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Abstract
Objective  To establish a machine learning model based on radiomics and clinical features derived from non-contrast 
CT to predict futile recanalization (FR) in patients with anterior circulation acute ischemic stroke (AIS) undergoing 
endovascular treatment.

Methods  A retrospective analysis was conducted on 174 patients who underwent endovascular treatment for 
acute anterior circulation ischemic stroke between January 2020 and December 2023. FR was defined as successful 
recanalization but poor prognosis at 90 days (modified Rankin Scale, mRS 4–6). Radiomic features were extracted from 
non-contrast CT and selected using the least absolute shrinkage and selection operator (LASSO) regression method. 
Logistic regression (LR) model was used to build models based on radiomic and clinical features. A radiomics-clinical 
nomogram model was developed, and the predictive performance of the models was evaluated using area under the 
curve (AUC), accuracy, sensitivity, and specificity.

Results  A total of 174 patients were included. 2016 radiomic features were extracted from non-contrast CT, and 
9 features were selected to build the radiomics model. Univariate and stepwise multivariate analyses identified 
admission NIHSS score, hemorrhagic transformation, NLR, and admission blood glucose as independent factors for 
building the clinical model. The AUC of the radiomics-clinical nomogram model in the training and testing cohorts 
were 0.860 (95%CI 0.801–0.919) and 0.775 (95%CI 0.605–0.945), respectively.

Conclusion  The radiomics-clinical nomogram model based on non-contrast CT demonstrated satisfactory 
performance in predicting futile recanalization in patients with anterior circulation acute ischemic stroke.

Keywords  Anterior circulation Acute Ischemic Stroke, Machine learning, Futile recanalization, Endovascular 
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Introduction
Acute ischemic stroke is associated with high morbidity 
and disability rates [1]. The emergence of endovascular 
thrombectomy (EVT) as an effective treatment for acute 
ischemic stroke has been supported by large randomized 
controlled trials (RCTs) and subsequent meta-analyses 
[2, 3]. Studies have shown that EVT within 6–24  h can 
lead to favorable clinical outcomes [4], even in patients 
with large stroke cores, without significantly increasing 
the risk of death [5, 6]. Recent reports indicate potential 
benefits of EVT beyond 24  h as well [7]. Despite suc-
cessful recanalization (mTICI ≥ 2b), some patients still 
experience poor outcomes at 90 days (mRS 4–6), which 
is termed as futile recanalization [8]. Research has high-
lighted that while a high percentage of patients undergo-
ing EVT achieve successful recanalization, about half of 
them do not have good 90-day functional outcomes [2, 
4]. Therefore, early and accurate prediction of patient 
outcomes can assist physicians in assessing the patient’s 
condition, understanding treatment risks and expecta-
tions, and devising personalized treatment plans.

With the rise of precision medicine and advance-
ments in scientific technology, machine learning-based 
radiomics has garnered increasing interest in recent 
years. This approach shows promising potential in pre-
dicting disease outcomes and tumor differentiation, aid-
ing physicians in accurately assessing conditions and 
providing improved treatment for patients [9].

Radiomics enables the extraction of a large number of 
quantitative features from medical images, such as shape, 
intensity, and texture, in an objective and high-through-
put manner. Machine learning, on the other hand, effec-
tively manages the relationships between vast amounts 
of variable data, thereby transforming subjective visual 
interpretations by physicians into image-driven objective 
evaluations [10].

Some recent studies have successfully utilized magnetic 
resonance imaging (MRI) to develop machine learning 
models for prediction, yielding positive results [11–13]. 
However, the time-consuming nature of MRI examina-
tions and potential patient cooperation issues have led 
us to focus on non-contrast CT (NCCT) in this study. 
NCCT can be obtained quickly and conveniently, align-
ing with the preoperative examination recommendations 
outlined by the American Heart Association/American 
Stroke Association guidelines for acute ischemic stroke 
[14]. Previous research has highlighted the feasibility of 
NCCT in predicting recanalization in patients undergo-
ing intravenous thrombolysis [15]. The objective of this 
study is to leverage machine learning techniques, inte-
grating preoperative imaging radiomics and clinical fea-
tures, to develop and validate effective predictive models.

Materials and methods
Patients and data acquisition
This study was approved by the Ethics Commit-
tee and waived informed consent from the patients 
(LLSC-2023-412).

A retrospective data collection was conducted on 174 
patients who underwent endovascular treatment for 
acute anterior circulation ischemic stroke between Janu-
ary 2020 and December 2023. The inclusion criteria were 
as follows: (1) hospitalization and treatment within 24 h 
of symptom onset; (2) diagnosis of acute anterior cir-
culation ischemic stroke; (3) receipt of EVT treatment, 
including mechanical thrombectomy, intra-arterial 
thrombolysis, balloon angioplasty, stent placement, etc., 
with successful reperfusion achieved (mTICI score of 
2b-3); (4) preoperative NCCT examination. Exclusion 
criteria were: (1) incomplete patient data; (2) immedi-
ate postoperative CT indicating hemorrhage; (3) poor 
CT image quality with significant artifacts; (4) absence 
of evident infarct lesion on preoperative CT; (5) history 
of intracranial surgical treatment or non-infarct lesion in 
proximity to infarct area; (6) presence of severe cardio-
vascular, pulmonary, or hepatic diseases. Finally, a total 
of 174 patients were included. The patients were ran-
domly divided into training cohort (n = 140) and testing 
cohort (n = 34) at a ratio of 8:2 (Fig. 1).

Futile recanalization was defined as successful reper-
fusion after EVT (mTICI ≥ 2b) but poor prognosis at 90 
days (mRS 4–6).

Clinical data of the patients were obtained, includ-
ing clinical text data (such as age, gender, time to ves-
sel reperfusion, site of vascular occlusion, postoperative 
hyperdensity, hypertension, diabetes, smoking, alcohol 
consumption, admission blood pressure, etc.) and labo-
ratory data at admission (such as Glu, D-D, FIB, eGFR, 
WBC, LYMP, MONO, NEUT, etc.). These data were 
extracted separately from electronic medical records.

All patients who underwent head NCCT examination 
were examined using GE Discovery CT (GE Medical, Pis-
cataway, NJ, USA) or Somatom Definition Flash CT (Sie-
mens Medical Solutions, Germany). The scanning range 
was from the top of the head to the base of the skull, with 
the following scanning parameters: tube voltage 120 kV, 
tube current 250 mA, slice thickness and interval 5 mm. 
The NCCT images of all patients were saved in DICOM 
format.

Image preprocessing and lesion segmentation
Each NCCT image was resampled to achieve a uni-
form voxel size of 1.0*1.0*1.0  mm. Furthermore, NCCT 
images were adjusted with a fixed head window (win-
dow level = 35 Hounsfield unit (Hu); window width = 60 
Hu) to standardize the impact of different instruments 
and ensure consistent delineation of lesion areas. The 
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main goal of image segmentation was to identify cere-
bral infarction lesions. The region of interest (ROI) was 
outlined by an experienced physician (with over 10 years 
of experience) using ITK-SNAP (Version 3.8.0). The prin-
ciple of ROI delineation is as follows: the infarct area is 
annotated layer by layer, with the size of the delineation 
depending on the size of the infarct focus. The final result 
is a 3D ROI. In principle, only clearly visible lesions are 
delineated, as shown in Fig. 2A for the specific delinea-
tion effect. In order to ensure the reliability of lesion 
segmentation and minimize subjective differences, the 
physician re-outlined the extracted images of 30 patients 
one month later. The intraclass correlation coefficient 
(ICC) was employed to assess these features, and only 
features with ICC ≥ 0.75 were retained.

Feature extraction
Handcrafted features were extracted using an in-house 
feature analysis program implemented in Pyradiomics 
(http://pyradiomics.readthedocs.io) [16]. These fea-
tures can be categorized into three types: (1) first-order 
features, (2) shape features, and (3) texture features. 
First-order features describe the distribution of voxel 
intensities within the ROI. Shape features describe the 
geometric characteristics of the ROI in both 2D and 3D. 
Texture features characterize patterns or spatial distribu-
tions of intensities through methods like gray-level co-
occurrence matrix (GLCM), gray-level run length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and 

neighborhood gray-tone difference matrix (NGTDM). 
A total of 2016 radiomic features were extracted from 
the ROIs, and subsequently standardized using Z-score 
normalization.

Feature selection
The study initially conducted Student’s t-test statisti-
cal analysis and ICC feature selection on all radiomic 
features of the training set, retaining only those with a 
p-value < 0.05. For highly correlated features, the Pearson 
correlation coefficient was calculated, and features with 
a correlation coefficient of 0.9 or higher were pruned, 
keeping the feature with the highest absolute correla-
tion to eliminate redundancy. Subsequently, the Max-
Relevance and Min-Redundancy (mRMR) method was 
utilized to further select the 30 most relevant features 
with minimal inter-feature redundancy. Following this, 
the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) was employed for feature selection, where 
regression coefficients were shrunk to zero by adjusting 
the weight parameter λ. The optimal λ was determined 
using 10-fold cross-validation to minimize the cross-
validation error. Features with non-zero coefficients were 
retained for regression model fitting and combined to 
create a radiomic signature. Radiomic scores for each 
patient were then calculated from the linear combination 
of retained features. After LASSO feature selection, the 
final selected features were input into a Logistic Regres-
sion (LR) model for model construction, with 5-fold 

Fig. 1  The flow chart for the exclusion of patients
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cross-validation utilized to obtain the final radiomic 
signature.

Clinical model and radiomics-clinical nomogram model 
construction
The process of building the clinical model is similar 
to that of the radiomics model. Firstly, features with 
p-value < 0.05 were selected through baseline statistics 
for model construction. The same machine learning 
models were used in the construction of the clinical sig-
nature. Here, we also employed 5-fold cross-validation to 
obtain the final clinical model. To visualize the classifica-
tion evaluation, logistic regression analysis was used to 
construct a nomogram based on radiomics signature and 
clinically significant features. Fig. 2 shows the whole pro-
cess of model building.

Statistical analysis
Independent t-tests were used for analyzing normally 
distributed data, while Mann-Whitney U tests were uti-
lized for non-normally distributed data. Chi-square 
tests were employed for analyzing categorical variables. 
Receiver operating characteristic (ROC) curves were 
plotted, and the area under curve (AUC) was calculated 
to assess the predictive ability of the model. Delong test 
was used to compare the AUC among three models. 
Statistical analyses were performed using SPSS (version 

21.0; IBM Corporation) and R software (version 4.3.1). A 
p-value < 0.05 was considered statistically significant.

Results
Patient characteristics
Initially, 408 patients who underwent EVT surgery were 
identified, and after screening, 174 patients were finally 
included. Patients were randomly assigned to train-
ing and testing groups. FR patients accounted for 51.4% 
(72/140) in the training group and 50.0% (17/34) in the 
testing group. Baseline characteristics of all patients are 
shown in Table 1.

Radiomics feature selection and model construction
Based on the ROI in patient imaging, a total of 2016 
features were extracted for each patient. These features 
included 396 first-order features, 14 shape features, and 
1606 texture features. After conducting ICC and Stu-
dent’s t-test analyses, 710 stable radiomics features with 
inter-group differences were identified in the training set. 
Subsequently, Pearson correlation coefficients were cal-
culated among these features, resulting in the retention 
of 85 features. Using mRMR method, 30 features with 
maximum relevance and minimal inter-feature redun-
dancy were selected. Finally, the LASSO method was 
applied in the training set to determine the optimal regu-
larization weight (λ = 0.0295), resulting in the selection 
of 9 radiomics features for model construction. Detailed 

Fig. 2  The workflow of the radiomics model construction. A ROI segmentation; B radiomics features extraction; C radiomics feature screening with 
LASSO; and D model building. ROI, regions of interest; LASSO, Least Absolute Shrinkage and Selection Operator; MSE, mean squared error; ROC, receiver 
operating characteristic curve
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information about these features can be found in Fig. 3. 
The titles of the nine important features and their cor-
responding non-zero coefficients are provided in Sup-
plementary Table 1. These features were then input into 
a Logistic Regression (LR) model for radiomics model 
construction. The model achieved the AUC of 0.756 (95% 
CI 0.676–0.835) in the training set, with a sensitivity of 
0.681 and specificity of 0.706. In the testing set, the AUC 
was 0.696 (95% CI 0.512–0.9879), with a sensitivity of 
0.529 and specificity of 0.882 (refer to Table 2; Fig. 4 for 
more details).

Clinical model and radiomics-clinical nomogram 
establishment and performance
The clinical model’s features were chosen based on 
the p-value of the training set features (p-value < 0.05). 
Multifactor analysis revealed that admission NIHSS, 
Hemorrhagic Transformation (HT), Neutrophil-to-Lym-
phocyte Ratio (NLR), and admission Glu were indepen-
dent clinical predictive factors (p-value < 0.05) (Tables  3 
and 4). The clinical model had an AUC of 0.827 (98% 
CI 0.759–0.895), with sensitivity and specificity of 0.736 
and 0.765, respectively, in the training set. In the test-
ing set, the AUC was 0.702 (95% CI 0.520–0.885), with 
sensitivity and specificity of 0.765 and 0.588, respectively 
(Table  2; Fig.  4). By combining the radiomics score and 
clinical predictive factors, the final radiomics-clinical 
nomogram was developed (Fig. 5). The AUC in the train-
ing set and testing set were 0.860 (95% CI 0.801–0.919) 
and 0.775 (95% CI 0.605–0.945), respectively. The accu-
racy, specificity, sensitivity, and other metrics of the three 
models are also detailed in Table 2. The Delong test was 
performed to compare the AUC of the three models. In 
the training set, there was a statistically significant differ-
ence between the radiomics-clinical nomogram and the 
Radiomics model (p = 0.004), while there was no signifi-
cant statistical difference between the radiomics-clinical 
nomogram and the Clinical model (p = 0.066), but there 

Characteristic Training Cohort 
(n = 140, %)

Testing Cohort 
(n = 35, %)

p-
val-
ue

Age 61.73 ± 11.53 61.35 ± 11.94 0.866
Sex 1.000
Male 39(27.86) 10(29.41)
Female 101(72.14) 24(70.59)
Hypertension 73(52.14) 15(44.12) 0.517
Diabetes 25(17.86) 5(14.71) 0.855
Smoking 42(30.00) 13(38.24) 0.471
Alcohol drinking 29(20.71) 7(20.59) 1.000
Coronary atherosclerotic 
heart disease

10(7.14) 2(5.88) 1.000

Atrial fibrillation 13(9.29) 4(11.76) 0.909
IVT 34(24.29) 8(23.53) 1.000
SBP 143.88 ± 26.95 134.59 ± 23.05 0.066
DBP 85.24 ± 17.10 81.15 ± 14.25 0.198
Admission NIHSS 15.22 ± 6.80 14.74 ± 6.24 0.646
Time from symptom 
onest to reperfusion

10.93 ± 5.08 10.06 ± 5.12 0.340

PCHD 106(75.71) 26(76.47) 1.000
Hyperdense artery sign 74(52.86) 20(58.82) 0.664
Location of arterial 
occlusion

0.115

ICA 51(36.43) 19(55.88)
M1 84(60.00) 14(41.18)
M2 5(3.57) 1(2.94)
Hemorrhagic 
Transformation

0.682

No 85(60.71) 18(52.94)
HI1 7(5.00) 1(2.94)
HI2 28(20.00) 7(20.59)
PH1 8(5.71) 4(11.76)
PH2 12(8.57) 4(11.76)
Preoperative mTICI 0.719
0 136(97.14) 34(100.00)
1 4(2.86)
Postoperative mTICI 0.801
2b 30(21.43) 6(17.65)
3 110(78.57) 28(82.35)
D_D 3.21 ± 6.56 5.79 ± 21.53 0.606
FIB 2.71 ± 1.06 2.57 ± 1.16 0.441
Glu 7.84 ± 2.35 7.78 ± 2.05 0.867
UA 347.45 ± 105.72 335.91 ± 113.44 0.772
UREA 5.41 ± 2.57 4.71 ± 2.03 0.213
eGFR 122.55 ± 29.28 133.18 ± 29.20 0.059
RBC 7.35 ± 34.11 5.91 ± 8.50 0.949
WBC 11.23 ± 12.06 9.37 ± 2.68 0.505
LYMP 1.40 ± 0.68 1.39 ± 0.84 0.582
MONO 0.54 ± 0.25 0.65 ± 0.83 0.738
NEUT 8.29 ± 4.12 9.59 ± 13.33 0.689
NLR 8.11 ± 6.92 10.04 ± 16.68 0.857

Table 1  Baseline characteristics of patients in cohorts

Characteristic Training Cohort 
(n = 140, %)

Testing Cohort 
(n = 35, %)

p-
val-
ue

LMR 2.93 ± 1.50 2.87 ± 1.67 0.599
SIRI 4.47 ± 5.10 18.34 ± 86.01 0.977
Categorical variables are represented by the number (percent), and continuous 
variables are represented by mean (± standard deviation). IVT, Intravenous 
Thrombolysis; SBP, systolic blood pressure; DBP, diastolic blood pressure; NIHSS, 
National Institute of Health Stroke Scale; PCHD, postinterventional cerebral 
hyper-density; ICA, internal carotid artery; M1, Middle cerebral artery M1 
segment; M2, Middle cerebral artery M2 segment; HI, hemorrhagic infarction; 
PH, parenchymal hemorrhage; mTICI, modified Thrombolysis in Cerebral 
Infarction; D-D, D-Dimer; FIB, Fibrinogen; Glu, Glucose; UA, Uric acid; UREA, 
Urea; eGFR, Estimated glomerular filtration rate; RBC, Red Blood Cell; WBC, 
White blood cell; LYMP, Lymphocyte; MONO, Monocyte; NEUT, Neutrophil; NLR, 
Neutrophil-to-lymphocyte ratio; LMR, Lymphocyte to monocyte ratio; SIRI, 
Systemic inflammatory response index

Table 1  (continued) 
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was a trend of difference. In the testing set, there was 
no significant difference between the radiomics-clinical 
nomogram and the Clinical model (p = 0.207) or between 
the radiomics-clinical nomogram and the Radiomics 
model (p = 0.346) (Supplementary Table 2).

Discussion
Acute ischemic stroke is a global health concern associ-
ated with high morbidity and disability rates [1]. Recent 
large RCTs and meta-analyses have shown that EVT 
and thrombolytic therapy are effective treatments for 
acute ischemic stroke [2, 3]. Despite successful reperfu-
sion, a significant number of patients still have poor out-
comes at 90 days, termed futile recanalization, affecting 
almost half of treated patients [2, 4, 8]. Early prediction 
of patient outcomes can help physicians understand the 
patient’s condition, assess treatment risks and expecta-
tions, and personalize treatment plans.

Zhou et al. developed an imaging-genomic model using 
DWI and ADC, along with clinical indicators, to pre-
dict the prognosis of acute anterior circulation ischemic 
stroke [12]. Their model achieved high AUCs in both 
training and test cohorts, outperforming single clini-
cal models. Similarly, Luo et al. used DWI to predict the 
prognosis of posterior circulation ischemic stroke and 
demonstrated the superiority of the clinical-radiomics 
model over clinical models [17]. These studies empha-
size the importance of integrating imaging, genomic, and 
clinical data to enhance the accuracy of predicting patient 
outcomes in acute ischemic stroke. By utilizing advanced 
technologies like radiomics, clinicians can make more 
informed decisions and provide personalized care for 
stroke patients, ultimately improving treatment efficacy 
and patient outcomes. MRI examinations are time-con-
suming, potentially hindering patient cooperation and 
impacting recanalization in patients. NCCT was chosen 

Table 2  Predictive performance of three models in the Training Cohort and Test Cohort
Model Training Cohort Testing Cohort

AUC (95%CI) Accuracy Sensitivity Specificity AUC (95%CI) Accuracy Sensitivity Specificity
Clinic model 0.827 (0.759–0.895) 0.75 0.736 0.765 0.702 (0.520–0.885) 0.676 0.765 0.588
Rad model 0.756 (0.676–0.835) 0.693 0.681 0.706 0.696 (0.512–0.879) 0.706 0.529 0.882
Nomogram 0.86 (0.801–0.919) 0.771 0.694 0.853 0.775 (0.605–0.945) 0.765 0.706 0.824
AUC, area under the receiver operating characteristic curve; CI, confidence interval

Fig. 3  Figures of logistic LASSO regression. (A), Lasso path plot of the model in the training dataset. (B), Cross-validation plot for the penalty term. (C), 
Pearson correlation coefficients between features were calculated, and 16 features with correlations were retained
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as the focus of this study due to its faster and more con-
venient acquisition, in line with AIS guidelines [14].

A model was developed in this study to predict FR by 
combining clinical data with NCCT features based on 
radiomics. This approach improves diagnostic accuracy 
by providing specific quantitative indicators, reducing 
misdiagnosis and missed diagnosis due to lack of physi-
cian experience. The study identified four independent 
predictors of FR outcomes upon admission: NIHSS, 
hemorrhagic transformation, NLR, and admission blood 
glucose. NIHSS scores, commonly used to assess stroke 
severity, were found to be a key indicator for evaluating 
acute ischemic stroke outcomes, consistent with previous 
studies [18].

Research has shown that neuroinflammation is a key 
factor in both the development and advancement of 
acute ischemic stroke [19, 20]. When cerebral tissue 
experiences ischemia, the release of harmful substances 
from damaged cells, including inflammatory cytokines 
and chemokines, can lead to the breakdown of the blood-
brain barrier (BBB). This breakdown allows immune-
inflammatory cells to enter the brain, contributing to 
secondary brain injury.

Neutrophils (NEUT) are one of the earliest blood-
derived cell populations to enter the brain following an 
acute ischemic stroke (AIS) and are a significant com-
ponent of thrombi in AIS patients [21]. They play a role 
in disrupting the blood-brain barrier, limiting neoangio-
genesis and repair, promoting neuronal death, among 
other effects, by producing matrix metalloproteinase-9 
(MMP-9) and neutrophil extracellular traps (NETs) [22, 
23]. On the other hand, lymphocytes are thought to 
have a neuroprotective function [24]. The NLR is a bio-
marker that reflects the balance between neutrophils and 

lymphocytes, providing insight into baseline inflamma-
tion and immune status [25]. Studies have indicated that 
a high NLR upon admission can predict functional out-
comes at discharge in patients undergoing intravenous 
thrombolysis. Higher NLR values are linked to poorer 
short-term functional outcomes in AIS patients and may 
potentially prolong hospital stays, aligning with our own 
research findings [26, 27].

Additionally, elevated levels of blood glucose upon 
admission have been associated with increased BBB dis-
ruption, leading to worse outcomes and more symptom-
atic intracranial hemorrhages [28]. The impact of high 
blood glucose on the microcirculation exacerbates isch-
emic injury and blood-brain barrier damage. Mechanisms 
through which high blood glucose contributes to HT may 
involve oxidative stress and inflammation [29]. Research 
by Research conducted by Desilles et al. supports the 
idea that high blood glucose triggers a thrombo-inflam-
matory cascade, intensifying downstream microvascular 
thrombo-inflammation due to cerebral artery occlusion, 
worsening reperfusion injury, and ultimately leading to 
BBB disruption and HT occurrence [30, 31].

HT refers to brain hemorrhage occurring within the 
area of primary ischemic stroke. As per the European 
Cooperative Acute Stroke Study standards, HT can be 
radiologically classified as hemorrhagic infarction (HI) 
and parenchymal hematoma (PH) [32]. Recent research 
indicates that HI-2, PH-1, and PH-2 are independent pre-
dictive factors for poor prognosis in AIS patients follow-
ing successful EVT [33].

Additionally, changes in monocyte counts have been 
observed. Ischemic-hypoxic stimulation in cerebral 
infarction prompts monocytes to produce inflammatory 
mediators like interleukin-1 (IL-1), IL-6, IL-8, and tumor 

Fig. 4  ROC curves of the radiomics model, clinical model, and radiomics-clinical nomogram in the training and test cohort. ROC, receiver operating 
characteristic
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Table 3  Univariate analysis for FR in the training cohort
Characteristic Univariate analysis

Meaningful Recanalization (n = 68, %) Futile Recanalization (n = 72, %) p-value
Age 60.06 ± 12.29 63.31 ± 10.61 0.096
Sex 0.834
Male 20(29.41) 19(26.39)
Female 48(70.59) 53(73.61)
Hypertension 33(48.53) 40(55.56) 0.508
Diabetes 7(10.29) 18(25.00) 0.040
Smoking 26(38.24) 16(22.22) 0.060
Alcohol drinking 18(26.47) 11(15.28) 0.154
Coronary atherosclerotic heart disease 6(8.82) 4(5.56) 0.673
Atrial fibrillation 5(7.35) 8(11.11) 0.635
IVT 15(22.06) 19(26.39) 0.689
SBP 142.75 ± 22.02 144.94 ± 31.01 0.632
DBP 85.69 ± 16.98 84.82 ± 17.32 0.764
Admission NIHSS 12.74 ± 5.51 17.57 ± 7.09 < 0.001
Time from symptom onest to reperfusion 10.94 ± 4.99 10.92 ± 5.20 0.838
PCHD 47(69.12) 59(81.94) 0.116
Hyperdense artery sign 32(47.06) 42(58.33) 0.244
Location of arterial occlusion 0.349
ICA 21(30.88) 30(41.67)
M1 45(66.18) 39(54.17)
M2 2(2.94) 3(4.17)
Hemorrhagic Transformation 0.006
No 49(72.06) 36(50.00)
HI1 1(1.47) 6(8.33)
HI2 14(20.59) 14(19.44)
PH1 3(4.41) 5(6.94)
PH2 1(1.47) 11(15.28)
Preoperative mTICI 1.000
0 66(97.06) 70(97.22)
1 2(2.94) 2(2.78)
Postoperative mTICI 0.393
2b 12(17.65) 18(25.00)
3 56(82.35) 54(75.00)
D_D 2.31 ± 4.15 4.06 ± 8.16 0.001
FIB 2.67 ± 0.91 2.76 ± 1.19 0.874
Glu 7.16 ± 1.99 8.48 ± 2.50 < 0.001
UA 336.78 ± 90.68 357.53 ± 117.95 0.346
UREA 4.78 ± 1.69 6.00 ± 3.09 0.009
eGFR 125.71 ± 28.17 119.57 ± 30.17 0.216
RBC 10.39 ± 48.94 4.48 ± 0.85 0.945
WBC 9.01 ± 3.33 13.33 ± 16.29 < 0.001
LYMP 1.51 ± 0.69 1.30 ± 0.67 0.058
MONO 0.49 ± 0.19 0.59 ± 0.29 0.102
NEUT 6.94 ± 3.16 9.57 ± 4.51 < 0.001
NLR 5.93 ± 5.08 10.16 ± 7.79 < 0.001
LMR 3.24 ± 1.24 2.64 ± 1.66 0.001
SIRI 2.88 ± 3.17 5.97 ± 6.05 < 0.001
Categorical variables are represented by the number (percent), and continuous variables are represented by mean (± standard deviation). IVT, Intravenous 
Thrombolysis; SBP, systolic blood pressure; DBP, diastolic blood pressure; NIHSS, National Institute of Health Stroke Scale; PCHD, postinterventional cerebral hyper-
density; ICA, internal carotid artery; M1, Middle cerebral artery M1 segment; M2, Middle cerebral artery M2 segment; HI, hemorrhagic infarction; PH, parenchymal 
hemorrhage; mTICI, modified Thrombolysis in Cerebral Infarction; D-D, D-Dimer; FIB, Fibrinogen; UA, Uric acid; UREA, Urea; eGFR, Estimated glomerular filtration 
rate; RBC, Red Blood Cell; WBC, White blood cell; LYMP, Lymphocyte; MONO, Monocyte; NEUT, Neutrophil; NLR, Neutrophil-to-lymphocyte ratio; LMR, Lymphocyte 
to monocyte ratio; SIRI, Systemic inflammatory response index
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necrosis factor (TNF), leading to excessive inflammation 
that worsens brain tissue damage [34]. Consequently, 
there is a proposal for using monocyte count as a predic-
tor of stroke outcomes [35].

The Delong test in this study only revealed statistical 
significance between the radiomics-clinical nomogram 
and the radiomics model in the training cohort. How-
ever, it is important to highlight that the AUC of the 
radiomics-clinical nomogram consistently outperformed 
both the single clinical model and the radiomics model, 
indicating that the fusion model, with its integration of 

more features, demonstrates superior predictive perfor-
mance compared to individual models. This underscores 
the potential of radiomics in predicting FR.

Despite the intriguing findings of our study, it is impor-
tant to acknowledge several limitations. Firstly, there 
is a potential for selection bias due to the exclusion of 
patients with incomplete data. Additionally, being a sin-
gle-center retrospective study, the lack of patients from 
other medical centers hinders the generalizability of the 
findings, and the relatively small sample size limits the 
practical application of the model. As a result, further 
validation through large-scale prospective randomized 
controlled trials is necessary. Furthermore, the study did 
not utilize more advanced techniques like deep learn-
ing and automatic image segmentation. Future research 
endeavors will incorporate deep learning methods in the 
next phase.

In summary, the radiomics-clinical machine learning 
model based on NCCT demonstrates superior accuracy 
in predicting FR in AIS patients compared to standalone 
clinical or radiomics models. This has the potential to 
assist clinicians in developing personalized treatment 
plans for patients early in the disease course, ultimately 
improving the prognosis of stroke patients.

Conclusion
The radiology-clinical machine learning model, utiliz-
ing preoperative NCCT data, demonstrated promising 
results in predicting futile recanalization in patients with 

Table 4  Multivariate analysis for FR in the training cohort
Characteristic OR (95%CI) p-value
Smoking 0.917 (0.801–1.05) 0.29
LMR 1.018 (0.957–1.084) 0.631
WBC 1.002 (0.996–1.008) 0.607
NLR 1.033 (1.006–1.061) 0.041
Admission NIHSS 1.024 (1.015–1.035) < 0.001
SIRI 0.986 (0.954–1.018) 0.467
NEUT 0.984 (0.957–1.012) 0.343
UREA 1.011 (0.985–1.039) 0.474
Glu 1.051 (1.023–1.08) 0.003
Hemorrhagic Transformation 1.064 (1.015–1.114) 0.03
Diabetes 0.965 (0.807–1.154) 0.741
MONO 1.889 (1.099–3.248) 0.054
NIHSS, National Institute of Health Stroke Scale; Glu, Glucose; UREA, Urea; 
WBC, White blood cell; MONO, Monocyte; NEUT, Neutrophil; NLR, Neutrophil-
to-lymphocyte ratio; LMR, Lymphocyte to monocyte ratio; SIRI, Systemic 
inflammatory response index

Fig. 5  Radiomics-clinical nomogram based on the combined model. Rad_Sig = Radiomics Signature
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anterior circulation ischemic stroke. This model has the 
potential to assist neurologists in evaluating patient prog-
nostic outcomes promptly, offering valuable insights for 
personalized treatment strategies.
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