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Abstract
Background  Community-Acquired Pneumonia (CAP) remains a significant global health concern, with a subset 
of cases progressing to Severe Community-Acquired Pneumonia (SCAP). This study aims to develop and validate 
a CT-based radiomics model for the early detection of SCAP to enable timely intervention and improve patient 
outcomes.

Methods  A retrospective study was conducted on 115 CAP and SCAP patients at Southern Medical University 
Shunde Hospital from January to December 2021. Using the Pyradiomics package, 107 radiomic features were 
extracted from CT scans, refined via intra-class and inter-class correlation coefficients, and narrowed down using 
the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The predictive performance of the 
radiomics-based model was assessed through receiver operating characteristic (ROC) analysis, employing machine 
learning classifiers such as k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and 
Random Forest (RF), trained and validated on datasets split 7:3, with a training set (n = 80) and a validation set (n = 35).

Results  The radiomics model exhibited robust predictive performance, with the RF classifier achieving superior 
precision and accuracy compared to LR, SVM, and KNN classifiers. Specifically, the RF classifier demonstrated a 
precision of 0.977 (training set) and 0.833 (validation set), as well as an accuracy of 0.925 (training set) and 0.857 
(validation set), suggesting its superior performance in both metrics. Decision Curve Analysis (DCA) was utilized to 
evaluate the clinical efficacy of the RF classifier, demonstrating a favorable net benefit within the threshold ranges of 
0.1 to 0.8 for the training set and 0.2 to 0.7 for the validation set.
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Introduction
Community-acquired pneumonia (CAP) continues to 
exhibit high incidence and mortality rates, leading to fre-
quent instances of misdiagnosis and inappropriate treat-
ment [1]. The progression to severe community-acquired 
pneumonia (SCAP) is associated with a significant 
increase in mortality, which remains elevated despite 
intensive care unit (ICU) intervention [2]. SCAP is a 
grave infectious disease originating in the lungs, with the 
potential for rapid advancement to respiratory failure. 
Patients with SCAP necessitating mechanical ventilation 
as a result of septic shock may experience a mortality rate 
surpassing 35%, whereas individuals developing acute 
respiratory distress syndrome (ARDS) exhibit a mortality 
rate exceeding 30% [3]. Those who survive often endure 
long-term consequences, including impaired lung func-
tion, diminished neurological and cognitive capacities, 
and limited mobility [4]. Timely recognition of SCAP, 
facilitating prompt and appropriate intervention, has 
the potential to enhance patient prognoses and mitigate 
the development of these sequelae. Early identification 
of SCAP patients is imperative for prompt and precise 
treatment, as well as for preventing delays in critical care, 
ultimately leading to a reduction in mortality rates [5, 6].

Imaging techniques are essential in the field of medi-
cine due to their non-invasive nature, which assists in 
clinical decision-making [7]. Chest CT scans are consid-
ered valuable tools for diagnosing pneumonia, assessing 
its severity, and evaluating the efficacy of treatment [8, 
9]. The imaging features commonly associated with CAP 
consist of patchy infiltrates, air bronchograms, and inter-
lobular septal thickening. Conversely, SCAP typically 
presents with widespread pulmonary consolidation and 
bilateral lung involvement [10, 11]. Nevertheless, these 
characteristics are not always distinct, and the shared 
imaging features of CAP and SCAP can complicate dif-
ferentiation based solely on manual interpretation of 
computed tomography (CT) images. And the interpre-
tation of clinical images is often hindered by the subjec-
tive nature of physicians’ analysis, which is heavily reliant 
on their experience. Simple visual inspection often falls 
short of the needs of precision medicine and individual-
ized treatment. Therefore, decoding and quantitatively 
presenting macroscopic information from images is cru-
cial for clinical decision-making, treatment planning, and 
prognostic assessment.

Radiomics, first proposed by Lambin et al. [12]. in 
2012, is a novel approach to medical image analysis that 
involves the extraction of quantitative features from 

images in a high-throughput manner. By comparing 
radiomic features with clinical data, radiomics facilitates 
the diagnosis and prognosis of diseases [12, 13]. In recent 
years, there has been a growing utilization of radiomics 
for the assessment and detection of pneumonia lesions 
[14]. This trend has been particularly notable in light of 
the worldwide scarcity of medical professionals during 
the COVID-19 pandemic, leading to increased interest in 
the utilization of computer-based medical image process-
ing technology for pneumonia diagnosis. The primary 
focus of radiomics in pneumonia diagnosis lies in the dif-
ferentiation of COVID-19 and Viral Pneumonia, pneu-
monia-like lung cancer, and checkpoint inhibitor-related 
pneumonitis [15–17]. Radiomics is predominantly uti-
lized in the diagnosis, staging, prognosis, and prediction 
of tumor responses in lung diseases. Recent research has 
shown the emerging potential of radiomics in diagnosing 
pneumonia, assessing its severity, and evaluating progno-
sis [15, 18–21]. These studies suggest that radiomics fea-
tures have the potential to serve as imaging biomarkers 
for predicting clinical outcomes and prognoses.

The objective of this study is to create a prognostic 
model for the severity of CAP using CT radiomics anal-
ysis, which may facilitate early identification of severe 
cases and improve patient outcomes through prompt 
intervention. The results of this research show significant 
potential for the progression of precision medicine and 
the improvement of personalized treatment strategies.

Materials and methods
Patients
In this retrospective study, a total of 115 cases diagnosed 
with CAP and SCAP between January and December 
2021 at Shunde Hospital of Southern Medical University 
were analyzed. The specific inclusion criteria included 
meeting the diagnostic criteria for CAP or SCAP [22–
24], having clear lung CT images within three days of 
admission, and possessing comprehensive clinical base-
line information. The specific exclusion criteria included 
lack of CT images within 3 days, hospital infections and 
unclear CT images. In this study, patients were randomly 
allocated into two cohorts, with a ratio of 7:3, identified 
as the training and testing cohorts. The patient enroll-
ment process is illustrated in Fig.  1. Approval for this 
retrospective study was obtained from the Ethics Com-
mittee of Shunde Hospital of Southern Medical Uni-
versity. All procedures adhered to the Declaration of 
Helsinki and pertinent regulations in China.

Conclusions  The radiomics model developed in this study shows promise for early SCAP detection and can improve 
clinical decision-making.

Keywords  CT, Radiomics features, Severe community-acquired pneumonia, Detection and diagnosis
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Imaging acquisition and segmentation
The imaging of all patients was conducted using a 
128-detector row CT scanner (SIEMENS SOMATOM 
Definition Flash-CT scanner; Siemens, Erlangen, Ger-
many) with specific parameters: reconstruction slice 
thickness of 0.6  mm, acquisition field of view (FOV) 
of 300  mm, beam pitch of 1.2, collimation width of 
64 × 0.625  mm, matrix of 512 × 512, tube voltage of 
120  kV, and tube current of 200  mA. Patients were 
instructed to hold their breath to minimize motion-
related artifacts during imaging. The resulting images 
were captured using lung window settings with a width 
of 1600 HU and a level of -600 HU. Prior to segmenting 
lung lobes and lesions, the images underwent normal-
ization by adjusting grayscale values with a scale factor 
of 1000 and were resampled to an isotropic voxel size 
of 3 × 3 × 3  mm³ using nearest neighbor interpolation. 
Additionally, an additional padding distance of 10  mm 
was implemented to address large sigma values in the 
Laplacian of Gaussian (LoG) filtering process. The inten-
sity values were discretized using a fixed bin width of 5 
Hounsfield Units (HU).

CT images were obtained from the Picture Archiving 
and Communication System (PACS) for the purpose of 
analyzing diffuse lung lesions in SCAP cases. The entire 
lung tissue was delineated for examination. Subsequently, 
two radiologists, each with 5 and 10 years of experience, 
respectively, utilized ITK-SNAP software (version 3.8.0) 
for the manual delineation of central lesion areas within 
three-dimensional Regions of Interest (ROI). These ROI 

were then carefully reviewed by a third radiologist with 
15 years of experience in the field.

Radiomics workflow
Figure  2 delineates the radiomics workflow, comprising 
five essential stages: (1) delineation of ROI, (2) extraction 
of radiomics features, (3) selection of radiomics features, 
(4) construction of the prediction model using a train-
ing dataset, and (5) evaluation of the prediction model’s 
efficacy. This sequential process elucidates a methodical 
framework for the examination of radiographic images, 
beginning with initial segmentation and culminating in 
the assessment of model performance. Each stage plays 
a pivotal role in guaranteeing the precision and depend-
ability of the radiomics analysis.

Radiomics feature extraction and selection
The radiomic features were extracted utilizing Pyradonis’s 
proprietary feature analysis program (http://pyradiomics.
readthedocs.io). The extraction process encompassed a 
variety of radiomics features, including first-order statis-
tics, the Grey Level Co-occurrence Matrix (GLCM), the 
Gray Level Dependence Matrix (GLDM), the Grey Level 
Run-Length Matrix (GLRLM), the Gray Level Size Zone 
Matrix (GLSZM), the neighborhood gray-tone difference 
matrix (NGTDM), and shape features.

In order to enhance the efficiency of our analysis, we 
implemented two techniques to systematically eliminate 
redundant features. The selection of intra- and inter-class 
correlation coefficients (ICC) was utilized to evaluate 

Fig. 1  The flow chart depicted in this study outlines the process of enrolling patients, including the selection and allocation of study subjects. A total 
of 115 patients were ultimately included, with 80 assigned to the training set and 35 to the validation set at a ratio of 7:3. The flow chart and main text 
provide comprehensive details regarding the specific criteria for inclusion and exclusion of patients
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and preserve highly reproducible characteristics, thereby 
ensuring consistency across various imaging conditions. 
The LASSO method was employed for its capacity to 
conduct variable selection and regularization concur-
rently, thereby reducing dimensionality while retaining 
the most predictive features [25]. This approach guar-
antees the inclusion of solely statistically significant and 
pertinent features in our model. The patient radiomic fea-
tures were initially standardized using z-score normaliza-
tion. ICC was calculated for each radiomic feature, with 
those exceeding 0.9 selected for further analysis. LASSO 
model was then employed to further reduce the dimen-
sionality of the feature set and identify the most impor-
tant features. The optimal lambda value for the LASSO 
model was determined through a tenfold cross-validation 
process within the training set.

Radiomics model construction and validation
This study involved the development of radiomics-based 
models utilizing four classifiers: KNN, SVM, LR, and 
RF. These models were created by combining selected 
radiomics features with the aforementioned classifiers. 
The performance of the models was evaluated using the 
area under the curve (AUC) from ROC analysis, and a 
95% confidence interval (CI) was provided for the results. 
DCA was performed to assess the clinical utility of the 
model by determining the net benefit across various 
threshold probabilities for both the training and test data-
sets. The Confusion Matrix outlined the true and false 
positives/negatives, yielding metrics such as accuracy 
and sensitivity. Sample Prediction Histograms visually 
depicted the model’s prediction confidence, highlighting 
potential biases. Collectively, these analyses evaluated 

the model’s diagnostic efficacy in identifying SCAP and 
informed strategies for enhancing its reliability.

Statistical analysis and experimental parameters
Statistical analysis was performed utilizing Python and 
SPSS 25.0. Categorical variables were presented as fre-
quencies and percentages. The normality of continuous 
variables was evaluated through Kolmogorov-Smirnov 
or Shapiro-Wilk tests. Quantitative data were presented 
as mean ± standard deviation or median (interquartile 
range). Disparities between subgroups were examined 
using t-tests or Mann-Whitney U tests for continuous 
variables, and Chi-square tests for categorical variables. 
Statistical significance was established at p < 0.05 (two-
tailed). In this research, the hyperparameters employed 
for the machine learning models were as follows: A Ran-
dom Forest model was utilized with 10 trees, minimum 
samples split of 2, and a random state of 0. The Support 
Vector Machine was configured to provide probability 
estimates with a random state of 0. The K-Nearest Neigh-
bors algorithm utilized the “kd tree” method. The Logis-
tic Regression model had a random state of 0.

The experiments were carried out utilizing a system 
equipped with a 13th Generation Intel(R) Core (TM) 
i5-13500  H processor running at 2.60  GHz, 32 GB of 
RAM, Intel(R) Iris(R) Xe Graphics, and a 954 GB SSD. 
Image processing and radiomics feature extraction were 
executed using Python (version 3.8) along with various 
libraries such as Pydicom, SimpleITK, PyRadiomics, 
Matplotlib, Seaborn, Pandas, Scikit-learn, among others.

Fig. 2  Workflow of radiomic analysis in this study. Nodules were segmented by radiologists, and features were extracted and selected by LASSO based 
on which the prediction model, DCA, Decision curve analysis, confusion matrices and sample prediction waterfall charts
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Results
Patients characteristics
This research, which included 115 patients diagnosed 
with CAP and SCAP who met the designated inclusion 
and exclusion criteria, was carried out between Janu-
ary and December of 2021. Following a randomization 
ratio of 7:3, the patients were divided into a training set 
(n = 80) and a validation set (n = 35). Analysis within the 
training set revealed no significant differences between 
the two diseases in terms of age, gender, smoking sta-
tus, sputum production, chest pain, fatigue, diabetes and 
kidney disease. Significant associations were observed 
between fever, cough and hypertension with the type of 
disease (p < 0.05). In the validation set, factors including 
age, gender, smoking, fever, cough, sputum, chest pain, 
fatigue, hypertension, diabetes and kidney disease did 
not show significant differences between CAP and SCAP. 
A detailed description of the baseline characteristics of 
the patients can be found in Table 1.

Radiomics feature extraction and selection
In our study, a total of 115 ROI were analyzed. Utilizing 
the Pyradiomics package, 107 radiomic features were 
extracted, encompassing 18 first-order features, 24  Gy 
Level Coherence Matrix (GLCM) features, 14  Gy Level 
Dependence Matrix (GLDM) features, 16 Gy Level Run 
Length Matrix (GLRLM) features, 16 Gy Level Size Zone 
Matrix (GLSZM) features, 5 Neighboring Gray Tone 
Difference Matrix (NGTDM) features, and 14 shape 
features. The selection of radiomics features involved cal-
culating intra-class and ICC for each extracted feature. 

Features with an ICC exceeding 0.9 were deemed highly 
correlated, resulting in the retention of only one feature 
and a reduction of the significant image features to 38. 
Following this, relevant features were identified through 
the application of the LASSO regression model and a 
forward selection approach, as illustrated in Fig. 3a. The 
optimal performance of the LASSO regression, char-
acterized by a penalty parameter of 0.0339, led to the 
attainment of the smallest mean squared error. Based 
on the LASSO regression analysis depicted in Fig.  3b, 
the optimized hyperparameter λ was determined to be 
0.0339, leading to the preservation of six radiomic fea-
tures. These features consist of original firstorder 10 Per-
centile, original glcm Imc2, original glcm MCC, original 
glszm Large Area High Gray Level Emphasis, original 
glszm Large Area Low Gray Level Emphasis, and origi-
nal_ngtdm_Strength. Consequently, six radiomic features 
along with their corresponding feature weights were 
identified (Fig. 3c).

Model establishment and evaluation
ROC analysis was employed to evaluate the predictive 
performance of radiomic-based models (Fig.  4). Within 
the training set, the AUC values for the KNN, SVM, 
LR, and RF models were 0.957, 0.954, 0.943, and 0.975, 
respectively. In the validation set, the overall AUC values 
for KNN, SVM, LR, and RF were 0.909, 0.956, 0.969, and 
0.888, respectively. Furthermore, the study found promis-
ing results in terms of accuracy, sensitivity, and specificity 
for the KNN, SVM, LR, and RF classifiers, as outlined in 
Table 2. Out of the four classifier models examined, the 

Table 1  Comparison of severity and clinical characteristics in both training and validation cohort
Characteristic Training cohort(n = 80) Validation cohort(n = 35)

nsCAP(n = 43) SCAP(n = 47) p value nsCAP(n = 22) SCAP(n = 13) p value
Age(year) 68(50,73) 65.49 ± 13.507 0.381 60 ± 21.463 68.08 ± 13.041 0.175
Gender
Male 17(51.5%) 32(68.1%) 0.134 12(54.5%) 10(76.9%) 0.282
Female 16(48.5%) 15(31.9%) 10(45.5%) 3(23.1%)
Smoke
Yes 8(24.2%) 21(44.7%) 0.061 8(36.4) 3(23.1) 0.478
No 25(75.8%) 26(55.3%) 14(63.6%) 10(76.9%)
Symptoms
Fever 20(60.6%) 41(87.2%) 0.006* 12(54.5%) 11(84.6%) 0.139
Cough 30(90.9%) 34(72.3%) 0.041* 21(95.5%) 10(76.9%) 0.134
Sputum 24(72.7%) 31(66%) 0.52 17(77.35) 9(69.2%) 0.698
Chest pain 5(15.2%) 3(6.4%) 0.364 1(4.5%) 0(0%) 1
Fatigue 12(36.4%) 26(55.3%) 0.095 4(18.2%) 5(38.5%) 0.243
Underlying disease
HBP 11(33.3%) 28(59.6%) 0.021* 12(54.5%) 10(76.95%) 0.282
DM 4(12.1%) 11(23.4%) 0.203 5(22.7%) 3(23.1%) 1
Chronic kidney disease 3(9.1%) 5(10.6%) 1 1(4.5%) 3(23.1%) 0.134
Quantitative data were presented as mean ± standard deviation or median (interquartile range). Count data were presented as number (%). nsCAP Non-severe 
community-acquired pneumonia, SCAP Severe community-acquired pneumonia, HBP High blood pressure, DM, Diabetes mellitus *Indicates a significant value, 
P < 0.05
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Table 2  Diagnostic efficiency of different models in the training cohort and testing cohort
Model name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision
LR(Training set) 0.912 0.943 0.8870–0.9982 0.915 0.909 0.935 0.882 0.935
LR(Testing set) 0.886 0.969 0.9217–1.0000 0.923 0.864 0.8 0.95 0.8
SVM(Training set) 0.887 0.954 0.9028–1.0000 0.851 0.939 0.952 0.816 0.952
SVM(Testing set) 0.857 0.958 0.9022–1.0000 0.923 0.818 0.75 0.947 0.75
KNN(Training set) 0.863 0.957 0.9196–0.9940 0.809 0.939 0.95 0.775 0.95
KNN(Testing set) 0.829 0.909 0.8150–1.0000 0.692 0.909 0.818 0.833 0.818
RandomForest(Training set) 0.925 0.975 0.9452–1.0000 0.894 0.97 0.977 0.865 0.977
RandomForest(Testing set) 0.857 0.888 0.7629–1.0000 0.769 0.909 0.833 0.87 0.833
LR Logistic regression, SVM Support vector machine, KNN K-Nearest neighbor, AUC Area under curve, PPV Positive predictive value, NPV, Negative predictive value

Fig. 4  Comparison of Receiver Operating Characteristic (ROC) curves for the four classifiers on both the training (a) and testing cohorts (b)

 

Fig. 3  Radiomic feature selection based on LASSO algorithm. a, b Ten-fold cross-validated coefficients and 10-fold cross-validated MSE. c The histogram 
of the Rad score based on the selected features
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RF classifier demonstrated superior precision and accu-
racy. In particular, the RF classifier exhibited an accuracy 
of 0.977 on the training set and 0.833 on the validation 
set, as well as precision scores of 0.925 for the training set 
and 0.857 for the validation set. These performance met-
rics outperformed those of the other classifier models. 
DCA was employed to assess the clinical utility of the RF 
classifier. The findings of the analysis indicate that the RF 
classifier yielded a favorable net benefit within the speci-
fied threshold intervals of 0.1 to 0.8 for the training set 
and 0.2 to 0.7 for the validation set, underscoring its effi-
cacy in informing clinical decision-making (Fig.  5a and 
b). Additionally, confusion matrices and sample predic-
tion waterfall charts were utilized to showcase the pre-
dictive capabilities of the models, as depicted in Fig. 6a, 
b, c, and d. The model’s performance in distinguish-
ing between patients with CAP and SCAP was assessed 
through the utilization of a confusion matrix. Addition-
ally, sample waterfall prediction charts were utilized to 
illustrate the model’s confidence levels in predicting indi-
vidual samples, with notable instances of high confidence 
observed in certain predictions. These analyses collec-
tively demonstrate the efficacy of our radiomics model in 
accurately identifying SCAP patients at an early stage.

Discussion
Due to the swift advancement and elevated fatality rate 
associated with CAP, the timely evaluation of disease 
progression is imperative. The early detection of patients 
afflicted with SCAP has the potential to greatly enhance 
treatment approaches and patient prognoses [26–28]. 
In this research, we showcased the effectiveness of CT 
imaging attributes by constructing radiomic models uti-
lizing quantitative imaging characteristics across four 
classifier methodologies. The efficacy of the models was 
confirmed through the utilization of ROC curves, DCA, 
confusion matrices, and sample prediction waterfall 
charts. The findings indicate that the model is capable 
of accurately distinguishing between CAP and SCAP in 
the initial stages, underscoring the significant predictive 

utility of radiomic features extracted from CT images for 
timely detection of SCAP.

Numerous assessment tools exist for evaluating the 
severity of pneumonia, with the Pneumonia Severity 
Index (PSI) and the CURB-65 score emerging as preva-
lent metrics [29, 30]. While the PSI is renowned for its 
robust prognostic capabilities in predicting mortality, its 
intricate nature presents obstacles to routine implemen-
tation in clinical practice [31]. CURB-65 exhibits com-
paratively lower sensitivity, particularly in the prediction 
of admissions to the Intensive Care Unit (ICU) [32]. Both 
the Pneumonia Severity Index (PSI) and CURB-65 rely 
on clinical symptoms, standard laboratory indices, and 
radiological findings. However, the initial phases of the 
disease may manifest with nonspecific symptoms, ambig-
uous laboratory indicators, and subjective evaluations of 
radiological findings by radiologists, posing challenges 
in the timely and accurate diagnosis of SCAP [31]. As a 
result, there remains a persistent demand for improved 
assessment techniques in clinical settings. The diagnosis 
of CAP requires the presence of an infiltrate, as visual-
ized on imaging modalities such as chest X-ray, chest 
CT scan, or lung ultrasonography, in individuals exhibit-
ing symptoms consistent with the disease [33]. CT scans 
are particularly valuable due to their high sensitivity in 
detecting CAP early and identifying complications in cer-
tain patient populations [34]. They play a crucial role in 
offering detailed insights into the location, severity, and 
features of pneumonia. Therefore, radiological examina-
tions play a crucial role in evaluating the severity of CAP. 
The etiology of CAP is diverse, including bacterial, viral, 
and mycoplasma infections, all of which can contribute 
to the onset of CAP. Various pathogens may present with 
different radiological features, with SCAP often exhibit-
ing diffuse pulmonary lesions [35]. This article presents 
a radiomic model for the early detection of SCAP using 
CT based on specific premises. The model is designed to 
identify SCAP by segmenting the entire lung volume and 
extracting 6 radiomic features. The study’s methodology 
uses quantitative imaging feature analysis to eliminate 
the subjectivity of manual CT image interpretation.

Fig. 5  Decision curves of the training (a) and testing cohorts (b)
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Radiomics, a quantitative imaging analysis technique, is 
commonly utilized in clinical research for the purposes 
of early detection, prognosis, and predicting treatment 
response [36, 37]. This method involves extracting quan-
titative data from images to identify phenotypic differ-
ences and correlating them with clinical information [38, 
39]. The radiomics process consists of four stages: image 
acquisition, image segmentation, feature extraction, and 
informatics analysis. Radiomics features are classified 
according to shape and size, texture derived from filtered 
images, fractal properties, image intensity histograms, 
and the interrelationships among image voxels [40, 41]. 
Subsequent to feature extraction, dimensionality reduc-
tion methods such as ICC and LASSO regression are 
employed to identify significant features. Subsequently, 
Machine Learning (ML) classifiers are utilized for dis-
ease classification and prediction [41]. In this research, 
the entire volume of both lungs was contoured, and the 
ROI for each patient was manually segmented by a phy-
sician with expertise in lung CT imaging. Through the 

use of radiological features’ ICC and LASSO regression, 
the study reduced 107 imaging features to 6. Follow-
ing this, four classifiers, namely KNN, SVM, LR, and RF, 
were employed to construct radiomics-based models for 
the detection of SCAP. The findings of this study suggest 
that the four models evaluated exhibited strong predic-
tive capabilities in feature classification methods, with 
accuracy exceeding 0.80 and AUC exceeding 0.85. This 
research highlights the potential of radiomics as a com-
puter-assisted tool for extracting important biomedical 
data from CT images, which could aid in the early detec-
tion and treatment of SCAP. These results provide novel 
insights into the utilization of established radiomics and 
machine learning methodologies for improving pneumo-
nia diagnosis.

Recently, radiomics has shown promise in the detec-
tion, severity assessment, and prognostic evaluation 
of pneumonia. Li et al. [18]. utilized radiomic features 
extracted from chest CT scans to develop a multivariable 
logistic regression model that incorporates both radiomic 

Fig. 6  Confusion matrices and sample prediction waterfall charts of the training (a, c) and testing cohorts (b, d)
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and clinical data, successfully distinguishing between 
mycoplasma pneumonia and bacterial pneumonia. In the 
evaluation of pneumonia severity, it has been suggested 
that radiomic models utilizing CT features may serve as a 
valuable tool for prognosticating the severity of COVID-
19 pneumonia, thereby potentially facilitating timely 
intervention strategies and mitigating mortality rates 
among COVID-19 patients [19]. Homayounieh et al. 
[42]. employed a comprehensive approach incorporating 
whole-lung radiomics, radiologist interpretations, and 
clinical variables to forecast pneumonia in individuals 
with COVID-19. Their findings indicate that radiomics 
holds greater significance compared to alternative diag-
nostic modalities. Radiomics features have shown a dis-
criminative ability between outpatient and inpatient chest 
CTs, achieving an AUC of 0.84. Recent research, charac-
terized by high accuracy and AUC values, suggests that 
radiomics analysis of whole-lung segmentation can effec-
tively distinguish between confirmed cases of COVID-
19 and suspected individuals [43–46]. The application 
of radiomics, a noninvasive, efficient, and cost-effective 
technique, has been expanded to assess the severity of 
CAP, resulting in a decrease in unnecessary interventions 
and alleviation of patient distress, especially in settings 
with limited resources. Once the model is developed, it 
can be smoothly incorporated into the CT interpretation 
software, streamlining the workflow for radiologists who 
need only delineate the entire lung volume, after which 
the system produces an objective outcome for their 
review. Existing literature indicates a dearth of research 
on the utilization of radiomics for evaluating the sever-
ity of CAP. This research develops a prognostic model for 
the severity of CAP using CT radiomics analysis, intro-
ducing an innovative method for the timely identification 
of SCAP. These findings have substantial implications for 
the progression of precision medicine and the enhance-
ment of individualized and efficient treatment strategies.

Our research is constrained by several limitations. 
This retrospective study is subject to selection bias, and 
the manual delineation of Regions of Interest may intro-
duce variability due to lesion irregularities. Moreover, it 
is important to note that this study was conducted at a 
single center with a sample size of 115 patients, which 
may limit the generalizability of the findings. The absence 
of an a priori power analysis underscores the neces-
sity for future research to address this limitation. Mov-
ing forward, we recommend expanding sample sizes and 
incorporating data from multiple centers to improve the 
robustness and applicability of our model. Longitudinal 
follow-up studies are essential for validating the predic-
tive efficacy of radiomics features in SCAP patients over 
time. Enhancing feature extraction and selection meth-
ods using advanced algorithms and machine learning 

techniques will enhance the predictive accuracy and 
interpretability of the model.

Conclusion
In this study, the radiomics model based on CT imaging 
have good performance in early identification of SCAP. 
The implications of our findings in the clinical setting 
are significant, as timely and precise identification of 
SCAP has the potential to enhance patient outcomes and 
streamline resource allocation within healthcare facili-
ties. Implementation of this model in clinical practice 
can empower healthcare professionals to make evidence-
based decisions, ultimately enhancing patient care and 
treatment. At the same time, it will provide new ideas for 
the research, diagnosis, and treatment of other types of 
pneumonia.
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