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Abstract
Background Radiomics provided opportunities to quantify the tumor phenotype non-invasively. This study 
extracted contrast-enhanced computed tomography (CECT) radiomic signatures and evaluated clinical features of 
bone metastasis in non-small-cell lung cancer (NSCLC). With the combination of the revealed radiomics and clinical 
features, the predictive modeling on bone metastasis in NSCLC was established.

Methods A total of 318 patients with NSCLC at the Tianjin Medical University Cancer Institute & Hospital was enrolled 
between January 2009 and December 2019, which included a feature-learning cohort (n = 223) and a validation 
cohort (n = 95). We trained a radiomics model in 318 CECT images from feature-learning cohort to extract the 
radiomics features of bone metastasis in NSCLC. The Kruskal-Wallis and the least absolute shrinkage and selection 
operator regression (LASSO) were used to select bone metastasis-related features and construct the CT radiomics 
score (Rad-score). Multivariate logistic regression was performed with the combination of the Rad-score and clinical 
data. A predictive nomogram was subsequently developed.

Results Radiomics models using CECT scans were significant on bone metastasis prediction in NSCLC. Model 
performance was enhanced with each information into the model. The radiomics nomogram achieved an AUC 
of 0.745 (95% confidence interval [CI]: 0.68,0.80) on predicting bone metastasis in the training set and an AUC of 
0.808(95% confidence interval [CI]: 0.71,0.88) in the validation set.

Conclusion The revealed invisible image features were of significance on guiding bone metastasis prediction in 
NSCLC. Based on the combination of the image features and clinical characteristics, the predictive nomogram was 
established. Such nomogram can be used for the auxiliary screening of bone metastasis in NSCLC.
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Introduction
Non-small-cell lung cancer (NSCLC) is the most com-
mon type in lung cancer (85–90%) and is one of the 
most common cancers worldwide. Although NSCLC 
showed an indolent clinical course trend, bone metasta-
sis remains an important issue. NSCLC with initial bone 
metastasis usually presented in 30–40% of lung cancer 
patients [1].

The high risk of bone metastasis significantly increased 
the mortality of NSCLC patients and reduced the 
patients’ quality of life [2, 3]. As a result, identifying 
bone metastasis in NSCLC has become a major focus of 
research. Numerous factors associated with bone metas-
tasis prediction in NSCLC have been identified, including 
elevated serum hepatoma-derived growth factor levels, 
the expression of L1-cell adhesion molecule, and high 
osteopontin expression [4–6]. Based on these factors, 
various prediction models have been developed, such as 
nomograms and machine learning models, which dem-
onstrate a certain degree of accuracy in predicting bone 
metastasis. However, these models have limitations due 
to the restricted number of predictive factors considered, 
resulting in an inability to fully meet clinical needs.

In light of these challenges, our research seeks to 
improve the prediction of bone metastasis in NSCLC by 
focusing on risk factors derived from medical imaging, 
which offer significant predictive advantages over tra-
ditional clinical cohort risk factors. Unlike conventional 
approaches that rely primarily on biochemical mark-
ers and histological features, medical imaging provides 
a comprehensive and non-invasive assessment of tumor 
characteristics and bone integrity. Advanced imaging 
techniques, such as CT, MRI, and PET scans, can reveal 
detailed structural and functional information that is 
often not captured by traditional methods. By integrating 
these imaging-based risk factors into our predictive mod-
els, we aim to enhance the accuracy and clinical applica-
bility of bone metastasis predictions. This approach not 
only broadens the spectrum of predictive factors but also 
leverages the high-resolution, quantitative data from 
medical imaging to improve early detection and inter-
vention strategies for NSCLC patients at risk of bone 
metastasis. Our research thus represents a significant 
step forward in addressing the limitations of current pre-
diction models and meeting the clinical needs for more 
reliable and comprehensive diagnostic tools.

Before the establishment of artificial intelligence, it is 
impossible to capture unreadable tumor phenotypic char-
acteristics from images. Computed-Tomography (CT) is 
the first-line noninvasive imaging method for preopera-
tive assessment for lung cancer, which can quantify tis-
sue density, including diagnosis, treatment planning and 
surveillance [7]. However, the intrinsic characteristics of 
tumors required further study. Recently, several studies 

reported the feasibility and superiority of lung cancer fea-
tures detection from CT images [8–10].

Radiomics is the process of high-throughput mining 
of quantitative image features. The revealed features can 
be potentially applied in a clinical decision support sys-
tem to improve the diagnostic, and prognostic predic-
tion accuracy [11, 12]. Biomarkers extracted from images 
were reported to be with effective predict performance 
across a range of cancer types [13].

In this study, with the radiomics method, we extracted 
the risk biomarkers of NSCLC from preoperative CECT 
images. We aimed to establish a non-invasive individual-
ized bone metastasis prediction nomogram in NSCLC. 
The nomogram was established based on the revealed 
CECT features and clinicopathological risk factors. The 
nomogram can be potentially applied in clinical tri-
als, precision medicine practices, and tailored clinical 
therapy.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board of Tianjin Medical University Can-
cer Institute & Hospital and the requirement to obtain 
informed consent was waived (clinical trial: bc2021008). 
For the data cohort, we collected 318 CECT images of 
318 patients between January 2009 and December 2019.

The study inclusion criteria were as follows: (i)the 
tumor was pathologically diagnosed as NSCLC; (ii)bone 
metastasis was diagnosed by imaging, at least one cred-
ible imaging evidence was gained (X-ray, CT, Magnetic 
Resonance Imaging, Emission Computed Tomography or 
positron emission tomography CT); (iii) surgical resec-
tion or other treatment such as chemotherapy, targeted, 
or immunotherapies was not performed before CT scan. 
(iv) the baseline clinical data as well as original high-res-
olution CT images were available. The exclusion criteria 
included the following: (i)the pathological diagnosis of 
the primary lung site was uncertain; (ii) bone metastasis 
diagnosis was uncertain; (iii) the lung tumor was unclear 
in CT images. (iv) the baseline clinical data as well as CT 
images were incomplete or unavailable; (v) the pathologi-
cal type of lung cancer was unknown.

The patients were divided into two groups according to 
the occurrence of bone metastasis. In total, 318 patients 
were identified and randomly divided into training 
cohort (132 males and 92 females; mean age, 59.7 ± 8.9 
years; range, 36 to 86 years) and validation cohort (48 
males and 46 females; mean age, 59.5 ± 8.6 years; range, 
32 to 78 years). (Fig. 1)

Clinical characteristics
Baseline clinicopathological data, including age, sex, 
blood group, smoking history, drinking history, history of 
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malignancy, family history of malignancy, single or mul-
tiple lung tumors, lymph node status, metastatic status of 
other organs, Karnofsky (KPS) score and tumor pathol-
ogy type, were derived from the medical records, the 
original high-resolution CT images were collected.

CT acquisition
A total of 13,775 patients with NSCLC from Tianjin 
Medical University Cancer Institute & Hospital were 
collected. Original high-resolution CECT images were 
found in 502 patients.

CT was performed at our institution with a GE CT 
scanner (GE 750), all scan parameters were shown in 
Supplement table 1. The patients were in a supine posi-
tion with their hands above their heads. The contrast 
agent iohexol was injected through the elbow vein at a 
flow rate of 3 ml/s and a dose of 1.5-2 ml/kg. The scan-
ning range was from the entrance of the chest to the cos-
tophrenic angle. The patients were scanned with a single 
breath. All images were stored in IMA for radiomics 
analysis.

CT segmentation and feature extraction
The primary lung tumor was delineated manually on 
ITK-SNAP (ITK-SNAP 3.8.0; www.itksnap.org). All man-
ual segmentation was performed by two radiologists and 
one radiologist (twice). The radiologists have more than 
five years of lung cancer imaging working experience. 

The CT images with ROI were exported to inn format. 
Radiomics features have the capacity to capture tumor 
phenotype differences by examining a large set of quan-
titative features. The textural, morphological, intensity, 
law, and wavelet features were performed automatically 
by using open-source software (Pyradiomics; TTP://
pyradiomics.readthedocs.io/en/latest/index.html) [14, 
15]. The radiomics features set included was described in 
detail in Supplement 2.

Feature selection
Feature selection for the radiomics signature was per-
formed with Kruskal-Wallis, Spearman and LASSO in 
version 3.6.2 in R [16]. Spearman’s correlation coefficient 
was used to calculate the correlation and redundancy 
of elements. The features related to thyroid carcinoma 
were selected by the least absolute shrinkage and selec-
tion operator (LASSO) logistic regression method [17]. 
A Rad-score was generated using a linear combination 
of selected features weighted by the LASSO algorithm. 
The Mann-Whitney U test was then used in the training 
and validation cohort to assess the potential association 
between Rad-Scores and bone metastasis.

Development of CT radiomics nomogram
The clinical risk factors associated with bone metasta-
sis were conducted by univariate analysis. Multivari-
able logistic regression analysis including Rad-score and 

Fig. 1 A general flowchart of patient inclusion and exclusion. A total of 318 NSCLC patients were finally included from 13,830 patients. NSCLC non-small-
cell lung cancer, CECT Contrast enhanced computed tomography
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independent clinical variables was conducted to select 
the final predictors of bone metastasis. Based on the 
binary analysis in the training group, a CT nomogram 
was developed. For comparison, invalid features were 
excluded in the process of clinical model construction, 
and only independent clinical risk factors were used to 
develop clinical prediction models. The discriminative 
ability of the model was evaluated with Harrell’s con-
cordance index (C-index) and receiver operating char-
acteristic (ROC). The calibration curve (1000 bootstrap 
resamples) was performed to evaluate the calibration 
ability of the nomogram.

Statistical analyses
The calibration curve and Hosmer-Lemeshow test were 
used to evaluate the calibration performance of the 
CECT nomogram. AUC was used to evaluate the dis-
crimination performance of the nomogram. For clini-
cal use, the nomogram prediction probability for each 
patient is calculated according to the nomogram algo-
rithm. Statistical analysis was conducted using R software 
3.6.2 and SPSS23.0 (SPSS, Inc., Chicago, IL). All statisti-
cal significance levels two-sided, P values of less than 0.05 
(two-sided) were considered statistically significant.

Results
Clinical characteristics
Patients’ clinical, pathological and radiological char-
acteristics in the training and validation cohorts were 
summarized in Table 1. To evaluate the predictive value 
on bone metastasis of the extracted biomarkers from 
images, a total of 318 patients with clear imaging of lung 
tumor, complete clinical data, and pathological type were 
involved in the present study. Among the involved 318 
patients, 150 cases were diagnosed with bone metastasis 
(47.17%) while 168 cases were without bone metastasis 
(52.83%).

Establishment of CT radiomics signature
Based on the 223 CT images in the training group, 2,570 
features were extracted. The number of features was 
reduced to twelve by the LASSO algorithm in the train-
ing cohort (Fig.  2). We evaluated the predict efficacy 
of CT features. The CT Rad-scores were higher in the 
patients with bone metastasis in both the training and 
validation sets than those in the patients without bone 
metastasis, with the AUC of 0.699 (0.637–0.761) vs. 0.684 
(0.584–0.783) in the training group (Fig. 3).

Bone metastasis predictors identification and evaluation
Logistic regression analysis of clinical and imaging 
semantic data, the risk factors being significantly asso-
ciated with bone metastasis in NSCLC patients were 
blood type, distant organ metastases, pathological type, 

spicule sign, lobulation sign, pleural indentation sign, and 
ground-glass opacity/note (Table 2).

Multiple logistic regression analysis suggested that 
four factors were correlated with the occurrence of bone 
metastasis in NSCLC, including distant organ metas-
tasis (OR = 3.003, P = 0.001), spicule sign (OR = 1.858, 
P = 0.019), lobulation sign (OR = 3.492, P < 0.001), and 
ground-glass opacity/note (OR = 1.928, P = 0.014) 
(Table 3).

Nomogram development and validation
Rad-Score, distant organ metastasis, spicule sign, lobu-
lation sign and ground-glass opacity/note were con-
firmed as the independent predictors of bone metastasis 
in NSCLC by multivariate logistic regression. Although 
the pathological type of tumors was not an independent 
risk factor after multivariate logistic regression, it was 
still included in the prediction model for its reported 
significant role in NSCLC. A CT radiomics nomogram 
incorporating these predictors was constructed (Fig.  4). 
The radiomics nomogram achieved an AUC of 0.745, 
P < 0.001 in the training cohort and 0.808, P < 0.001 in 
the validation cohort (Fig.  5). The prediction accuracy 
of the prediction model was improved using 1000 repli-
cate samples. The calibration curve showed satisfactory 
calibration in the training and validation cohort. (Fig. 4; 
Table 4)

Discussion
Bone was one of the most common metastatic sites in 
lung cancer [18]. Bone metastasis from lung cancer can 
cause severe skeletal disease, including bone pain, patho-
logical fracture, spinal instability, spinal cord compres-
sion, hypercalcemia and other skeletal related event 
(SRE) [19]. Bone metastasis usually occur at an advanced 
stage and decrease patient’s quality of life. Among 
NSCLC patients, the incidence of bone metastasis was 
around 40% [20, 21]. NSCLC patients with bone metasta-
sis showed a one-year survival rate of 40–50% [22]. Bone 
metastasis screening in patients with NSCLC is impor-
tant for treatment decisions.

To date, the mechanism of bone metastasis in lung 
cancer remains to be elucidated. Seed-soil theory is 
widely accepted [23]. As the latest study reported, distant 
metastasis might be an early event with the occurrence 
of the primary tumor. The primary tumor pre-selected 
the tumor cells which can be regulated by osteomimicry 
[24]. Thus, the features of the primary tumor can be of 
significance on studying distant metastasis. Our study 
suggested the CECT radiomics of the primary tumor 
can reflect bone status. Radio-semantic features, includ-
ing spicule sign, lobulation sign, and ground-glass opac-
ity/note, were proved to be highly associated with bone 
metastasis in NSCLC. Many investigators demonstrated 
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Characteristic Overall Training cohort (n = 147) Validation cohort (n = 90) χ2 P
n% n% n%

Age (years)
 ≤ 55 26.4 18.6 7.9 0.546 0.761
 55–65 49.7 34.3 15.4
 ≥ 65 23.9 17.6 6.3
Gender
 Male 56.6 41.5 15.1 1.667 0.197
 Female 43.4 28.9 14.5
Blood group
 A 10.1 7.2 2.8 4.038 0.401
 B 16.7 12.3 4.4
 AB 13.8 10.1 3.8
 O 5.3 4.7 0.6
 Uncertain 54.1 36.2 17.9
Smoking
 Yes 50.6 39.0 11.6 6.778 0.009
 No 49.4 31.4 17.9
Drinking
 Yes 23.0 16.7 6.3 0.302 0.860
 No 64.8 45.0 19.8
 Unknown 12.3 8.8 3.5
History of malignancy
 Yes 2.8 1.9 0.9 0.063 0.801
 No 97.2 68.6 28.6
Family history of malignancy
 Yes 23.0 16.7 6.3 0.213 0.645
 No 77.0 53.8 23.3
Lymph node metastasis
 Yes 40.6 27.4 13.2 0.937 0.333
 No 59.4 43.1 16.4
Metastatic status of other organs
 Yes 24.2 8.8 15.4 2.259 0.133
 No 75.8 20.8 55.0
Tumor pathology
 Adenocarcinoma 72.0 50.0 22.0 0.524 0.769
 Squamous 26.1 19.2 6.9
 Large cell carcinoma 1.9 1.3 0.6
KPS score
 ≤ 80 6.3 3.1 3.1 5.391 0.068
 ≥ 85 62.6 43.7 18.9
 Unknown 31.1 23.6 7.5
Diameters
 <3 cm 52.5 36.8 15.7 0.378 0.828
 3–5 cm 31.8 22.0 9.7
 >5 cm 15.7 11.6 4.1
Location
 Central 39.9 26.7 13.2 1.252 0.263
 Surrounding 60.1 43.7 16.4
Spicule sign
 Yes 50.6 35.6 14.8 0.021 0.884
 No 49.4 34.6 14.8
Lobulation sign
 Yes 56.0 39.0 17.0 0.117 0.732

Table 1 Clinical characteristics of patients in the training and validation cohorts
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Fig. 2 The illustration of segmentation, feature extraction, and modeling creation using radiomics. The workflow of radiomics (A). Radiomics feature 
selection using the LASSO logistic regression model in the training cohort (B). The value of lambda values that gave the minimum average binomial devi-
ance was used to select features. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of the 
minimum criteria (the 1-SE criteria). As a result, optimal lambda values resulted in 12 nonzero coefficients

 

Characteristic Overall Training cohort (n = 147) Validation cohort (n = 90) χ2 P
n% n% n%

 No 44.0 31.4 12.6
Pleural indentation sign
 Yes 62.6 44.7 17.9 0.215 0.643
 No 37.4 25.8 11.6
Bronchus encapsulated air sign
 Yes 28.0 20.1 7.9 0.128 0.720
 No 72.0 50.3 21.7
Ground-glass opacity/note
 Yes 41.8 29.2 12.6 0.029 0.864
 No 58.2 41.2 17.0
Number
 1 68.9 47.8 21.1 0.361 0.548
 ≥ 2 31.1 22.6 8.5
Single or double lung
 Single 83.6 57.2 26.4 3.185 0.074
 Double 16.4 13.2 3.1

Table 1 (continued) 
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that the arose of spicule sign and lobulation sign in 
ground-glass opacity/note was because tumor cells sel-
domly grew at the same rate in all directions, with the 
infiltration of tumor cells into the adjacent bronchial vas-
cular sheath or local lymphatic vessels [25]. Therefore, 
it was speculated that these highly active “seeds” could 
affect both tumor progression with cell proliferation 
and aggressiveness, including leaving the primary site, 
entering the bloodstream, and the development of bone 
metastasis.

Till now, there has been no effective strategy on bone 
metastasis screening or early diagnosis. Several predic-
tion systems were established, none of them can sat-
isfactorily meet the clinical need [26]. Our previous 
research reported the feasibility of distant metastasis 
prediction through the various features of the primary 
site [27]. Thus, we attempted to develop a CECT-based 
radiomics nomogram for the preoperative prediction of 
bone metastasis in patients with NSCLC. It was widely 
accepted that tumors are angiogenesis-dependent dis-
eases. Angiogenesis is one of the essential factors lead-
ing to tumorigenesis, progression and distant metastasis 
[28]. CECT technology, which has a superior ability to 
reflect microvascular perfusion, containing different 
aspects of anatomical and biological information about 
a tumor, has been applied con-jointly for the diagnosis 
of lung tumors in clinical practice. CT-based radiomics 
showed its ability on differential diagnosis between 
benign and malignant lung nodules [29]. However, to the 
best of our knowledge, no studies investigated the asso-
ciation between the CECT radiomics features and bone 
metastasis in NSCLC.

In exploring advanced methodologies to enhance our 
predictive model for bone metastasis in NSCLC, it is 
valuable to consider recent developments in machine 
learning. The latest study demonstrated how triplet loss 
can improve feature representation, which can be applied 
to radiomics to distinguish more effectively between 
patients with and without bone metastasis [30]. Addi-
tionally, “Weakly supervised machine learning” offers 
techniques to leverage imperfect data, enhancing our 
model’s robustness when high-quality labeled data is 
scarce [31]. Lastly, “Deep learning in food category rec-
ognition” highlights the benefits of information fusion 
from multiple data sources. Integrating such fusion tech-
niques can improve the accuracy of our predictive mod-
els by combining radiomic features with diverse clinical 
data, thus offering a more comprehensive approach to 
early detection and treatment planning for NSCLC 
patients [32].

Clinicopathological risk factors, including the organ 
distant metastasis, pathology type were previously 
reported to be associated with bone metastasis in 
NSCLC [24]. To provide an easy-to-use tool for clinical 
use, we developed a radiomics nomogram based on the 
multivariate logistic regression analysis. The nomogram 
established with the combined features from CT and 
clinical features showed significantly better bone metas-
tasis prediction than any nomogram established with the 
single feature. Radiomics strategy was recently applied 
in other imaging modalities including ultrasound or CT 
images, the regional lymph-node metastasis in certain 
cancers can thus be predicted [33, 34]. Compared with 
the previous study, our study yielded a predict perfor-
mance by concentrating on the clinical parameter, patho-
logical parameters combined radiomics method, which 
can complement image features with more information 
on patient’s risk.

The superior performance of our proposed method 
can be attributed to several key factors. First, both the 
radiomic and clinical features were integrated. Unlike 
many state-of-the-art approaches that rely solely on 
either imaging data or clinical data, our model integrates 
radiomic features from contrast-enhanced CT scans 
with comprehensive clinical features. This multi-modal 
approach allows for a more holistic view of the patient’s 
condition, capturing both the detailed tumor phenotype 
and relevant clinical indicators, leading to improved pre-
diction accuracy. Second, the advanced feature selection 
technique was used. We employed robust feature selec-
tion methods, including the Kruskal-Wallis test and 
LASSO regression, to identify the most relevant radiomic 
features associated with bone metastasis. This rigorous 
selection process ensures that only the most predictive 
features are included in the model, enhancing its overall 
performance. Third, the high-quality imaging data were 

Fig. 3 The validation of the prediction modelling. Performance of the ra-
diomics for predicting bone metastasis in training and validation cohort
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Characteristic B SE Wald OR(95%CI) P OR(95%CI)
Age (years)
 <55 1(Reference) 1
 55–65 − 0.073 0.270 0.07 0.930 0.787 0.548 1.579
 >65 − 0.530 0.322 2.72 0.588 0.099 0.313 1.105
Gender
 Male 1(Reference) 1
 Female 0.20 0.227 0.783 1.222 0.376 0.784 1.906
Blood group
 A 1(Reference) 1
 B 0.381 0.464 0.674 1.464 0.412 0.589 3.634
 AB − 0.452 0.510 0.787 0.634 0.375 0.234 1.728
 O − 0.229 0.650 0.124 0.795 0.725 0.223 2.841
 Uncertain 0.975 0.403 5.855 2.652 0.016 1.204 5.842
Smoking
 Yes 1(Reference) 1
 No − 0.149 0.225 0.437 0.963 0.811 0.555 1.339
Drinking
 Yes 1(Reference) 1
 No − 0.040 0.273 0.022 0.961 0.883 0.563 1.640
 Unknown − 0.057 0.350 0.026 0.945 0.871 0.476 1.876
History of malignancy
 Yes 1(Reference) 1
 No − 0.596 0.716 0.692 0.551 0.405 0.135 2.243
Family history of malignancy
 Yes 1(Reference) 1
 No − 0.174 0.268 0.422 0.929 0.565 0.496 1.421
Lymph node metastasis
 Yes 1(Reference) 1
 No 0.217 0.229 0.901 1.243 0.343 0.793 1.946
Metastatic status of other organs
 Yes 1(Reference) 1
 No 1.110 0.276 16.128 3.035 0.000 1.765 5.218
Tumor pathology
 Adenocarcinoma 1(Reference) 1
 Squamous − 0.561 0.263 4.562 0.571 0.033 0.341 0.955
 Large cell carcinoma − 0.737 0.876 0.707 0.479 0.400 0.086 2.665
KPS score
 ≤ 80 1(Reference) 1
 ≥ 85 − 0.831 0.490 2.875 0.436 0.090 0.167 1.138
 Unknown − 0.680 0.510 1.775 0.507 0.183 0.186 1.377
Diameters
 <3 cm 1(Reference) 1
 3–5 cm 0.218 0.253 0.740 1.243 0.390 0.757 2.042
 >5 cm 0.600 0.326 3.380 1.822 0.066 0.961 3.454
Location
 Central 1(Reference) 1
 Surrounding − 0.374 0.230 2.639 0.688 0.104 0.438 1.080
Spicule sign
 Yes 1(Reference) 1
 No 0.770 0.229 11.303 2.159 0.001 1.379 3.382
Lobulation sign
 Yes 1(Reference) 1
 No 1.397 0.242 33.205 4.044 0.000 2.514 6.505

Table 2 Univariate regression analysis of patients with bone metastasis
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included. The use of high-resolution contrast-enhanced 
CT scans provides detailed and quantitative imaging 
data, which is critical for accurate radiomic analysis. The 
high-quality imaging data contributes significantly to the 
model’s ability to detect subtle differences in tumor char-
acteristics that may indicate bone metastasis. These fac-
tors collectively contribute to the improved performance 
of our proposed method compared to existing state-
of-the-art approaches. We believe that the integration 
of diverse data sources, rigorous feature selection, and 

validation processes are key to achieving better predic-
tive outcomes in clinical settings.

To enhance the predictive performance of radiomics 
models, future studies should integrate multiple imag-
ing modalities like Positron Emission Tomography (PET), 
and Single Photon Emission Computed Tomography 
(SPECT). These provide complementary information 
on tumor microenvironment and bone integrity, poten-
tially improving accuracy. Exploring longitudinal changes 
in radiomic features can reveal insights into metastasis 
progression and treatment response. Advanced machine 

Table 3 Multi-factor regression analysis of patients with bone metastasis
Characteristic B SE Wald OR (95%CI) P OR(95%CI)
Blood group
 A 1(Reference) 1
 B 0.193 0.522 0.137 1.213 0.7112 0.436 3.271
 AB − 0.726 0.580 1.570 0.484 0.210 0.155 1.506
 O − 0.870 0.719 1.466 0.419 0.226 0.102 1.714
 Uncertain 0.540 0.453 1.433 1.720 0.231 0.708 4.180
Metastatic status of other organs
 Yes 1(Reference) 1
 No 1.100 0.318 11.996 3.003 0.001 1.612 5.596
Tumor pathology
 Adenocarcinoma 1(Reference) 1
 Squamous − 0.412 0.297 1.917 0.662 0.166 0.370 1.187
 Large cell carcinoma − 0.562 1.046 0.288 0.570 0.591 0.073 4.430
Spicule sign
 Yes 1(Reference) 1
 No 0.619 0.265 5.467 1.858 0.019 1.105 3.122
Lobulation sign
 Yes 1(Reference) 1
 No 1.251 0.272 21.148 3.492 0.000 2.049 5.951
Pleural indentation sign
 Yes 1(Reference) 1
 No 0.436 0.278 2.466 1.546 0.116 0.898 2.664
Ground-glass opacity/note
 Yes 1(Reference) 1
 No 0.656 0.266 6.083 1.928 0.014 1.144 3.247

Characteristic B SE Wald OR(95%CI) P OR(95%CI)
Pleural indentation sign
 Yes 1(Reference) 1
 No 0.835 0.240 12.117 2.304 0.000 1.440 3.686
Bronchus encapsulated air sign
 Yes 1(Reference) 1
 No − 0.061 0.250 0.060 0.940 0.806 0.576 1.536
Ground-glass opacity/note
 Yes 1(Reference) 1
 No 0.908 0.233 15.175 2.480 0.000 1.570 3.916
Number
 1 1(Reference) 1
 ≥ 2 − 0.235 0.359 0.430 0.791 0.512 0.391 1.596
Rad-Score 1.150 0.819 1.972 3.157 0.160 0.635 15.705

Table 2 (continued) 
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learning techniques, such as deep learning and ensemble 
learning, can further optimize feature selection and pre-
diction. Finally, validating models in larger, multi-center 
cohorts is essential for ensuring generalizability and clin-
ical applicability.

Our study has several limitations. First, the research 
was a retrospective and single-center study, which made 
it hard to evaluate the generalizability of outcomes to 
other cohorts. Prospective studies of larger-scale patients 
need to be performed before its extensive practical appli-
cation. Although CT image segmentation was performed 
by experienced radiologists, the subjectivity of the radi-
ologist may influence the result.

Conclusion
In conclusion, for the first time, this study revealed the 
primary lung cancer CT image features being correlated 
with bone metastasis in patients with NSCLC. This signa-
ture would offer the auxiliary strategy on bone metastasis 
early identification and screening in NSCLC. Individu-
alized treatment and metastatic screening plans can be 
generalized to the patients with high risk based on the 
established nomogram. The nomogram showed its feasi-
bility and potential clinical application on bone metasta-
sis prediction in NSCLC.

Fig. 4 CECT radiomics nomogram for the predicting estimation of bone metastasis. (A) Nomogram to estimate the risk of bone metastasis preopera-
tively in NSCLC. To use the nomogram, find the position of each variable on the corresponding axis, draw a vertical line to the points axis for the number 
of points, add the points from all of the variables, and draw a line from the total points’ axis to determine the bone metastasis probabilities at the lower 
line of the nomogram. (B, C) Calibration curves of the CECT radiomics nomogram in the training (B) and validation (C) set. Calibration curves depict the 
calibration of CECT radiomics model in terms of the agreement between the predicted probabilities of bone metastasis and observed outcomes of bone 
metastasis. The dotted blue line represents an ideal prediction, and the dotted black line represents the predictive ability of the nomogram. The closer 
the dotted black line fit is to the dotted blue line, the better the predictive accuracy of the nomogram is
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Table 4 Comparison of prediction models for bone metastases in NSCLC
Rad-Score Clinical + Semantic CECT radiomics nomogram
Training n = 224 Validation n = 94 Training n = 224 Validation n = 94 Training n = 224 Validation n = 94

AUC 0.699 0.684 0.734 0.807 0.745 0.808
95%CI 0.64–0.76 0.58–0.78 0.68–0.79 0.71–0.88 0.68–0.80 0.71–0.88

Fig. 5 Prediction accuracy of the CECT radiomics nomogram for the estimation of bone metastasis in patients with NSCLC in the training and validation 
cohorts. ROCs show good prediction performance of the nomogram in the training and validation cohorts. ROC receiver operator characteristic
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