sampling feature graphs are joined. Later, Zhang 
et al. [58]used the full convolutional network (HIFU-
Net) to perform multiple segmentation of uterus, uterine 
fibroids and spine in MR images before HIFU surgery. 
This approach uses a large kernel to capture multiple spa-
tial scale contexts by expanding the effective acceptance 
domain. In addition, a deep multi-atom convolution 
block is used to enlarge the receptive field and extract 
denser feature maps. Moreover, the performance of 
HIFUNet is compared with that of the six latest segmen-
tation networks (U-net, HRNet, etc.). The results show 
that the accuracy and robustness of HIFUNet are signifi-
cantly improved compared with other segmentation net-
works, and the segmentation results are close to the level 
of radiologists.

However,  these algorithms are proposed in 2D. Con-
sidering anatomical features of the data, it would be bet-
ter if we use 3D algorithm. Due to the particularity of 
USgHIFU surgery, we need the segmentation of multiple 
tissue structures, so the above methods are not suitable 
for HIFU surgery of uterine fibroid.

Methods
Although many experts and scholars have proposed a 
variety of deep learning network structures, and have 
achieved good results in the field of medical image seg-
mentation, few people have studied the segmentation of 
uterine fibroids.

Data
A database of 550 MR images from patients who under-
went HIFU surgery was used in this study. We collected 
clinical data from Chongqing Haifu Hospital under the 
permission of the ethics committee and has no implica-
tion on patient treatment. Medical records of 550 MR 
images were retrospectively reviewed from January 2021 
to July 2022. This group comprising 550 MR images from 
Chongqing Haifu Hospital, was used for training and 
validating.

The MRI dataset was collected retrospectively with 
a 1.5-T magnetic resonance scanner (Lianying, Shang-
hai, China) in Chongqing Haifu Hospital. The fat-sup-
pressed T2-weighted MR images in the sagittal direction 
were used in this work. The MRIs were collected in 
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DICOM format; these images of cases were used as the 
data samples for deep learning. The scan parameters 
and characteristics of MR images are shown in Table  1. 
The parameters for MRI were field-of-view = 240  mm, 
slice thickness = 6  mm, matrix size = 480*480, echo 
time = 75.06ms, repetition time = 4729ms.

Each MR volume consists of 25 slices of 480*480 pixels. 
The ground truth has been generated through a proper 
annotation process with the guidance of professional 
doctor who has 7 years of experience in HIFU surgery.

Data pre- and post-processing
Data collection, sorting and labeling are all done by pro-
fessionals, and the processing process is shown in the 
Fig.  3. All MRI scans had been segmented prior to our 
study during patient treatment. Ground truth segmenta-
tions were used for diagnosis and computer-aided surgi-
cal planning. It includes semi-automatic segmentations, 

manually refined by a first operator before slice-by-slice 
verification for validation by a senior operator focus-
ing mainly on the regions of interest: external surface of 
Uterus, Fibroids, Spine, Endometrium, Bladder, Urethral 
Orifice. This process was repeated until the segmenta-
tions are approved and certified for clinical use.

A brief description of the network architecture is 
shown in Fig. 4. Datasets optimization is shown in Fig. 5.

Step 1 is data format conversion, and Step 2 and 3 is to 
improve training efficiency.

(1)	The DICOM format data convert to NIFTI 
package–convert 2D data to 3D data (including 
spatial coordinates, patient direction and azimuth 
information) and apply 3D UNet network;

(2)	Write the data information corresponding to label_
data and image_data into the JSON file, which is 
convenient for batch writing to memory for training;

(3)	Convert the corresponding data and labels into 
binary files according to the JSON file completed in 2 
to improve training efficiency.

Base model
We opted for nnU-Net as our segmentation network 
due to its user-friendly nature and its ability to adapt 
effectively to various biomedical image datasets. The 

Table 1  The scan parameters and characteristics of MR datasets
Variable Value
Matrix 480*480
Slice thickness 6 mm
Slice gap 1 mm
Reptation time (TR) 4729ms
Echo time (TE) 75.06ms
Field of view (FOV) 240*240

Fig. 4  Network architecture

 

Fig. 3  Training datasets preparation
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no-new-Net (nnU-Net) segmentation framework in 
the medical domain is directly derived from the origi-
nal U-Net architecture (refer to Fig. 6), a widely utilized 
convolutional neural network (CNN) for biomedical 
segmentation tasks, capable of dynamically adjusting to 
the intricacies of any given dataset. Our initial training/
validation dataset was utilized to automatically config-
ure preprocessing steps, network architecture, training 
procedures, and post-processing techniques. nnU-Net 
facilitates automatic determination of key hyperparam-
eters such as training batch size, image block size, and 
downsampling levels. Following a 5-fold cross-validation 
approach, 3D full-resolution U-Net training was con-
ducted on the training/validation dataset. Subsequent 
analysis of the cross-validation outcomes identified 
instances where the model misclassified certain voxels 
as uterine fibroids in scans devoid of such fibroids. Con-
sequently, we implemented additional post-processing 
steps for refining the uterine fibroid mask, notably by 
eliminating all components smaller than a threshold 

determined empirically. Ultimately, inferences were 
drawn from our test dataset(Fig. 2).

During the training phase, the parameters of the shared 
layers between mask prediction and object score predic-
tion are initialized using a pre-trained network specifi-
cally trained for image categorization on the ImageNet 
dataset. Subsequently, fine-tuning is applied to this 
model to refine object proposals, thereby improving its 
performance in this aspect. Our selection of the nnU-Net 
architecture, comprising eight 3 × 3 convolutional layers 
(followed by ReLU nonlinearities) and five 2 × 2 max-
pooling layers, has consistently demonstrated outstand-
ing performance.

Given our focus on deriving segmentation masks, the 
spatial information embedded within the convolutional 
feature maps holds significance. Consequently, we opt 
to discard all final fully connected layers of the nnU-Net 
model, along with the last max-pooling layer. The output 
of the shared layers experiences a downsampling factor 
of 16 due to the presence of four remaining 2 × 2 max-
pooling layers. For an input image of dimensions 3 × h × 

Fig. 6  The model design ideas based on expert knowledge and experimental modification

 

Fig. 5  Datasets optimization
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w, the resulting feature map dimensions are 480 × h/16 × 
w/16.

In this paper, we choose the uterus, uterine fibroids, 
urethral orifice, bladder, sacrococcygeal bone, symphysis 
pubis and endometrium as the segmentation targets. Our 
final model architecture is illustrated in Fig. 7.

In preliminary experiments, we used the open-source 
PyTorch implementation of nnU-Net and ran it directly 
on our development dataset, which provided us with pre-
liminary performance targets, as well as a recipe for the 
architecture, training procedure, and data preprocessing 
guidelines to best optimize U-Net for this task. Based on 
these preliminary experiments, we proceeded to imple-
ment a custom model and training pipeline.

Experimental setup

1)	 Training and Testing Phase: 550 MR images were 
used for training and testing. This study was 
conducted in two phases to utilize deep learning 
networks for 3D semantic segmentation of uterus 
fibroid, then to evaluate the performance of the 
models trained with different datasets. The model 
was trained and evaluated with 550 MRIs [80% (440 
cases) training cases and 20%(110cases) validation 
cases] cases in the validation dataset were not used 
for training. In phase two, with the newly acquired 
data, the performance of the model is tested. After 
optimization, the model is re-added to the training 
set and trained iteratively. (Fig. 6) The images were 
segmented and rated by the same surgeons who 
rated the first set of images.

2)	 Parameter Settings and Platform: To optimize our 
network, we employ the Adam optimizer with an 
initial learning rate set to 2e-4. After each epoch, 
if validation loss fails to decrease consecutively for 
three times, the learning rate is reduced to 1/5 of its 
current value until it reaches 5e-7. Consequently, 
the number of training epochs is dictated by the 
diminishing learning rate. We set the batch size 

to 8. Consistency in updating hyperparameters is 
maintained across all comparative experiments. 
Additionally, in the ablation study, hyperparameters 
remain fixed while parts of the network are removed.

Our proposed network is using ResNet as the backbone 
network which is relatively suited for image segmenta-
tion. The implementation is carried out on the PyTorch 
platform. The training and testing bed are Windows 
Server 2016 with dual NVIDIA Tesla V100 GPUs (32GB 
x 2 memory) and CUDA 10.1.

Training details
While these studies may differ in implementation spe-
cifics and performance benchmarks, segmentation tasks 
commonly rely on the Dice Similarity Coefficient (DSC) 
as the primary metric for assessing approach effective-
ness. To quantitatively evaluate the model’s performance, 
we compared predictions with ground truth masks across 
each of the 6 segmentation masks within our test set. 
The model underwent training utilizing a combination of 
Dice and Binary Cross Entropy (BCE) losses.

	
Dice coefficient: Dice =

2|XY |
|X| + |Y | � (1)

	 Dice Loss: LDice = 1 − Dice � (2)

	
Training Loss: Ltraining =

∑

i



L (pi, p
∗
i ) +

∑

j

L
(
Si,j, S

∗
i,j

)


� (3)

Here i  is the index of a sampled window, pi  is the pre-
dicted objectness score of the instance in this window, 
and p∗

i  is 1 if this window is a positive sample and 0 if 
a negative sample. Si  is the assembled segment instance 
in this window, S∗

i is the ground truth segment instance, 
and j is the pixel index in the window. L  is the logistic 
regression loss. We use the definition of positive/negative 

Fig. 7  The design ideas of nnU-Net
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samples in [38], and the 256 sampled windows have a 
positive/negative sampling ratio of 1:1.

An initial learning rate of 1e-2 was used and was 
decayed with a polynomial schedule. A batch size of 4 
was used. The Adam optimizer with Nesterov Momen-
tum and gradient clipping was used. Augmentations 
included translation, rotation, left-right flipping, and 
gamma contrast. The model was trained for a maximum 
of 1000 epochs.

Evaluation Metrics
We assessed our model’s performance using various 
quantitative measures aimed at comprehensively evaluat-
ing and comparing segmentation performance with other 
methods. Spatial overlap was quantified using the Dice 
Similarity Coefficient (DSC). However, it’s important to 
note that DSC lacks a clear definition in cases where both 
compared volumes contain zero positive voxels, resulting 
in division by zero.

	
Precision =

TP

TP + FP
� (4)

	
recall =

TP

TP + FN
� (5)

	
DSC = 2 ∗ precision ∗ recall

precision + recall
� (6)

We use the DSC to compare the predicted segmentation 
results with the ground-truth manually labeled by HIFU 
surgeon.

Experiments
Results
As shown in Fig.  8, the first row displays the original 
MRI image. The second row visualizes the segmentation 
results of the uterus, fibroids, and spine using HIFUNet, 
where pink represents fibroids, red represents the uterus, 
and blue represents the spine. The third row shows the 
segmentation results using 3D nnU-Net for the uterus, 
fibroids, urethral orifice, bladder, sacrococcygeal bone, 
symphysis pubis, and endometrium. In these images, red 
representing fibroids, light blue representing the uterus, 
dark blue representing the urethral orifice, green repre-
senting the bladder, yellow representing the sacrococcy-
geal bone and symphysis pubis, and pink representing the 
endometrium. From left to right, the images correspond 
to four different patients, labeled as Patient 1, Patient 2, 
Patient 3, and Patient 4.

For Patient 1, HIFUNet roughly segments the uterus 
and fibroids, but the boundaries near the bladder are 
blurred. In contrast, nnU-Net provides clearer segmen-
tation in the same area, accurately distinguishing the 
uterus and fibroids while also clearly differentiating the 
bladder and sacrococcygeal bone. For Patient 2, HIFUNet 
struggles with the complex morphology of the fibroids, 

Fig. 8  Comparison the segmentation results of HIFUNET and nnU-Net
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especially at the junction of the fibroids and the uterus, 
resulting in unclear boundaries. In comparison, nnU-Net 
delivers more detailed segmentation results, excelling in 
the precise delineation of fibroid boundaries and uterine 
contours. For Patient 3, HIFUNet shows over-segmen-
tation in some areas when dealing with fibroids near the 
spine. 3D nnU-Net, however, accurately segments the 
spine, uterus, and fibroids in the same region, clearly dis-
playing the positions of other related organs. For Patient 
4, HIFUNet performs poorly when handling multiple 
small fibroids, often missing some. 3D nnU-Net, on the 
other hand, accurately identifies and segments multiple 
small fibroids while maintaining clear boundaries for all 
organs.

In summary, HIFUNet performs well in segmenting the 
uterus and fibroids but struggles with complex structures 
such as fibroids near the spine and bladder, resulting in 
blurred boundaries. This issue arises because HIFU-
Net employs large convolution kernels and multi-atom 
convolution blocks to capture multi-scale spatial con-
texts, which can sometimes lead to over-segmentation in 
complex regions. In contrast, 3D nnU-Net dynamically 
adjusts its preprocessing steps, network architecture, 
training procedures, and post-processing techniques 
to adapt to specific datasets, achieving more accurate 
and robust segmentation across various anatomical 

structures. 3D nnU-Net not only accurately segments the 
uterus and fibroids but also clearly distinguishes other 
important organs such as the urethral orifice and bladder.

After segmentation, the final processing step is to 
reconstruction, applying volume-rendering techniques, 
of the 3D model of ablated fibroid areas. Figure 9 shows 
the 3D model of the spine, fibroids, Endometrium, Blad-
der, Urethral Orifice, Symphysis Pubis of a patient. This 
can be displayed in front of the doctor in three dimen-
sions, increasing the doctor’s three-dimensional sense. 
All summary quantitative results reported in the experi-
mental results demonstrate that our conditional 3D nnU-
Net achieves promising performance for multiorgan 
segmentation on the union of partially labeled datasets.

The mean results of DSC for each segmentation label of 
our test set are shown in Table 2.

Table  2 presents the quantitative comparison of the 
Dice Similarity Coefficient (DSC) for different segmenta-
tion methods on the testing dataset across various ana-
tomical structures. The 3D nnU-Net shows significantly 
higher segmentation performance compared to other 
methods in all structures.

Specifically: Uterus: 3D nnU-Net achieves a DSC of 
92.55%, compared to 87.99% for ConvUNeXt, 82.37% 
for HIFUNet, 84.46% for U-Net, 86.82% for R2U-Net, 
and 88.63% for 2D nnU-Net. The 3D nnU-Net shows the 

Table 2  Quantitative comparison of DSC of different segmentation methos on testing dataset
Labels Uterus Fibroids Spine Endometrium Bladder Urethral Orifice
Method
HIFUNET 82.37% 83.51% 85.01%
U-Net 84.46% 87.01% 89.98% 86.35% 92.17% 85.87%
R2U-Net 86.82% 89.15% 89.26% 87.65% 93.89% 86.29%
ConvUNeXt 87.99% 92.49% 90.76% 88.88% 95.65% 88.27%
2D nnU-Net 88.63% 92.05% 90.98% 87.32% 95.34% 88.13%
Proposed 92.55% 95.63% 92.69% 89.63% 97.75% 90.45%

Fig. 9  3D model reconstructed from predicted segmentation masks (Spine, Fibroids, Endometrium, Bladder, Urethral Orifice, Symphysis Pubis)
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highest accuracy in uterus segmentation, outperforming 
the other methods by 4.56%, 10.18%, 8.09%, 5.73%, and 
3.92%, respectively. Fibroids: 3D nnU-Net reaches a DSC 
of 95.63%, compared to 92.49% for ConvUNeXt, 83.51% 
for HIFUNet, 87.01% for U-Net, 89.15% for R2U-Net, 
and 92.05% for 2D nnU-Net. In fibroid segmentation, the 
3D nnU-Net outperforms the other methods by 3.14%, 
12.12%, 8.62%, 6.48%, and 3.58%, respectively. Spine: 3D 
nnU-Net achieves a DSC of 92.69%, compared to 90.76% 
for ConvUNeXt, 85.01% for HIFUNet, 89.98% for U-Net, 
89.26% for R2U-Net, and 90.98% for 2D nnU-Net. The 
3D nnU-Net outperforms the other methods in spine 
segmentation by 1.93%, 7.68%, 2.71%, 3.43%, and 1.71%, 
respectively. Endometrium: 3D nnU-Net reaches a DSC 
of 89.63%, compared to 88.88% for ConvUNeXt, 86.35% 
for U-Net, 87.65% for R2U-Net, and 87.32% for 2D nnU-
Net. In endometrium segmentation, the 3D nnU-Net 
outperforms the other methods by 0.75%, 3.28%, 1.98%, 
and 2.31%, respectively. Bladder: 3D nnU-Net achieves 
a DSC of 97.75%, compared to 95.65% for ConvUNeXt, 
92.17% for U-Net, 93.89% for R2U-Net, and 95.34% for 
2D nnU-Net. In bladder segmentation, the 3D nnU-Net 
outperforms the other methods by 2.10%, 5.58%, 3.86%, 
and 2.41%, respectively. Urethral Orifice: 3D nnU-Net 
reaches a DSC of 90.45%, compared to 88.27% for Con-
vUNeXt, 85.87% for U-Net, 86.29% for R2U-Net, and 
88.13% for 2D nnU-Net. In urethral orifice segmenta-
tion, the 3D nnU-Net outperforms the other methods by 
2.18%, 4.58%, 4.16%, and 2.32%, respectively.

To further illustrate the effectiveness of the 3D nnU-
Net algorithm, an in-depth analysis of precision and 
recall was conducted, as shown in Table 3.

From Table  3, it is evident that the 3D nnU-Net not 
only outperforms in terms of DSC but also in precision 
and recall. For example, in uterus segmentation, the 3D 
nnU-Net achieves a precision of 93.98% and a recall of 
92.11%, significantly higher than the other models. Simi-
lar trends are observed for fibroids, spine, endometrium, 

bladder, and urethral orifice segmentation, where the 3D 
nnU-Net consistently shows superior performance.

Overall, the 3D nnU-Net significantly outperforms 
HIFUNet, U-Net, R2U-Net, ConvUNeXt, and 2D nnU-
Net in all segmentation tasks. These results indicate that 
3D nnU-Net has a significant advantage in segmenting 
uterine fibroids and surrounding organs, demonstrat-
ing high accuracy and robustness in complex anatomical 
structures.

More results
To further validate the effectiveness of our method, we 
perform multiple segmentation validation on recent hos-
pital MRI data. We performed segmentation verification 
on the recent data and accumulated 60 cases of data, and 
the results showed that the segmentation results met the 
expected results. Segmentation examples on new MRI 
data with 3D nnU-Net model show in Fig. 10.

Discussion and conclusion
The main goal of this study was to evaluate the perfor-
mance of the nnU-Net framework for automatic segmen-
tation of uterine fibroids and their surrounding organs 
based on MRI images for the planning of HIFU surger-
ies. We chose this deep learning framework because it 
has the ability to automatically configure itself without 
manual intervention. It has delivered state-of-the-art 
segmentation results on a large diversity of biomedical 
datasets, surpassing most highly specialized algorithms. 
We compared our method with the HIFUNET, and both 
models were implemented using the same datasets. It has 
been validated that the proposed deep learning model 
nnU-Net is able to automatically segment uterine fibroids 
and their surrounding organs on MRI images, with better 
consistent and more accurate results than the HIFUNET.

Different colors were used to denote different classes 
(red denotes the uterine fibroids, blue the uterus and 
green the bladder, purple the urethral orifice, yellow the 
sacrococcygeal bone, green the symphysis pubis and pink 

Table 3  Precision and recall values for various segmentation methods
Method Lables Uterus Fibroids Spine Endometrium Bladder Urethral Orifice
HIFUNET P 83.01 84.12 85.52 - - -

R 81.75 83.02 84.53 - - -
U-Net P 85.11 87.5 90.51 86.75 92.51 86.25

R 84.05 86.52 89.47 85.96 91.84 85.52
R2U-Net P 87.25 89.5 89.75 88.07 94.25 86.75

R 86.40 88.81 88.77 87.31 93.51 85.83
ConvUNeXt P 88.51 92.23 90.97 89.02 95.99 88.75

R 87.52 92.75 90.53 88.77 95.31 87.8
2D nnU-Net P 89.01 91.61 91.25 87.75 95.51 88.5

R 88.26 92.5 90.72 86.89 95.18 87.76
3D nnU-Net P 92.98 96.03 93.11 90.02 97.97 91.02

R 92.11 95.27 92.39 89.26 97.51 89.91
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the endometrium). The images show that our method 
provided more accurate results. One drawback of the 
proposed method is that it requires high computational 
resources and it takes quite long to do the segmentation. 
However, in clinical applications, the accuracy of the 
segmentation is much more important than the compu-
tation cost. We found it acceptable that the increases in 
computational costs are negligible for the improvement 
in accuracy. The computational cost of our method at test 

time can be borne by a standard GPU. Reliably segment-
ing uterine fibroids and THE related tissues is the corner-
stone of HIFU treatment planning.

This model can be integrated into the current USgHIFU 
management software as a medical decision support sys-
tem. The proposed solution can provide effective support 
to physicians or radiologists to improve the accuracy, 
reproducibility, and execution time of the healthcare ser-
vices where the segmentation is currently required.

Fig. 10  Segmentation examples on new MRI data with nnU-Net model. We show segmentations with different colors as before; red denotes the fibroids, 
blue denotes the uterus, blue denotes the urethral orifice, green denotes the bladder, yellow denotes the sacrococcygeal bone and symphysis pubis, 
pink denotes the endometrium
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Finally, the clinical value of DSC metrics in the context 
of small object segmentation was demonstrated by our 
segmentation results. In the future, we will optimize the 
current framework by designing a more efficient adaptive 
loss function for multi-target segmentation and intro-
ducing an attention mechanism or other strategies.
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