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Abstract
Background  Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation. The 
diagnosis of FCD is challenging. We generated a radiomics nomogram based on multiparametric magnetic resonance 
imaging (MRI) to diagnose FCD and identify laterality early.

Methods  Forty-three patients treated between July 2017 and May 2022 with histopathologically confirmed 
FCD were retrospectively enrolled. The contralateral unaffected hemispheres were included as the control group. 
Therefore, 86 ROIs were finally included. Using January 2021 as the time cutoff, those admitted after January 2021 
were included in the hold-out set (n = 20). The remaining patients were separated randomly (8:2 ratio) into training 
(n = 55) and validation (n = 11) sets. All preoperative and postoperative MR images, including T1-weighted (T1w), 
T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and combined (T1w + T2w + FLAIR) images, were 
included. The least absolute shrinkage and selection operator (LASSO) was used to select features. Multivariable 
logistic regression analysis was used to develop the diagnosis model. The performance of the radiomic nomogram 
was evaluated with an area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination 
improvement (IDI), calibration and clinical utility.

Results  The model-based radiomics features that were selected from combined sequences (T1w + T2w + FLAIR) had 
the highest performances in all models and showed better diagnostic performance than inexperienced radiologists 
in the training (AUCs: 0.847 VS. 0.664, p = 0.008), validation (AUC: 0.857 VS. 0.521, p = 0.155), and hold-out sets (AUCs: 
0.828 VS. 0.571, p = 0.080). The positive values of NRI (0.402, 0.607, 0.424) and IDI (0.158, 0.264, 0.264) in the three sets 
indicated that the diagnostic performance of Model-Combined improved significantly. The radiomics nomogram 
fit well in calibration curves (p > 0.05), and decision curve analysis further confirmed the clinical usefulness of the 
nomogram. Additionally, the contrast (the radiomics feature) of the FCD lesions not only played a crucial role in the 
classifier but also had a significant correlation (r = -0.319, p < 0.05) with the duration of FCD.
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Introduction
Focal cortical dysplasias (FCDs) are common malfor-
mations of cerebral cortical development that were first 
observed in epilepsy patients by Taylar et al. in 1971 [1, 
2]. The histopathological characteristics of FCD include 
abnormalities of the white matter, cortical dyslamina-
tion, and large unusual neurons, and half of the patients 
presented with balloon cells [3]. FCD is the most com-
mon cause of drug resistance in patients with focal epi-
lepsy. Focal resection is the most common method used 
to treat drug-refractory epilepsy patients with FCD [4]. 
If these patients do not receive timely intervention, they 
suffer an increased risk of premature death [5].

Magnetic resonance imaging (MRI) is a noninvasive 
technique that can provide rich structural and func-
tional information about the whole brain. Previous 
results based on structural T1-weighted (T1-W) and 
T2-weighted (T2-W) MRI showed cortex thickening, 
white/gray matter (GM/WM) junction blurring, hyper-
intensity within white/gray matter, abnormal architecture 
of the subcortical layer, and unnatural sulus or gyrus pat-
terns in FCD patients by visual inspection [6].

Several postprocessing methods based on voxel and 
surface-based morphological analysis have emerged to 
improve the visibility of FCD on MRI [7, 8]. In voxel-
based morphometry (VBM), several feature maps (e.g., 
thickness, extension, junction maps) are computed vox-
elwise, which enhances the typical features of FCD and 
increases the sensitivity of MRI for detection [9, 10]. 
Martin et al. found that VBM contributed more to the 
detection of temporal lobe structural malformation corti-
cal dysplasias than visual examination. In 13 patients, the 
results of VBM were consistent with postoperative histo-
pathological findings (72.2%), unlike the 55.6% observed 
with visual inspection [11].

Despite its practicality and robustness, VBM 
approaches have certain inherent limitations. First, they 
cannot evaluate spatial relationships across the cortical 
surface, and any registration errors can result in subtle 
lesions being missed [12]. Second, in accordance with 
earlier studies, because the whole processing of VBM is 
performed by a fully automated MATLAB script called 
the Morphometric Analysis Programme (MAP), yield 
and diagnostic confidence also depend on the reader’s 
experience [13].

Surface-based morphometry (SBM) can be used to 
estimate a variety of features, such as cortex volume, 
thickness, and area, as well as gyrification. Unlike VBM, 
SBM includes additional analysis of morphometric 

features (such as sulcal depth and curvature) that are 
known to be abnormal in patients with FCD; thus, the 
anatomical relationships across the folded cortex are not 
neglected [14, 15]. This novel classifier was used to iden-
tify 89% (17 of 19) of small, histologically proven FCDs 
that were overlooked on conventional MRI [16]. How-
ever, SBM approaches also have some drawbacks, such as 
unavoidable and unknown biases that may arise from the 
sex, age, race, etc., of the included healthy controls [17]. 
Therefore, there are some limitations in practical clinical 
use.

Radiomics is a new approach that is used to extract 
high-throughput image features from radiographic 
images, which provides a powerful tool for modern 
medicine by improving accurate diagnosis and treatment 
[18]. In the terms of epilepsy diagnosis, radiomic fea-
tures from the hippocampus offer valuable insights into 
the pathophysiology of TLE and can aid in distinguishing 
TLE patients from individuals without epilepsy [19, 20]. 
Beyond the hippocampus, radiomic features extracted 
from regions outside the hippocampus have been par-
ticularly useful in identifying patients with hippocampal 
sclerosis and those with negative MRI findings but still 
exhibit clinical symptoms of TLE [21]. This approach 
has shown to be valuable in improving the accuracy of 
TLE diagnosis. Radiomics is not limited to diagnosis; it 
is pivotal in predicting drug treatment efficacy for TLE. 
By merging radiomic features from imaging data with 
extensive clinical information, predictive models emerge. 
These models offer clinicians valuable insights into 
expected treatment outcomes, enabling personalized and 
more effective interventions [22]. These studies show that 
radiomics features could aid in identifying TLE. However, 
radiomics analyses performed in FCD-related epilepsy 
patients are still rare. Additionally, it is known that stud-
ies on the duration of epilepsy suggest that changes in 
structural integrity may be progressive over the course of 
the disease [23], illustrating that the correlation between 
the duration of the disease and the MR findings improves 
diagnosis and assists in prognosis. Therefore, such a cor-
relation should be studied.

Nomograms are statistical instruments utilized in clini-
cal practice to assess the likelihood of a particular out-
come. Prognostication is crucial in guiding treatment 
decisions and determining appropriate follow-up inter-
vals. Nomograms offer an advantage over traditional 
staging systems by incorporating a wider array of clini-
copathologic variables, thereby providing a more com-
prehensive prognosis. Additionally, nomograms 

Conclusion  The radiomics nomogram generated by logistic regression model-based multiparametric MRI represents 
an important advancement in FCD diagnosis and treatment.
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present statistical predictions in a visually intuitive for-
mat, enhancing their utility for clinicians [24].

The purpose of this study was to investigate whether a 
radiomics nomogram that depended on a conventional 
multiparametric MR radiomics-based logistic regression 
model could be used to differentiate FCD patients and 
healthy controls. In addition, we explored the correla-
tions between the selected features and the duration of 
the FCD with the goal of aiding in the identification of 
FCD using MRI visual detection.

Methods and materials
Participant selection
The institutional review board of the Second Affiliated 
Hospital of Nanchang University approved this retro-
spective study, and the requirement to obtain informed 
consent was waived. Figure  1 shows a flow chart of 
patient recruitment and grouping. First, sixty-seven 
patients were retrospectively selected between July 2017 
and May 2022. All of them were drug-refractory epi-
lepsy patients and received focal resection treatment. 
All the involved patients were pathologically confirmed 
to have FCD according to the guidelines of the Inter-
national League Against Epilepsy (ILAE). The clinical 
data of the sixty-seven patients were collected from the 
Electronic Hospital Information System (EHIS) of our 
hospital. Then, patients (n = 4) with Engel class III or IV 
(reduction of seizure frequency > 75%, or reduction of 
seizure frequency < 75%), a history of encephalitis (n = 1), 
severe traumatic brain injury (n = 1), diffuse brain atrophy 
(n = 1), preoperative EEG evidence of bilateral epilepti-
form discharges (n = 5), excessive postoperative brain tis-
sue deformation (n = 7), and poor-quality neuroimaging 
data (n = 5) were excluded. Finally, forty-three patients 
were included.

Using January 2021 as the time cutoff point, patients 
were divided into two groups, with patients before Jan-
uary 2021 used as the training and validation sets and 
patients after January 2021 used as the hold-out set.

Thirty-three patients who belonged to the training 
and validation sets and underwent surgery before Janu-
ary 2021 received telephone follow-ups in January 2022; 
thus, all patients had more than one year of follow-up. 
Seizure recurrence is mainly limited to the first postoper-
ative year and has been a reliable predictor of long-term 
outcomes in patients with FCD [25]. Therefore, the mini-
mum follow-up period in our study was one year. The 
phone interview was performed by one of the authors 
using the Engel system, which is used to evaluate seizure 
outcomes following surgery for epilepsy by focusing on 
the patient’s daily lives [26, 27]. Thus, complete resection 
of the epileptogenic lesion of the thirty-three patients in 
the training and validation sets was ensured.

Image acquisition
MRI data were obtained for forty-three FCD patients 
using a 3.0T MR scanner (Discovery MR 750  W; GE 
Healthcare, Milwaukee, WI, USA) with a 24-channel 
head coil. Three sequences were acquired with the fol-
lowing parameters:

Brain volume imaging (BRAVO): TR/TE 8.2/3.1 ms; 
field of view 256 × 256, section thickness 1  mm, matrix 
256 × 256, flip angle 12°.

Axial T2w imaging: TR/TE 9786/108.7 ms; field of view 
260 × 260, section thickness 3 mm, matrix 240 × 240, flip 
angle 142°.

Axial T2FLAIR imaging: TR/TE 8000/142.3 ms; field of 
view 260 × 260, section thickness 3 mm, matrix 256 × 256, 
flip angle 160°.

Fig. 1  Flow diagram of patient inclusion and allocation to the training, validation, and hold-out sets
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Development and testing of the Radiomics Model
Figure  2 shows the workflow of the development and 
testing of the radiomics model. The workflow followed 
a radiomics-specific reporting guideline [28] (checklist 
attached as Supplementary Materials 1).

Region of interest definition and segmentation
All images were resampled to 1  mm x 1  mm x 1  mm 
and were then utilized to delineate the region of inter-
est (ROI) by using 3D Slicer (v 4.11.2; https://www.slicer.
org).

Grayscale images can be automatically aligned to each 
other using intensity-based registration methods. Gen-
eral registration (Elastix) (in SlicerElastix extension) is 
recommended by 3D Slicer’s user guide (https://slicer.
readthedocs.io/en/latest/user_guide/registration.html), 
and its default registration presets work without the 
need for any parameter adjustments. Therefore, for the 
training and validation sets, we utilized the Elastix mod-
ule to register preoperative and postoperative images of 
patients, facilitating subsequent segmentation steps.

A radiologist with five years of experience in diag-
nosing diseases of the central nervous system (CNS) 
manually marked the brain resection area depending on 
the area of operation and preoperative multisequence 
MR images as the ROI (Supplementary Materials 2). 
Then, the ROI was mirrored and transformed to the 

contralateral hemisphere using the 3D Slicer transforms 
module, yielding two ROIs for a single patient. ROIs in 
the contralateral unaffected hemisphere were included 
as the control group. Finally, we obtained 66 ROIs from 
33 patients. The same radiologist randomly chose half of 
the patients and repeated ROI segmentation twice in an 
8-week period. The reproducibility was subject to analysis 
with the intraclass correlation coefficient (ICC). All ROIs 
were reviewed by a radiologist with 37 years of experi-
ence in diagnosing CNS diseases to ensure the accuracy 
of the segmentation. Notably, all patients included in the 
training and validation sets were classified as Engel class 
I or II, which guaranteed that the epileptogenic zone was 
totally included in the ROI.

The hold-out set was used to demonstrate the robust-
ness of the radiomics-based model and further evalu-
ate whether the model could determine the laterality 
of the lesion. We extracted brain structures using the 
Brain Extraction Tool (BET) [29] via the FMRIB Soft-
ware Library (FSL). Data regarding nonbrain (e.g., skull, 
dura, eyes, extracerebral cerebrospinal fluid, and major 
veins) tissue from the whole head were removed from 
the source images. Then, the whole left and right cerebral 
hemispheres were obtained as ROIs from the preopera-
tive MR images using a semiautomatic method. Finally, 
we obtained 20 ROIs from 10 patients.

Fig. 2  The workflow of the development and testing of the radiomics model. First, the preoperative and postoperative images were registered. The top 
row shows the pre- and postoperative images before the registration of the three sequences, with a 50% transparency overlay. The bottom row shows the 
pre- and postoperative images after registration, also with 50% transparency overlap. Second, ROIs were segmented manually, mirrored, and transformed 
to the contralateral hemisphere for radiomic analysis. Third, radiomics features were extracted. Fourth, in the training set, the most relevant features were 
selected by LASSO methods with penalty parameter tuning. The multivariate logistic model was established. Fifth, ROC curves, calibration plots, and 
decision curve analysis were used to evaluate the performance of the models. Sixth, the multivariate logistic model was tested with the hold-out set
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Radiomics feature extraction
The radiomic features were extracted from the seg-
mented volumes in accordance with the image biomarker 
standardization initiative (IBSI) guidelines [30]. Feature 
extraction was processed on the PyRadiomics module 
embedded in the 3D Slicer Radiomics Extension Pack 
(v.4.11.2 https://www.slicer.org/). No image intensity or 
voxel size normalization was needed since all MR images 
had identical grayscale and voxel sizes. Image intensity 
discretization was conducted with fixed intensity bin 
widths of 25 (default in PyRadiomics). High-frequency 
or low-frequency wavelet filters, Laplacian of Gaussian 
(LoG) filters with different λ-parameters (λ = 0.5, 1.0, 1.5, 
2.0), and wavelet-based processes were used for prepro-
cessing the original MR images, which can be used to 
accurately obtain the detailed features of the images. We 
then extracted the original MR images and the radiomics 
characteristics of segmented lesions, including the first-
order characteristics based on preprocessed image pixel 
values, the gray-level dependence matrix (GLDM), gray-
level cooccurrence matrix (GLCM), gray-level run length 
matrix (GLRLM), gray-level size zone matrix (GLSZM) 
and neighborhood-tone difference matrix (NGTDM), 
which described the morphological characteristics of 
lesions and the internal and surface texture features. 
Finally, we used Ζ-scores to standardize all features on 
the same scale.

Radiomic feature selection and model establishment
First, features with high stability (ICC > 0.80) were 
retained for further analysis. Next, a total of 66 ROIs 
were split into two sets at an 8:2 ratio. Subsequent analy-
sis was executed in R software (version 4.1.3; http://www.
rproject.org). We used the least absolute shrinkage and 
selection operator (LASSO) method [31], which is suit-
able for dimensionality reduction in high-dimensional 
data, with penalty parameter tuning conducted by four-
fold cross-validation to select the optimal diagnostic fea-
tures from the training set. Then, features with nonzero 
coefficients were retained as the most important features 
in the multivariate logistic regression model.

FCD diagnostic model evaluation
Receiver operating characteristic (ROC) curves were 
plotted, and an AUC was used to quantify the discrimi-
native efficacy of all radiomics models based on single 
sequences and combined sequences. The AUC with 95% 
CI and the sensitivity, specificity, and accuracy were 
calculated.

Development and validation of the nomogram
Nomograms are frequently employed in disease prog-
nosis or diagnosis to condense complex statistical mod-
els into a single, patient-specific probability estimate for 

events such as death or recurrence. These user-friendly 
graphical tools assist clinical decision-making during 
patient encounters. For each predictor variable, find the 
corresponding value on the horizontal axis of the nomo-
gram and determine the associated points. Sum the 
points for all variables to obtain the total points. Draw a 
line from the total points on the nomogram to the pre-
dicted probability scale on the vertical axis. The point 
where the line intersects the scale corresponds to the 
estimated probability of the outcome [32]. The radiomics 
nomogram was generated using the model that had the 
most satisfactory diagnostic performance. Next, cali-
bration plots were used to examine the diagnostic per-
formance of the nomogram in both the training and 
validation sets. The nonsignificant unreliability U test 
was used to estimate the agreement between nomogram-
diagnosed FCD and actual FCD from the calibration 
curves. Decision curve analysis was conducted to deter-
mine the clinical usefulness of the nomogram by quanti-
fying the net benefits at different threshold probabilities 
in all cohorts [33].

Hold-out test
The trained radiomics-based logistic regression model 
was applied to the hold-out set.

Development of the radiologist model
One radiologist with 5 years of experience in assessing 
CNS diseases and a 3-year resident in training indepen-
dently provided a diagnosis based on the MR images 
without knowing any other clinical or laboratory infor-
mation. In the case of any discrepancy, a consensus was 
reached after discussion. Diagnoses based on the MR 
images were included in univariate analysis to generate a 
logistic regression model.

Statistical analysis
Statistical analysis was performed using R software (ver-
sion 4.1.3; http://www.rproject.org). The distribution of 
the data was evaluated by the Kolmogorov–Smirnov test 
and Shapiro‒Wilk test. The duration of patients in the 
validation set was compared using Student’s t test and 
was described as the mean [standard deviation (SD)]. 
Nonnormally distributed variables (age, duration of 
patients in training, and hold-out sets) were analyzed by 
the Mann–Whitney U test and were described as medi-
ans [interquartile ranges (IQRs)]. Categorical variables 
(sex, affected hemisphere, Engel system, MRI representa-
tion, pathology) were analyzed by the chi-square test or 
Fisher’s exact test and were described as absolute num-
bers (n) and proportions (%). ROC curve analysis was 
used to evaluate the accuracy, sensitivity, and specificity 
of this model in differentiating FCD patients and healthy 
controls. The AUC of the ROC curves was compared by 
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the Delong method. The net reclassification improve-
ment (NRI) and the integrated discrimination improve-
ment (IDI) were used to further assess improvement in 
model performance [34].

We used the “glmnet” package for the analysis of 
LASSO logistic regression, which was applied to the 
radiomics features. The “rms” package was used to gen-
erate nomogram and calibration curves. The packages 
“pROC” and “ggplot” were used to plot ROC curves, and 
the AUC represents the optimal cutoff threshold value 
that was computed. The package “reportROC” were used 
to calculate CI. The package “PredictABEL” was used 
to calculate the NRI and IDI. The “generalhoslem” and 
“rmda” packages were used to calculate the Hosmer–
Lemeshow test and DCA, respectively.

Because the disease duration of whole sets did not con-
form to a normal distribution, the correlation between 
the duration of FCD and the selected features was tested 
by Spearman’s test. All statistical tests were two-sided, 
and P values of < 0.05 were regarded as significant.

Result
Patient characteristics
The baseline characteristics of the patients with lesions 
and healthy controls are shown in Table 1. The training 
set included 29 nonaffected ROIs and 26 affected ROIs, 
and the validation set included 4 nonaffected ROIs and 7 
affected ROIs. The hold-out set was composed of 10 non-
affected ROIs and 10 affected ROIs. There were no signif-
icant differences in the variables age or gender between 
the training and validation sets (Table  1, p > 0.05), indi-
cating that the use of random seeds to group the total 
data was reasonable. These variables also did not differ 
between the FCD lesion patients and healthy controls in 
the training and validation sets, as they did in the hold-
out set.

Radiomics feature extraction
A total of 1223 radiomics features were extracted from 
the ROIs of the single T1w, T2w, and T2-FLAIR images, 
and 3669 radiomics features of the combined-sequence 
images, including 14 shape features, 18 first-order fea-
tures, and 75 texture features [gray-level dependence 
matrix (GLDM, 14), gray-level cooccurrence matrix 

Table 1  Clinical characteristics in the training, validation and hold-out sets
Training set
(N = 55)

P-value Validation set
(N = 11)

P-value Hold-out set
(N = 20)

P-value

Control
(N = 29)

Lesion
(N = 26)

Control
(N = 4)

Lesion
(N = 7)

Control
(N = 10)

Lesion
(N = 10)

Sex 0.956 0.689 1.000
  Female 11 (37.9) 11 (42.3) 3 (75.0) 3 (42.9) 3 (30.0) 3 (30.0)
  Male 18 (62.1) 15 (57.7) 1 (25.0) 4 (57.1) 7 (70.0) 7 (70.0)
age
(median [IQR])

20.00
[16.00,35.00]

21.00
[14.75, 34.00]

0.846 26.75
(7.68)

30.00 (13.13) 0.665 21.50
[19.25,30.75]

21.50
[19.25, 30.75]

1.000

duration (median[IQR])/ (mean (SD)) NA 8.00
[3.25, 12.25]

NA 14.71 (14.49) NA 4.50
[3.00, 7.50]

  hemi (%) NA NA NA
  Left 9 (34.6) 5 (71.4) 8 (80.0)
  Right 17 (65.4) 2 (28.6) 2 (20.0)
Engel (%) NA NA NA
  I 16 (61.5) 4 (57.1) 5 (50.0)
  II 10 (38.5) 3 (42.9) 4 (40.0)
  III 0 0 1 (10.0)
MRI (%) NA NA NA
  MRI-positive 10 (38.5) 2 (28.6) 3 (30.0)
  MRI-negtive 16 (61.5) 5 (71.4) 7 (70.0)
pathology (%) NA NA NA
  FCDIA 4 (15.4) 0 1 (10.0)
  FCDIB 4 (15.4) 2 (28.6) 1 (10.0)
  FCDIIA 3 (11.5) 2 (28.6) 0
  FCDIIB 3 (11.5) 0 0
  FCDIIIA 4 (15.4) 1 (14.3) 2 (20.0)
  FCDIIIB 0 0 2 (20.0)
  FCDIIIC 2 (7.7) 0 2 (20.0)
  N 6 (23.1) 2 (28.6) 2 (20.0)
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(GLCM, 24), gray-level run length matrix (GLRLM, 16), 
gray-level size zone matrix (GLSZM, 16) and neighbor-
hood-tone difference matrix (NGTDM, 5)], 744 higher-
order features following wavelet transformation and 372 
higher-order features following LoG transformation.

Radiomic feature selection and signature construction
Features with intraobserver ICCs < 0.80 were discarded. 
Therefore, 951 features with high stability from the T1w 
images, 880 features from the T2w images, and 954 fea-
tures from the T2FLAIR images were obtained.

For the single MR sequence, six features highly corre-
lated with identifying FCD were extracted and selected 
from the T1w images, two from the T2w images, and 
four from the T2FLAIR images by using LASSO regres-
sion (Table 2). Six features (Table 3) were selected from 
the combined MRI by using the same method (Fig. 3a, b).

These final features were used to build four radiomics 
models through multivariate logistic regression.

Model performance evaluation
The detailed performance results of the different mod-
els are listed in Table  4. The ROC curves showed that 
Model-Combination had the highest performances in all 
models, with AUCs of 0.847 (95% CI 0.747–0.946) and 
0.857 (95% CI 0.618-1.000) in the training and validation 
sets, respectively. In the single sequence, Model-T2w had 

the most satisfying performances, with AUCs of 0.805 
(95% CI 0.679–0.931) and 0.814 (95% CI 0.606-1.000) in 
the training set and validation sets, respectively. Model-
T2FLAIR [AUCs: 0.733 (95% CI 0.597–0.868), 0.714 (95% 
CI 0.374-1.000)] and Model-T1w [AUCs: 0.762 (95% CI 
0.625–0.898), 0.671 (95% CI 0.400-0.943)] had poor per-
formances, especially with low AUCs in the validation 
set (Fig.  4). Model-Combination showed excellent diag-
nostic performance compared with Model-radiologists 
in the training (AUC: 0.847). VS. 0.664; p = 0.008), valida-
tion (AUC: 0.857 VS. 0.521; p = 0.155), and hold-out sets 
(AUCs: 0.828 VS. 0.571; p = 0.080) (Fig.  5). The specific 
results obtained after cross-validation are reported in 
Supplementary Material 4.

Although the Delong tests did not reveal significant 
differences between the ROC curves of Model-Combi-
nation and Model-radiologists in the validation and the 
hold-out sets, Model-Combination yield the 1.143 (95% 
CI: 0.410, 1.876, p = 0.002), 1.192 (95% CI: 0.484, 1.901, 
p < 0.000) of NRI (Continuous) and 0.264 (95% CI: 0.012, 
0.517 p = 0.040), 0.264 (95% CI: 0.046, 0.482, p = 0.018) of 
IDI in validation and hold-out sets, respectively, which 
are positive values, indicating that the diagnostic perfor-
mance of Model-Combination improved significantly. 
Table  5 shows reclassification among Model-Combina-
tion and Model-radiologists in training, validation, and 
hold-out sets.

Table 2  Four groups of radiomics features selected from four groups MR images were showd
Model-T1w Model-T2w Model-T2FLAIR Model-Combination
log-sigma-0.5-mm-3D_glcm_Autocorrelation log-sigma-2-0-mm-3D_ 

firstorder_Mean
log-sigma-0-5-mm-3D_firstorder_Median T2-wavelet-HHL_

glcm Correlation
log-sigma-2-0-mm-3D_ firstorder_Mean wavelet-HHL_glcm_Correlation log-sigma-1-5-mm-3D_firstorder_Median T2-log-sigma-1-0-

mm-3D_ngtdm_ 
Contrast

wavelet-HLL_gldm_ 
LargeDependenceLowGrayLevelEmphasis

log-sigma-1-5-mm-3D_ glcm_Imc2 T2-log-sigma-1-
0-mm-3D_gldm_ 
DependenceVariance

wavelet-HLL_glszm_ ZoneVariance log-sigma-2-0-mm-3D_ 
firstorder_10Percentile

T1-wavelet-HLL_
glszm_ ZoneVariance

wavelet-HLL_glrlm_ShortRunLowGray-
LevelEmphasis

T1-wavelet-HLL_
gldm_LargeDepen-
denceLowGray-
LevelEmphasis

Wavelet-HHL_gldm_DependenceEntropy T2FLAIR-log-sigma-
0-5-mm-3D_fir-
storder_ Median

Table 3  The radiomics features selected from the model-combination ranking according to each feature weight
Features(N = 6) Modality Coefficient OR
wavelet-HHL_glcm_Correlation T2 1.09021095 2.97490156
log-sigma-1-0-mm-3D_ngtdm_Contrast T2 0.89270456 2.44172452
log-sigma-1-0-mm-3D_gldm_DependenceVariance T2 -0.0915470 0.91251842
wavelet-HLL_glszm_ZoneVariance T1 -0.1222656 0.88491330
wavelet-HLL-gldm_LargeDependenceLowGrayLevelEmphasis T1 -0.4392388 0.64452682
log-sigma-0-5-mm-3D_firstorder_Median T2FLAIR -0.4839260 0.61635879
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Development and validation of the nomogram
The nomogram based on the Model-Combination diag-
nostic model including its 6 diagnostic variables is pre-
sented in Fig. 6a. Calibration curves (Fig. 6b, c) indicated 
that the diagnosis probabilities of the nomogram were 
closely aligned with actual FCD estimates in both the 
training (p = 0.152) and validation sets (p = 0.732). Deci-
sion curve analysis (DCA) indicated that Model-Combi-
nation had the most clinical utility, as shown in the plot 
in Fig. 6d.

RQS score
The Radiomics Quality Score (RQS) is a scoring system 
proposed by Lambin in 2017 and is commonly used 
for evaluating the methodologic quality of radiomics 
research [35]. One of the radiologists with most experi-
ence in radiomics research based on the RQS system 

derived an RQS score for our study of 18 (Supplementary 
Materials 5).

Correlation between Radiomics features and duration of 
FCD
In the correlation analysis, only the contrast (the 
radiomics feature belonging to texture features) of the 
FCD lesions had a statistically significant correlation (r = 
-0.319, p < 0.05) with the duration of FCD (Fig. 7), while 
the correlations of the other features did not (Supple-
mentary Materials 6).

Discussion
In our study, four radiomics models based on T1w, 
T2w, and T2-FLAIR images and their combination were 
developed to diagnose FCD, and the combined model 
(AUC, 0.847/0.857; sensitivity, 0.808/0.714; specificity, 
0.759/1.000; and accuracy, 0.782/0.818) outperformed all 

Table 4  Performance of MRI-based radiomics features in diagnosing FCD in the training, validation and hold-out sets
Modality Sets AUC(95%CI) Sen Spe Acc
Model-T1w Training 0.762(0.625–0.898) 0.739(0.599–0.879) 0.731(0.471–0.871) 0.694(0.584–0.804)

Validation 0.671(0.400-0.943) 0.600(0.418–0.782) 0.857(0.756–0.958) 0.706(0.455–0.957)
Model-T2w Training 0.805(0.679–0.931) 0.654(0.550–0.758) 0.913(0.900-0.926) 0.694(0.583–0.805)

Validation 0.814(0.606-1.000) 0.600(0.489–0.711) 1.000(0.750-1.000) 0.706(0.602–0.810)
Model-T2FLAIR Training 0.733(0.597–0.868) 0.731(0.611–0.851) 0.690(0.580–0.800) 0.582(0.450–0.714)

Validation 0.714(0.374-1.000) 0.429(0.318–0.540) 1.000(0.850-1.000) 0.364(0.182–0.546)
Model-Combination Training 0.847(0.747–0.946) 0.808(0.704–0.912) 0.759(0.629–0.889) 0.782(0.640–0.924)

Validation 0.857(0.618-1.000) 0.714(0.607–0.821) 1.000(0.750-1.000) 0.818(0.666–0.970)
Model-radiologists Training 0.664(0.543–0.784) 0.828(0.715–0.941) 0.500(0.250–0.750) 0.327(0.214–0.440)

Validation 0.521(0.148–0.893) 0.375(0.274–0.476) 0.667(0.426–0.908) 0.182(0.173–0.191)
Model-Combination Hold-out 0.828(0.619-1.000) 1.000(0.768-1.000) 0.667(0.497–0.837) 0.850(0.750–0.950)
Model-radiologists Hold-out 0.571 (0.363–0.778) 0.364(0.262–0.466) 0.778(0.574–0.982) 0.550(0.389–0.711)

Fig. 3  FCD candidate variable selection using LASSO regression. (a) Binomial deviation graph of the optimal tuning parameter (λ) in the LASSO model. 
(b) LASSO coefficient profiles of the six possible influencing factors
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other models in the training and validation sets and out-
performed diagnosis made by an inexperienced radiolo-
gist in the training (AUCs: 0.847 VS. 0.664, p = 0.008) and 
validation (AUC: 0.618 VS. 0.521, p = 0.155) sets. Notably, 
the combined model exhibited robust performance in 
diagnosing FCD and was further used to determine the 
laterality of the lesion in the hold-out set (AUC: 0.828 VS. 
0.571, p = 0.080). In addition, we explored the correlation 
between the selected significant features and the dura-
tion of FCD and observed that only the correlation of 
log-sigma-1-0-mm-3D_ngtdm_Contrast had statistical 
significance (r = -0.319, p < 0.05), indicating that this fea-
ture could help identify FCD in MRI visual detection.

When comparing the performance of models based 
on the single sequence, we discovered that the model 

based on the T2w sequence performed best, which was 
consistent with Colombo and House’s studies about the 
MR evaluation of FCD [36, 37]. T2w imaging was supe-
rior to T1w imaging in identifying lesions, with increased 
T2 relaxation times for almost any change in brain tis-
sue composition, while extended T1 relaxation times 
occurred only in some visible lesions [38]. In terms of 
FCD, T2w imaging uses slices to acquire images that 
most clearly outline the morphology of the GM/WM 
junction, thus facilitating the evaluation of cortical thick-
ness. Even if the MRI resolution is far too coarse to dis-
cern individual neuronal profiles, cellular densities are 
likely to change T2 and FLAIR signals on high-resolution 
MRI [39]. Therefore, the T2w demonstrates its extreme 
superiority in FCD detection. T2w imaging reveals 

Fig. 5  ROC curves of Model-Combination and Model-radiologist in the training (a), validation (b), and hold-out sets (c). The yellow curve represents 
Model-Combination, and the blue curve represents the Model-radiologists

 

Fig. 4  ROC curves of the four diagnostic models in the training (a) and validation sets (b). The yellow curve represents Model-T1w, the blue curve repre-
sents Model-T2w, the gray curve represents Model-T2FLAIR, and the purple curve represents Model-Combination
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blurred gray–white matter boundaries, which may be 
the result of neuronal dispersion into the U-fiber layer, 
localized thinning or thickening of the cortex, impaired 
myelination, the presence of bizarre glial cells, ectopic 
neurons, and reduced numbers of myelinated fibers in 
the white matter [40]. Furthermore, T2w is the most suit-
able sequence for this evaluation at any age, particularly 
for neonates and infants aged < 6 months, whose corti-
cal dysplasia is manifested by a high density of unmy-
elinated WM fibers [36, 41]. In previous studies on the 
appearance of FCD on MRI, FLAIR was also shown to 
be more sensitive in detecting lesions, but the model 
based on the T2FLAIR sequence in our study performed 
poorly. We hypothesized that this is because, specifically 
in FCD type IIb but not in other types of FCD, high sig-
nals in the gray matter and subwhite matter extending 
into the lateral ventricles (transmantle sign) were the 
most sensitive appearance of FCD on FLAIR. However, 
only three patients with FCD type IIb were included in 
our study (7.0% of the overall cohort); therefore, the 
benefits of FLAIR were not obvious. According to ear-
lier research, T2w and FLAIR images are more effective 
than T1w images in detecting abnormal signals in white 
matter [42]. However, T1w volumetric acquisitions with 
isotropic 1 mm3 voxels are ideal for analyzing variations 
in cortical thickness because of their thinner slices [43]. 
Consequently, using multiple sequences for radiomics 
analysis may contribute to lesion detection.

We discovered that the model based on the combi-
nation had the highest performance of all models and 
showed better diagnostic performance than inexperi-
enced radiologists. In Model-Combination, a total of six 
features were selected as the optimal features: two fea-
tures based on T1w imaging, three features based on T2w 
imaging, and one feature based on T2FLAIR imaging. 
The T2 wavelet-HHL_GLCM_correlation feature, which 
is part of the GLCM in texture features, ranked first in 

terms of weight. Correlation is a measure of the similar-
ity of the elements of the spatial grayscale co-occurrence 
matrix in the row or column direction, reflecting the 
local grayscale correlation of the texture, and is greater 
when the values of some elements of the matrix are uni-
formly equal [44]. This method provides a more objective 
assessment of changes in MR images with scalar values 
than the human assessment of whether abnormal signals 
are present on MR imaging. The feature with the second-
highest weight is ngtdm (log-sigma-1-0-mm-3D_Con-
trast), which quantifies the sum of differences between 
the gray level of a pixel or voxel and the mean gray level 
of its neighboring pixels or voxels within a predefined 
distance and reflects the variation around local voxels on 
T2w imaging [45].

These six features in this study consist of both histo-
gram features that reflect the voxel intensity distribution 
of the lesion and texture features that reflect the local 
relationship between pixels or voxels, but unlike earlier 
studies in the field of radiomics in oncology, no shape-
based features were selected. We supposed that this may 
be due to the method of segmentation used in this study. 
Most FCD lesions are MRI-negative, and even when 
they are positive, they are typically not well separated 
from the surrounding cerebral tissue. To better segment 
the lesions, we identified them based on the surgical 
area, potentially weakening the influence of shape-based 
features.

In addition, of the six optimal features selected for this 
study, only ngtdm (log-sigma-1-0-mm-3D_Contrast) 
had a positive, significant correlation with the duration 
of FCD. This contrast reflects how local voxels vary from 
their surroundings and is dependent on both spatial dis-
parity and the total gray dynamic range, with high con-
trast representing a large gray dynamic range and spatial 
disparity in the lesion [46]. The results of our study also 
demonstrated that the contrast of the lesions decreased 
as the duration of FCD increased. This is also consistent 
with previous studies indicating that blurring of the gray‒
white matter junction is the most sensitive marker of 
FCD and is found in proportion to the severity of histo-
pathological changes [47]. Therefore, this feature should 
be given additional attention in clinical practice or at 
least in future studies.

Our study had several limitations. Although we report 
satisfactory FCD detection accuracy in our cohort, the 
present study only represents a reasonable but not large 
cohort of subjects. Further validation of the method 
should include a larger dataset. Due to the relatively 
small sample size in this study, to further demonstrate 
the classification value of the model, this study utilized 
NRI and IDI indices. However, it is important to note 
that large values for the NRI statistic may simply be due 
to the use of poorly fitting risk models. Although, based 

Table 5  Reclassification among model-combination and model-
radiologist in training, validation and hold-out sets

Model-Combination VS. Model-radiologists
95%CI p value

Training set:
NRI(Categorical) 0.402 [0.064–0.740] 0.020
NRI(Continuous) 0.679 [0.183–1.175] 0.007
IDI 0.158 [0.043–0.273] 0.007
Validation set:
NRI(Categorical) 0.607 [-0.029–1.243] 0.061
NRI(Continuous) 1.143 [0.410–1.876] 0.002
IDI 0.264 [0.012–0.517] 0.040
Hold-out set:
NRI(Categorical) 0.424 [-0.164–1.012] 0.157
NRI(Continuous) 1.192 [0.484–1.901] < 0.000
IDI 0.264 [0.046–0.482] 0.018
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Fig. 6  The nomogram (a), calibration curves in the training (b) set, validation sets (c) and decision curve of the Model-Combination (d). (a) The 
Model-Combination radiomics nomogram integrated the six features extracted and selected from combined (T1w+T2w+FLAIR) images. Feature 1: 
T2_log-sigma-1-0-mm-3D_gldm_DependenceVariance; Feature 2: T1_wavelet-HLLgldm_LargeDependenceLowGrayLevelEmphasis; Feature 3: T2FLAIR_
log-sigma-0-5-mm-3D_firstorder_Median; Feature 4: T1_wavelet-HLLglszm_ZoneVariance; Feature 5: T2_log-sigma-1-0-mm-3D_ngtdm_Contrast; Fea-
ture 6: T2_wavelet-HHL_glcm_Correlation. (b, c) Calibration curves of Model-Combination in the training set and validation set. The diagonal gray line 
represents a perfect diagnosis by an ideal model. The black solid line represents the diagnostic performance of the Model-Combination; the closer the 
black line is to the gray line, the better the diagnostic performance of the model. (d) Decision curve for the nomogram diagnosing FCD in the overall 
patients. The y-axis represents the net benefit. The purple line represents the diagnostic nomogram model. The gray line represents the assumption that 
all patients have FCD. The black line represents the assumption that no patients have FCD
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on the MSE and R² values, the model’s fitting ability is not 
very poor, there are still certain limitations to the NRI 
index. This also contributes to the statistical weaknesses 
of this study. Second, compared to conventional machine 
learning (ML), deep learning (DL) has advantages in 
computation, as a high-performance graphics process-
ing unit (GPU) supports fast computing and less time 
spent on modeling. Similar to end-to-end learning, DL 
can automatically extract relevant functions from images, 
and tasks such as raw data processing and classifica-
tion can be completed automatically [48, 49]. However, 
DL is complex and requires thousands of images at the 
start; the risk of overfitting is greater if the sample size is 
small. Therefore, classical ML methods meet our needs 
and fit the data. In future research, we will obtain a larger 
number of samples and adopt deep learning algorithms 
to build more accurate and robust models. Third, we only 
performed initial lateralization of FCD lesions but were 
not yet able to achieve localization, which is the direction 
and goal of our subsequent research.

In conclusion, the radiomics nomogram was gener-
ated by logistic regression model-based multiparametric 
MRI and facilitated the diagnosis of FCD. When surgical 
treatment was chosen, our model could be used to fur-
ther determine the laterality of the lesion to aid in pre-
operative evaluation. Our study represents an important 
advance in the diagnosis and treatment of FCD.
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