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Abstract
Objectives Exploring the value of adding correlation analysis (radiomic features (RFs) of pelvic metastatic lymph 
nodes and primary lesions) to screen RFs of primary lesions in the feature selection process of establishing prediction 
model.

Methods A total of 394 prostate cancer (PCa) patients (263 in the training group, 74 in the internal validation group 
and 57 in the external validation group) from two tertiary hospitals were included in the study. The cases with pelvic 
lymph node metastasis (PLNM) positive in the training group were diagnosed by biopsy or MRI with a short-axis 
diameter ≥ 1.5 cm, PLNM-negative cases in the training group and all cases in validation group were underwent both 
radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND). The RFs of PLNM-negative lesion 
and PLNM-positive tissues including primary lesions and their metastatic lymph nodes (MLNs) in the training group 
were extracted from T2WI and apparent diffusion coefficient (ADC) map to build the following two models by fivefold 
cross-validation: the lesion model, established according to the primary lesion RFs selected by t tests and absolute 
shrinkage and selection operator (LASSO); the lesion-correlation model, established according to the primary lesion 
RFs selected by Pearson correlation analysis (RFs of primary lesions and their MLNs, correlation coefficient > 0.9), t test 
and LASSO. Finally, we compared the performance of these two models in predicting PLNM.

Results The AUC and the DeLong test of AUC in the lesion model and lesion-correlation model were as follows: 
training groups (0.8053, 0.8466, p = 0.0002), internal validation group (0.7321, 0.8268, p = 0.0429), and external 
validation group (0.6445, 0.7874, p = 0.0431), respectively.

Conclusion The lesion-correlation model established by features of primary tumors correlated with MLNs has more 
advantages than the lesion model in predicting PLNM.
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Background
Cancer stands out as one of the fatal diseases people are 
facing all the time, hence prognosis or survival of can-
cer patients has become the focus of current research 
[1]. Studies have shown that pelvic lymph node metas-
tasis (PLNM) in prostate cancer (PCa) patients is closely 
related to distant metastasis and biochemical recurrence 
after curative treatment and influence the prognosis and 
survival of patients [2, 3]. Therefore, it is particularly 
important to accurately identify the PLNM of localized 
PCa in patients [4].

To evaluate whether a PCa patient has PLNM, clini-
cal workers initially developed various prediction mod-
els based on the clinical and biopsy information, such 
as the Briganti or MSKCC nomograms or Partin Tables 
[5–7]. With the emergence of prostate magnetic reso-
nance imaging (MRI) [8, 9], predictive factors based on 
MRI information have been favoured by researchers, 
such as the MRI-based qualitative characteristics of pri-
mary PCa lesions (measured tumour size, extraprostatic 
extension and seminal vesicle invasion) [10, 11]. MRI-tar-
geted biopsies have been used as a substitute for system-
atic biopsy to obtain a more accurate Gleason score [12], 
and the MRI-based quantitative RFs and deep features 
of the primary lesions are extracted by radiomics and 
deep learning methods [13]. Current research is focused 
on mining primary lesion features that are conducive to 
predicting PLNM and on improving the performance of 
using primary lesion features in predicting PLNM. It is 
not known whether the RFs of pelvic metastatic lymph 
nodes (MLNs) can help improve the performance of the 
radiomics model of primary lesions in predicting PLNM 
in PCa.

Currently, extended pelvic lymph node 
dissection(ePLND) is the gold standard for the diagno-
sis of PLNM in PCa. According to this standard, imaging 
findings of pelvic LNs with an oval short axis diameter 
of ≥ 1 cm or a round short axis diameter of ≥ 0.8 cm are 
considered to indicate malignant LNs [10, 14–16]. Using 
this short axis diameter criteria, studies have shown that 
the pooled sensitivity of conventional MRI is 39% and the 
pooled specificity is 82% [17], and the pooled sensitiv-
ity of diffusion-weighted imaging (DWI) is 41% and the 
pooled specificity is 94% [18]. MRI evaluation of PLNM 
has low sensitivity and high specificity. A meta-analysis 
has previously shown that with improvement of the diag-
nostic criteria, that is, the increase in the positive lymph 
node threshold, there is an increase in the specificity of 
MRI diagnosis of MLNs. When the threshold is greater 
than or equal to 1.5 cm, the specificity is very high (up to 
98 − 100%) [19]. Therefore, for patients with biopsy-con-
firmed PCa, when biparametric MRI (bpMRI) compris-
ing T2-weighted imaging (T2WI) and DWI showed that 
the LNs (short axis diameter ≥ 1.5 cm) were round or oval 

or that the hilum of the lymph node had disappeared, or 
obviously high signal on high b-value DWI, the author 
had reason to believe that the abnormal LNs were MLNs.

Cancer lesions of pelvic LNs are metastatic from pri-
mary lesions, and thus, metastatic tissue in pelvic LNs 
should have the metastatic characteristics of the primary 
lesions. Their RFs should be closely related to those rep-
resenting the metastatic characteristics of the primary 
lesions. With the help of the RFs of pelvic MLNs, it would 
be an interesting research direction to screen for more 
reasonable RFs of primary lesions and thus build a bet-
ter predictive model. Here, we conducted this study to 
extract the RFs of pelvic metastatic LNs and primary 
lesions respectively, and performed correlation analysis 
to obtain RFs of primary tumors correlated with meta-
static lymph nodes. Finally, we established an radiomics 
model to check its performance in predicting PLNM.

Patients and methods
Patients
A total of 394 PCa patients from two tertiary care cen-
ters, Center 1 and Center 2, were included in the study. 
Patients from Center 1 were enrolled between May 2016 
and July 2021, while those from Center 2 were enrolled 
between January 2019 and May 2020. The training group, 
which consisted of 93 PLNM-positive and 170 PLNM-
negative PCa patients, and the internal validation group, 
which included 19 PLNM-positive and 55 PLNM-nega-
tive PCa patients, were both from Center (1) The external 
validation group, comprising 14 PLNM-positive and 43 
PLNM-negative PCa patients, was from Center (2) This 
retrospective study was approved by the institutional 
ethics committees of the two tertiary care centers. The 
requirement for informed patient consent was waived.

Inclusion of positive cases in the training group
All PCa patients enrolled in the training group were diag-
nosed as PLNM-positive by bpMRI. Drawing on previ-
ous studies that utilized MRI or CT to detect suspected 
pelvic LNs ≥ 1.5 cm, which were subsequently confirmed 
as MLNs after surgery [20–23], the present study also 
validated the diagnoses of 11 PLNM-positive patients in 
the training group. These included 4 patients diagnosed 
by biopsy and 7 diagnosed through pre- and post-treat-
ment comparisons by MRI. For suspicious LNs diagnosed 
by bpMRI and with a short axis diameter ≥ 1.5  cm, the 
biopsy results and the decreased sizes of lymph nodes 
pre- and post-treatment were considered confirmation of 
metastasis. Therefore, we stipulated that metastatic LNs 
met the following requirements: (i) lymph nodes were 
round or oval, the hilum of the lymph node had disap-
peared or there was a heterogeneous signal intensity on 
high-resolution T2WI; (ii) high b-value DWI showed 
obvious high signal intensity, and apparent diffusion 
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coefficient (ADC) map showed obvious low signal inten-
sity; and (iii)the diameter of the short axis of abnormal 
LNs diagnosed by bpMRI was ≥ 1.5 cm. A flow diagram 
of the patient selection process with the inclusion and 
exclusion criteria is provided in Fig. 1(A, B).

Inclusion criteria of the training group (negative cases) and 
validation groups
The inclusion criteria of the training group (negative 
cases) and validation groups were patients who under-
went both RP and ePLND. None of the patients had a 
history of previous surgery, radiotherapy or adjuvant 
therapies for PCa before their prostate MRI. The inclu-
sion/exclusion criteria are shown in detail in Fig. 2 (A, B).

MRI protocols and sequence selection
All patients underwent 3.0T multiparametric 
MRI(mpMRI)or bpMRI scans with a pelvic phased-array 
coil, and the scan protocols and sequence were in accor-
dance with Prostate Imaging Reporting and Data System 
version 2.0 or 2.1 (including T2WI, DWI, and/or dynamic 
contrast-enhanced (DCE) imaging). ADC maps were cal-
culated on a designated workstation with b values of 100 
and 1000 s/mm2. The manufacturers and models of the 
MR machines in the two hospitals are as follows: at cen-
tre 1, Philips Ingenia, Best, Netherlands; and at centre 2: 
Siemens, skyra, Erlangen, Germany.

Since recent studies have shown that bpMRI may serve 
as a faster, cheaper, gadolinium-free alternative to mpMR 
[24]. Therefore, in this study we selected bpMRI as the 

Fig. 2 A shows the inclusion and exclusion criteria of the training group (negative cases) and the internal validation group. B shows the inclusion and 
exclusion criteria of the external validation group. ePLND = extended pelvic lymph node dissection

 

Fig. 1 A shows the inclusion and exclusion criteria of positive patients in the training group. B shows bpMRI-diagnosed PLNM: four patients (a, b, c, d) 
with PLNM shown on T2WI (DWI was not added due to length) were included according to the criteria of pelvic metastasis LNs specified herein; a-d 
representative images showed that abnormal LNs with enlarged morphology (short axis diameter > 1.5 cm) and heterogeneous signals could be seen in 
the right paraprostatic area, the mesorectum, left iliac vessels and bilateral iliac vessels, respectively. RP: radical prostatectomy; PLNM = pelvic lymph node 
metastasis; bpMRI = biparametric MRI (T2WI and DWI)
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research sequence. Additionally, a study has previously 
shown that compared with high b-value DWI, using an 
ADC map for RFs extraction could provide superior sta-
bility [25]. Finally, we selected high-resolution T2WI and 
ADC maps for RFs extraction. The scan parameters and 
machine models of the hospitals are listed in Supplemen-
tary 1.

Reference standard for pathology
All patients underwent a TRUS-guided 12-core system-
atic biopsy within 1 week after the prostate MRI scans. 
RP with ePLND was performed within 4 weeks after the 
prostate MRI scans. According to the ISUP 2005 and 
2014 recommendations [26, 27], the histopathology of 
the specimens was assessed by experienced pathologists 
at the two hospitals.

In the evaluation of ePLNDs, the numbers and loca-
tions of normal LNs and MLNs were determined. 
According to the EAU risk group [28], RP with ePLND 
was performed in moderate-risk (unfavourable progno-
ses) and high-risk patients. Local LN dissection included 
dissection of the external iliac and obturator LNs. 
Expanded LN dissection included dissection of the obtu-
rator, external iliac, internal iliac, presacral and common 
iliac LNs. Four cases of biopsy-confirmed pelvic MLNs 
in the training group were found in the external iliac LN 
group in this study.

Segmentation of cancer lesions on T2WI and ADC maps
The T2WIs (DICOM format) of all enrolled patients 
were imported into ITK Snap software (v3.8; http://www.
itksnap.org/pmwiki/pmwiki.php). The ROIs of the pri-
mary lesions and their metastatic LNs were manually 

delineated by slicing along the contour of the cancer 
lesion and avoiding any calcification, bleeding, cysts and 
other structures present in the primary lesion and MLNs. 
The volume of interest (VOI-1) of the primary lesion 
and VOI-2 of MLNs were finally obtained by multilayer 
fusion in ITK Snap. The ADC images were registered and 
resampled to the corresponding T2W images, and the 
annotations of the ADC images were copied from those 
of the T2W images.

Radiomic feature extraction, selection and construction
The RFs of PLNM-negative lesion and PLNM-positive 
including primary lesions and their MLNs in the train-
ing group were extracted using PyRadiomics (version 
2.1.0;https://pyradiomics.readthedocs.io/en/2.1.0/), On 
this basis, this study refers to a new machine learning-
based user-friendly software platform for automatic 
RFs extraction, feature selection, model building, model 
training and analysis [29] (Fig. 3). This study conducted 
a self-assessment of our work using the CLEAR checklist 
[30]and METRICS [31], which were submitted as Supple-
mentary 2 and Supplementary 3.

We extracted features from the original images of the 
lesion area and metastatic LN area and from the images 
that were transformed by log (Sigma: [0.5,1,1.5]), loga-
rithm, square, square root, exponential, gradient, lbp3d 
and wavelet (start_level: 1, level: 1, wavelet: Haar). Seven 
types of RFs were derived from the T2WI and ADC 
maps: first order, shape, gray level co-occurrence matrix 
(GLCM), gray level run length matrix (GLRLM), gray 
level size zone matrix (GLSZM), neighbourhood gray 
tone difference matrix (NGTDM), and gray level depen-
dence matrix (GLDM). The following settings for feature 

Fig. 3 shows the radiomics workflow in this study. A and B show the primary lesion and its metastatic pelvic LNs and the ROI on T2WI and ADC map. C 
shows the types of extraction of RFs of the primary lesion and its pelvic MLNs, respectively. D shows two pathways: ① shows that the extracted primary le-
sion features have no feature selection in the D link. ② shows that the extracted RFs of the primary lesion and its MLNs were performed by a Pearson corre-
lation analysis for feature selection, and the primary lesion RFs were selected by Pearson correlation analysis. E shows that two pathways were performed 
by the LASSO algorithm for feature selection. F shows the establishment of the Lesion model and Lesion-correlation model. G shows the performance 
comparison of the two models in the training group and the internal and external validation groups. LASSO = absolute shrinkage and selection operator

 

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://pyradiomics.readthedocs.io/en/2.1.0/
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extraction were used: b-spline interpolator, resampled 
pixel spacing of [1], pad distance of 10, bin width of 25, 
yoxel array shift of 300 and normalize scale of 100.

Prior to the feature selection, all RFs were normal-
ized to zero mean and unit variance by standardization 
to prevent features with a large numerical range from 
dominating features with a small numerical range. Using 
the Pearson correlation analysis algorithm, the t test and 
lesast absolute shrinkage and selection operator (LASSO) 
algorithm were applied to screen for the best RFs for pre-
dicting PLNM status. The inter- and intraclass correla-
tion coefficients (ICCs) between the extracted features 
of radiologists A (first time) and B were 0.7513–0.9799, 
and those of radiologist A (twice) were 0.7544–0.9748, 
which showed that the two signatures had good consis-
tency. The Synthetic Minority Over-sampling Technique 
(SMOTE) was used to augment the RFs in the minority 
group of the training set [32].

The support vector machine (SVM) classifier was 
used to establish the radiomics model. When training 
the model, fivefold cross-validation was adopted and 
repeated 5 times to select the best training parameters 
and build the following two models: the lesion model, 
established according to the RFs selected directly by the 
t test and LASSO algorithm after extracting the primary 
lesion features; and the lesion-correlation model, estab-
lished by first performing Pearson correlation analysis 
(correlation coefficient > 0.9) between the primary lesion 
features and MLN features, retaining only some of the 
primary lesion features that were closely correlated with 
MLN features, and second performing the t test and 
LASSO algorithm.

Statistical analysis
Patient age, PSA, pathological information and MRI 
stage were statistically analyzed by Statistical Package for 
Social Science (SPSS, version 21.0, https://www.ibm.com/
cn-zh/ analytics/spss-statistics-software). A two-sample t 
test was used to compare the differences in age and PSA 
level, while chi-square or Fisher exact tests, as appropri-
ate, were used to compare the differences in categorical 
variables (MRI-based stage, pathological information). 
Intra- and interclass correlation coefficients (ICCs) were 
assessed using the kappa test. The performance of the 
lesion model and lesion-correlation model was assessed 
with receiver operating characteristic (ROC) curves in 
the training group and internal and external validation 
groups. The area under the curve (AUC), accuracy, sen-
sitivity and specificity were calculated. The differences in 
the AUC values of the two models were assessed by the 
DeLong test. There was a significant difference in the 
bilateral test (P < 0.05).

Results
Clinical characteristics
A total of 394 PCa patients were ultimately enrolled in 
our study. The patients with PLNM accounted for 93/263 
(35.4%), 19/74 (26.7%) and 14/57 (24.6%) in the train-
ing, internal validation and external validation groups, 
respectively. In the training group, 93 positive patients 
had 163 metastatic LNs (bpMRI-diagnosed and short 
axis diameter ≥ 1.5 cm), and the average diameter of the 
metastatic LNs was 2.3 cm. The statistical results for the 
clinical, pathological and MRI data of each group are 
described in detail in the list (Table 1).

Feature extraction and model construction
To ensure the stability of the features, two radiologists 
independently delineated the ROIs slice by slice on the 
MR images of 30 patients.

Two groups of features (3748 features each) were 
extracted from VOI-1 and VOI-2. For the lesion model, 
the primary lesion RFs were screened by the t test and 
LASSO algorithm, and 27 features were ultimately 
selected, thereby establishing the lesion model. Addi-
tionally, ‘’T2_tumor_original_shape_Maximum2ddiam-
etercolumn’’ had the highest weight coefficient and was 
positively correlated among all the features included 
in the lesion model (Fig.  4A). For the lesion-correlation 
model, the extracted features of the metastatic LNs 
and primary lesions were analyzed by Pearson corre-
lation analysis algorithm, 280 features of the primary 
lesions were obtained, and then feature screening by 
the t test and LASSO algorithm was performed. Finally, 
32 features were selected, thereby establishing the 
lesion-correlation model. Further, “T2_tumor_wave-
let_LLL_glszm_ZoneEntropy’’ accounted for the highest 
weight coefficient and was positively correlated among 
all the features included in the lesion-correlation model 
(Fig. 4B).

Model comparison and validation
Table 2 shows the AUC and 95% CI of the lesion model 
and lesion-correlation model in the training group 
[0.8053 (95% CI: 0.7876–0.8230); 0.8466 (95% CI: 
0.8317–0.8615)], internal validation group [0.7321 (95% 
CI: 0.5854–0.8787);0.8268 (95% CI:0.7096–0.9440)], 
and external validation group [0.6445 (95% CI:0.4618–
0.8273); 0.7874 (95% CI:0.6466–0.9281)], respectively; 
The DeLong test of the AUC values of the lesion model 
and lesion-correlation model in the training and two 
validation groups were 0.0002, 0.0429 and 0.0431, respec-
tively. The ROC curve, AUC, accuracy, sensitivity, speci-
ficity and DeLong test of the two models in the training, 
internal validation and external validation groups are 
shown in the following chart (Table 2 ; Fig. 5).

https://www.ibm.com/cn-zh/
https://www.ibm.com/cn-zh/
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Discussion
LN metastatic lesions “flow” from primary lesions along 
lymphatic vessels and grow in the LNs. Although the 
growth environment differs from that of the primary 
lesions, the histological characteristics are the same, as 
demonstrated by the immunohistochemical examina-
tion results. Therefore, MLNs contain the cancer tissue 
derived from the primary lesions, which is more likely 
to reflect the metastatic characteristics of the primary 
lesions. Radiomics is an emerging research technology 
that reflects changes at the tumour tissue, cell and gene 
levels by mining the RFs of tumours [33, 34]. That is, 
the RFs of MLNs can reflect the metastatic characteris-
tics of primary lesions. Therefore, it can be considered 
that a correlation analysis between the RFs of primary 
lesions and MLNs can better select the RFs of primary 
lesions reflecting metastatic characteristics. Unlike pre-
vious approaches focusing on the task of algorithm 
selection [11, 13, 35–37], in this study, the RFs of pelvic 
MLNs in PCa were extracted for the first time and used 
to effectively screen the RFs reflecting PLNM in primary 
lesions by the correlation analysis algorithm, optimizing 
the feature selection of the primary lesions. This study 

results indicated that the lesion-correlation model had 
some advantages over the lesion model in predicting 
PLNM, the DeLong test of their AUC values in the train-
ing and two validation groups were 0.0002, 0.0429 and 
0.0431,respectively, and confirmed that the RFs of pri-
mary lesions that were more predictive of PLNM could 
be screened by correlation analysis with the RFs of meta-
static LNs.

The problem of locating and delineating metastatic 
lymph nodes on MR images must be solved before using 
the RFs of pelvic MLNs and primary lesions for correla-
tion analysis. For MLNs confirmed by PLND, a previous 
study reported that only 30% of PLNMs were identi-
fied by CT or MRI, because most MLNs were less than 
8 mm [17, 38], and 83% of them were ≤ 5 mm and 50% 
were ≤ 3 mm [39]. Relevant literature has also confirmed 
that the volume of MLNs in PLND is generally small, and 
most of them are not detectable on conventional MRI 
[40, 41], which makes it difficult to locate and delineate 
MLNs on the images. To solve the difficulty, this study 
stipulated specific inclusion criteria for the PLNM-
positive patients in the training group, i.e., LNs with 

Table 1 The characteristics of the patients in the training and validation groups
Characteristic Training group Internal-validation group External-validation group

PLNM (+) PLNM (-) p PLNM (+) PLNM (-) p PLNM (+) PLNM (-) p
n=93 n=170 n=19 n=55 n=14 n=43

age, mean 73.7204 70.8235 0.002* 71.25 69.7234 0.373 66.5455 68.625 0.412
PSA(ng/mL), mean 95.6 33.4 0.000* 63.4 35.7 0.000* 70.6 32.3 0.000*
MRI-based stage, No. (%) 0.000* 0.000* 0.000*
T2 2/93 (2.1) 130/170 (76.5) 3/19 (15.8) 29/55 (52.7) 5/14(35.7) 25/43(58.1)
T3a 11/93 (11.8) 26/170 (15.3) 5/19 (26.3) 18/55 (32.7) 5/14(35.7) 11/43(25.6)
T3b 36/93 (38.7) 14/170 (8.2) 11/19 (57.9) 8/55 (14.5) 4/14(28.6) 7/43(16.3)
T4 44/93 (47.4) 0/170 0/19 0/55 0/14 0/43
Bone metastasis, No. (%) 55/93 (59.1)
MLN short-axis mean(cm) 2.3
LNM number 164
Biopsy findings, No. (%) 0.043* 0.000* 0.000*
GS 3+3 0 7/170 (4.1) 0/19 3/55 (5.5) 0/14 0/43
GS 3+4 13/93 (14.0) 21/170 (12.4) 2/19 (10.5) 15/55 (27.3) 0/14 11/43 (25.6)
GS 4+3 29/93 (31.2) 71/170 (41.8) 1/19 (5) 16/55 (29.1) 1/14 (7.1) 20/43 (46.5)
GS≥4+4 51/93 (54.8) 71/170 (41.8) 16/19 (84.2) 21/55 (38.2) 13/14 (93.9) 12/43 (27.8)
Surgical findings, No. (%) 0.000* 0.000*
GS 3+3 Non 10/170 (5.8) 0/19 4/55 (7.3) 0/14 0/43
GS 3+4 Non 22/170 (12.9) 2/19 (10.5) 14/55 (25.5) 0/14 11/43 (25.6)
GS 4+3 Non 67/170 (39.4) 1/19 (5) 16/55 (29) 1/14 (7.1) 21/43 (48.8)
GS≥4+4 Non 71/170 (41.9) 16/19 (84.2) 21/55 (8.2) 13/14 (93.9) 11/43 (25.6)
Pathological stage, No. (%) 0.000* 0.000*
T2 Non 135/170 (79.4) 4/19(21.1) 29/55 (52.7) 6/14 (42.8) 23/43 (53.5)
T3a Non 21/170 (12.3) 2/19(10.5) 18/55 (32.7) 4/14 (28.6) 13/43 (30.2)
T3b Non 14/170 (8.2) 10/19 (52.7) 8/55 (14.5) 4/14 (28.6) 7/43 (16.3)
T4 Non 0/170 3/19 (15.8) 0/42 0/14 0/43
PLNM = pelvic lymph node metastasis; MLN = metastatic lymph node; PSA = prostate-specific antigen

*P value < 0.05
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Table 2 The performance of the two models in the primary training and validation groups
Models AUC 95%CI Accuracy Sensitivity Specificity Delong-test

p-value
Training group Lesion radiomics 0.8053 [0.7876-0.8230] 0.7635 0.714 0.7906 0.0002

Lesion-correlation radiomics 0.8466 [0.8317-0.8615] 0.7511 0.8344 0.7053
Internal validation group Lesion-radiomics 0.7321 [0.5854-0.8787] 0.6622 0.6842 0.6545 0.0429

Lesion-correlation radiomics 0.8268 [0.7096-0.9440] 0.7838 0.8421 0.7636
External validation group Lesion-radiomics 0.6445 [0.4618-0.8273] 0.6491 0.5 0.6977 0.0431

Lesion-correlation radiomics 0.7874 [0.6466-0.9281] 0.807 0.6429 0.8605
AUC = area under the receiver operating curve; CI = confidence interval

Fig. 4 (A, B) shows the radiomic features and weights of the feature coefficients in the lesion model and lesion-correlation model, respectively. Figure 4 
(A, B) shows that in the feature coefficient column, the right side indicates a positive correlation, and the left side indicates a negative correlation. The 
feature weights were generated by the lasso algorithm. Figure 3-A shows that among all the features (n = 27), “T2_tumor_original_shape_Maximum2d-
diameter column” accounted for the highest weight coefficient and was positively correlated (blue arrow) in the Lesion model. Figure 3-B shows that 
among all the features (n = 32), “T2_tumor_wavelet_ LLL_glszm_ZoneEntropy” accounted for the highest weight coefficient and was positively correlated 
in the Lesion-correlation model (blue arrow). LASSO = absolute shrinkage and selection operator

 



Page 8 of 10Li et al. BMC Medical Imaging          (2024) 24:185 

abnormal signal intensity on bpMRI and those ≥ 1.5 cm in 
the short-axis diameter.

The premise of tumour metastasis is the aggressiveness 
of tumour cells and infiltrative growth in the surrounding 
stroma. The former reflects the attack of tumour cells on 
the surrounding tissues, such as the destruction of lym-
phatic vessels and blood vessels; and the latter reflects 
the growth of tumour cells in the surrounding tissues, 
resulting in local spread of the tumour. Regarding tumour 
aggressiveness, some studies have found that the homo-
geneity and entropy features from GLCM and GLRLM 
are significantly correlated with PCa aggressiveness and 
significantly differ between low- and intermediate/high-
aggressive PCa, as defined by histopathology [42–44]. 
Our findings similarly showed that “T2_tumor_wavelet_
LLL_glszm_ zone Entropy” had the highest weight coef-
ficient among all the features included in the correlation 
model; however, in contrast with previous studies, our 
entropy feature was extracted from GLSZM. The main 
reason may be that most of our data are from patients 
with highly aggressive PCa, and all of them have PLNM, 
which is partially consistent with previous studies involv-
ing the prediction of tumour PLNM [13, 45]. These find-
ings indicated that the entropy feature of GLSZM from 
T2WI could be used as an important marker to predict 
PLNM in PCa. Among all the features included in the 
lesion model, this study found that “T2_tumor_original_
shape_ Maximum2d diameter column” had the highest 
weight coefficient, which described the regional feature 
of the internal tumour shape, and it also might reflect 
another feature of tumour metastasis, namely tumour 
infiltration, which mainly relates to the local spread of 
the tumour. Additionally, this study found that in both 
models, the weight coefficient of features ranked ahead 
were from T2WI, not from the ADC map (Fig.  4). We 
speculated that compared with the texture features from 
the ADC map, those from T2WI can better reflect the 
aggressiveness of tumors. In summary, these results indi-
cated that the texture features obtained by correlation 

analysis with MLNs might be of greater value in predict-
ing LNM and worthy of further exploration.

Our study had several limitations. First, the major-
ity of pelvic MLNs in the training group were diagnosed 
by prostate MRI, a minority of which were confirmed by 
biopsy or therapy. Second, deep features of pelvic MLNs 
were not extracted, and a deep learning algorithm will be 
applied in future research. Third, the cases in this paper 
underwent imaging with two types of imaging devices 
(Siemens and Philips), which were inconsistent in manu-
facturer performance and scanning parameters.

Conclusion
Radiomics allows for the extraction of a large number of 
RFs from VOIs. The selection of effective features will 
directly affect the performance of the prediction model. 
The correlation analysis algorithm with pelvic MLNs 
could be used to effectively screen the RFs of primary 
lesions that reflected the characteristics of PLNM, and 
improve the performance of the primary lesions in pre-
dicting PLNM and provide new insights into the feature 
selection process.

Abbreviations
PCa  Prostate cancer
RF  Radiomic feature
PLNM  Pelvic lymph node metastasis
MLN  Metastasis lymph node
mpMRI  Multiparametric MRI
bpMRI  Biparametric MRI
RP  Radical prostatectomy
LASSO  Absolute shrinkage and selection operator
ePLND  Extended pelvic lymph node dissection
T2WI  T2-weighted imaging
DWI  Diffusion-weighted imaging
DCE  Dynamic contrast-enhanced
ADC  Apparent diffusion coefficient
VOI  Volume of interest
ROC  Receiver operating characteristic
AUC  Area under the curve

Fig. 5 shows that the ROC curves, AUC and DeLong test of AUC in the lesion model and lesion-correlation model were 0.8053, 0.8466, and 0.0002 in the 
training groups, 0.7321, 0.8268, and 0.0429 in the internal validation group, and 0.6445, 0.7874, and 0.0431 in the external validation group, respectively. 
AUC = area under the receiver operating curve
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