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Abstract 

Objectives Rheumatoid arthritis (RA) is a severe and common autoimmune disease. Conventional diagnostic 
methods are often subjective, error-prone, and repetitive works. There is an urgent need for a method to detect RA 
accurately. Therefore, this study aims to develop an automatic diagnostic system based on deep learning for recogniz-
ing and staging RA from radiographs to assist physicians in diagnosing RA quickly and accurately.

Methods We develop a CNN-based fully automated RA diagnostic model, exploring five popular CNN architectures 
on two clinical applications. The model is trained on a radiograph dataset containing 240 hand radiographs, of which 
39 are normal and 201 are RA with five stages. For evaluation, we use 104 hand radiographs, of which 13 are normal 
and 91 RA with five stages.

Results The CNN model achieves good performance in RA diagnosis based on hand radiographs. For the RA recogni-
tion, all models achieve an AUC above 90% with a sensitivity over 98%. In particular, the AUC of the GoogLeNet-based 
model is 97.80%, and the sensitivity is 100.0%. For the RA staging, all models achieve over 77% AUC with a sensitivity 
over 80%. Specifically, the VGG16-based model achieves 83.36% AUC with 92.67% sensitivity.

Conclusion The presented GoogLeNet-based model and VGG16-based model have the best AUC and sensitivity 
for RA recognition and staging, respectively. The experimental results demonstrate the feasibility and applicabil-
ity of CNN in radiograph-based RA diagnosis. Therefore, this model has important clinical significance, especially 
for resource-limited areas and inexperienced physicians.
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Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune dis-
ease that causes swelling, pain, and stiffness in joints [1, 
2]. Moreover, RA could greatly affect the health and life 
quality of patients, and may even lead to disability and 
death [3]. Meanwhile, the morbidity of RA is still rela-
tively high, accounting for approximately 1% of the global 
population [4–6]. Especially in developed countries, RA 

affects about 5 to 50 people per 100,000 people annu-
ally [7]. However, the etiology of RA remains unclear, 
and there is still no cure for RA. The treatment of RA 
focuses on preventing it from progressing to permanent 
damage by alleviating pain and reducing inflammation 
[8, 9]. Therefore, it is crucial to intervene and control RA 
through timely and accurate diagnosis, especially early 
diagnosis, to prevent it from being a permanent disease.

At present, the examination and diagnosis methods 
of RA mainly include laboratory examination, imaging 
examination, arthroscopy, and arthrocentesis [5]. In par-
ticular, the radiograph is one of the most common and 
primary methods of RA diagnosis because of its speed, 
affordability, and effectiveness in visualizing lesions. 
However, it is found in practice that physicians may 
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misinterpret radiographs, which may be contributed to 
several reasons, such as inexperience, poor image qual-
ity, tiredness caused by long-term reading, and their own 
subjectivity. Meanwhile, it is easy to dismiss the ambigu-
ous lesion characteristics, especially tiny lesions and 
early RA, leading to false negative results and mistaken 
diagnoses. Especially in resource-limited areas, the mis-
diagnosis rate of RA is higher due to outdated detection 
equipment or insufficient experience of physicians. To 
overcome these challenges and reduce misdiagnosis rate, 
researchers have begun to develop computer-aided diag-
nosis (CAD) systems to assist doctors in obtaining more 
accurate results. CAD systems are capable of detecting 
lesions and graphically displaying the diagnostic results 
to physicians. CAD systems can locate, diagnose and 
quantitatively analyze the lesions on medical images, 
thereby reducing the misdiagnosis and missed diagnosis 
of lesions by physicians, and improving diagnostic accu-
racy and rate. Therefore, it is clinically significant to build 
a CAD system to effectively assist physicians in complet-
ing RA diagnosis accurately and efficiently, especially for 
resource-limited areas and physicians with insufficient 
experience.

In recent years, deep learning has developed rapidly 
and has been widely used in various computer vision 
tasks [10–12]. In particular, convolutional neural network 
(CNN) is one of the most popular and universal architec-
tures in deep learning [13–15]. Furthermore, CNN is also 
well applied in the field of medical image analysis, such 
as nodule and tumor detection [16–18], organ segmenta-
tion [19–21], and cancer screening [22, 23]. CNN-based 
CAD systems are characterized by objectivity, efficiency, 
and high sensitivity [24]. Therefore, we consider CNN to 
be a natural candidate for automatic radiograph-based 
RA diagnosis to improve the diagnostic accuracy and effi-
ciency of physicians.

In this study, we aim to explore the feasibility and appli-
cability of various CNN architectures in radiograph-
based RA diagnosis to assist physicians in diagnosing RA 
accurately and efficiently. For this purpose, we propose a 
CNN-based model for RA recognition and staging. Spe-
cifically, the model is designed based on five popular and 
universal CNN architectures, such as AlexNet [13] and 
VGG16 [25]. The main contribution of this study can 
be summarized as follows: 1) We present a CNN-based 
automatic diagnostic model to assist physicians in diag-
nosing RA accurately and quickly. Therefore, physicians 
can quickly know whether a patient suffer from RA and 
the stage of RA by simply feeding the hand radiographs 
into the model. 2) To improve the reliability and inter-
pretability of the presented model, we use t-SNE technol-
ogy to visualize the representations to display whether 
the samples of same category can be effectively clustered 

into the same cluster. 3) We analyze and compare five dif-
ferent CNN architectures in two tasks. Thus, we deter-
mine the best model structure in RA recognition and RA 
staging to assist physicians in diagnosing RA.

Materials and methods
Image acquisition
The hand radiographs of RA are mainly collected from 
two general hospitals in Ningbo, China from January 
2020 to March 2023. All protected patient health infor-
mation contained in the DICOM header is eliminated by 
data masking approaches, including patient name, insti-
tution ID, and referring physician name. RA stages may 
vary in different hands of the same patient due to work 
and lifestyle factors. Therefore, to make the results more 
accurate, we separate all radiographs containing both 
hands into two radiographs, with only the left or right 
hand included in each radiograph. We finally collect 344 
hand radiographs. The study is approved by the Ethics 
Committee of Ningbo No.2 Hospital.

Image annotation
We divide the patients into normal and RA with five 
stages, according to medical guidelines [7, 26] and the 
actual requirements of the hospital. Meanwhile, if a hand 
suffers from RA in multiple joints with different stages, 
we consider the most severe RA to be the final stage of 
the hand. To annotate the RA stages as accurately as pos-
sible, we employ a two-stage procedure for interpreting 
radiographs. In the first phase, two physicians annotate 
the radiographs separately according to the annotation 
scheme. The purpose of the second phase is to calibrate 
the annotations in the first phase. If there are discrepan-
cies in the annotations between the two physicians in the 
first stage, they will discuss to determine the final annota-
tion. We illustrate the location and stage of the RA lesion 
on the hand radiograph in Fig. 1.

Data pre‑processing
We randomly divide the RA dataset into a training 
set and a test set at a ratio of 7  : 3, as shown in Table 1. 
Meanwhile, to prevent potential data leakage, both the 
left and right hands of the same patient are only in the 
same dataset. Eventually, 240 radiographs are used to 
train the model, and 104 radiographs are used to evaluate 
the model. Due to the different resolutions of the origi-
nal radiographs, we resize each radiograph to 224 × 224 
pixels to maintain the sample consistency while training 
the model. Furthermore, the appearance of radiographs, 
such as brightness and contrast, varies widely due to the 
acquisition sources and radiation dose. Therefore, we 
normalize each radiograph to scale the pixel intensity 
into the range of [0, 255] .
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Data augmentation
Robust deep learning models need to be trained with 
large amounts of samples. However, high-quality anno-
tated medical images are scarce due to the high cost 
of annotation. Therefore, we implement an implicit 
expansion of samples by applying data augmentation 
techniques to prevent CNN from learning irrelevant 
patterns and over-fitting [27]. These data augmentation 
approaches include random rotation, translation, and 
horizontal and vertical flipping.

Model training
Five different popular CNN architectures are used to 
build the RA diagnostic model, including AlexNet [13], 
VGG [25], GoogLeNet [28], ResNet [14], EfficientNet 

[29]. For fair comparison, we optimize all five architec-
tures using the same parameters. Here, we train the 
model using the AdamW optimizer with a batch size 
of 64. Meanwhile, the initial learning rate and weight 
decay are set to 1e-5 and 1e-2, respectively. All models 
are trained for 100 epochs. In particular, since there are 
many variants of VGG, ResNet, and EfficientNet, we only 
train VGG16, ResNet50, and EfficientNetB2, which are 
the most commonly used of these networks. Further-
more, all networks are implemented by PyTorch, and all 
experiments are performed on two NVIDIA RTX 2080Ti 
GPUs with 11GB of memory. The details of these CNN 
architectures are as follows:

AlexNet: AlexNet is a CNN architecture designed for 
image classification. It consists of five convolutional lay-
ers, some followed by max-pooling layers, and three fully 
connected layers. Especially, it introduces the ReLU acti-
vation function and GPUs to improve training speed and 
employed dropout to reduce over-fitting. It is also using 
data augmentation techniques to accelerate convergence.

VGG16: VGG16 consists of 16 layers, including 13 con-
volutional layers with 3× 3 filters and 3 fully connected 
layers. The convolutional layers are stacked on top of 
each other to increase the depth of the feature map while 
maintaining the spatial resolution by maximizing the 
pooling layer. It also employs the ReLU activation func-
tion and uses a softmax classifier in the last layer. The 
architecture achieves high accuracy in image classifica-
tion on the ImageNet dataset.

Fig. 1 Hand radiographs with RA stage annotations. a-f represent the normal patients and patients with RA at different stages. The top and bottom 
rows represent the right and left hands, respectively. For the same patient, the red box represents the highest RA stage and the green box 
represents other stages. For example, for a RA (stage 3) patient, the red box represents stage 3, while the green box represents stage 1 or 2

Table 1 Description of training and test datasets

Class Training Test All

Normal 26 13 39

Stage 1 33 14 47

Stage 2 54 22 76

Stage 3 56 24 80

Stage 4 38 17 55

Stage 5 33 14 47

Total 240 104 344
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GoogLeNet: GoogLeNet is a type of CNN based on the 
Inception module [28] designed for efficient computation 
and high accuracy. The Inception modules use multiple fil-
ter sizes ( 1× 1 , 3× 3 , 5× 5 ) and pooling operations within 
the same layer to capture different spatial features. The net-
work consists of 22 layers, including 9 Inception modules, 
and employs global average pooling at the end instead of 
a fully connected layer to reduce parameters and prevent 
over-fitting. GoogLeNet demonstrates the effectiveness of 
multi-scale feature extraction.

ResNet50: ResNet50 is one of the most commonly used 
CNN architectures. It contains 50 layers and is designed to 
address the problem of gradient vanishing by utilizing the 
residual learning. The model consists of multiple residual 
blocks, each containing a convolutional layer, batch nor-
malization, and ReLU activation function. The residual 
blocks allow the network to learn identity mapping, which 
makes it easier to train deeper model. It improves the train-
ing efficiency and accuracy of deep networks and greatly 
advances the development of deep learning.

EfficientNetB2: EfficientNetB2 employs a technique of 
compound model scaling to scale the depth, width, and res-
olution, aiming to balance the performance and efficiency. 
It consists of multiple mobile inverted bottleneck convo-
lution (MBConv) blocks and squeeze-and-excitation (SE) 
optimization, which enhances the feature extraction capa-
bility. Comparing with traditional CNN architectures, it 
also employs SiLU (Swish-1) activation function and batch 
normalization techniques to achieve superior performance 
in image classification tasks with fewer parameters and 
lower computational cost.

Evaluation metrics
We use the receiver operating characteristic (ROC) curve 
to show the performance of a classification model at all 
classification thresholds. The ROC curve is obtained by 
plotting the true positive rate against the false positive rate 
at different threshold settings. We define the area under the 
ROC curve (AUC), accuracy, sensitivity, specificity, and f1 
to evaluate the model [30]. AUC measures the entire area 
underneath the entire ROC curve. The other metrics are 
defined as follows.

(1)Accuracy =
TP + TN

TP + TN + FP + FN
,

(2)Sensitivity =
TP

TP + FN
,

(3)Specificity =
TN

TN + FP
,

True positive (TP) means that the RA sample is cor-
rectly classified. True negative (TN) means that the 
normal sample is correctly classified. False positive (FP) 
means that the normal sample is misclassified as RA. 
False negative (FN) means that the RA sample is misclas-
sified as a normal sample.

Results
RA recognition and staging
We evaluate the CNN-based model in RA recognition 
and staging tasks, as shown in Tables 2 and 3. The experi-
mental results show that the model achieves excellent 
AUC with high sensitivity in both tasks. Meanwhile, we 
display the confusion matrix to efficiently visualize mis-
classified samples, as shown in Fig. 2.

For RA recognition, all methods achieve an AUC 
greater than 90% with high sensitivity (over 98%). Mean-
while, the accuracies of the model based on AlexNet, 
VGG16, GoogLeNet, ResNet50, and EfficientNetB2 are 
96.15%, 97.12%, 96.15%, 95.19%, and 96.15%, respectively. 
Confusion matrix also show that RA samples are rarely 
or even not classified as normal samples.

For RA staging, all methods can also achieve an AUC 
over 77% with high sensitivity (over 81%). Although the 
accuracy of all methods is not very high (below 70%), 
we can find from the confusion matrix that most of the 
prediction errors occur between adjacent RA stages. 
Meanwhile, RA samples are rarely predicted as normal 

(4)F1 =
2 ∗ TP

2 ∗ TP + FP + FN
,

Table 2 Comparison of different methods on RA recognition 
task (%)

Method AUC Accuracy Sensitivity Specificity F1

AlexNet 95.35 96.15 98.90 76.92 97.83

VGG16 90.03 97.12 100.0 76.92 98.38

GoogLeNet 97.80 96.15 100.0 69.23 97.85

ResNet50 93.03 95.19 98.90 69.23 97.30

EfficientNetB2 95.77 96.15 98.90 76.92 97.83

Table 3 Comparison of different methods on RA staging task (%)

Method AUC Accuracy Sensitivity Specificity F1

AlexNet 77.36 53.04 89.54 44.27 40.84

VGG16 83.36 56.57 92.67 47.72 44.71

GoogLeNet 80.32 66.19 84.45 61.24 48.35

ResNet50 78.87 63.30 82.38 58.55 46.32

EfficientNetB2 83.06 69.39 81.45 66.36 47.36
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samples. Therefore, the model achieves high sensitivity 
with low false negatives.

ROC curve
The ROC curve is a relatively stable metric for select-
ing a potentially optimal model, especially for unbal-
anced samples. As shown in Figs. 3 and 4, the difference 
between the AUC obtained by all methods on the corre-
sponding training and testing is no more than 6%, which 
proves that our proposed model is not over-fitting. Espe-
cially for RA recognition, all AUCs are more than 90.0% 
in the case of unbalanced samples, and the ratio of RA to 
normal samples is about 7 : 1. For RA staging, the model 
has a relatively higher AUC for predicting early-stage 

(including normal) or late-stage RA than predicting mid-
stage RA. That is because the characteristics between dif-
ferent mid-stage RA are not very distinct.

Visualization
The predictive power of a model is attributed to its ability 
to learn discriminative representations. For the purpose 
of improving visual interpretation, we visualize discrimi-
native and aggregated representations of input images by 
t-SNE visualization [31]. In Fig.  5, different colors rep-
resent different classes of RA samples. We can observe 
three different aspects. First, samples with the same class 
are clustered together. Second, samples from different 
classes are separated. Third, RA samples are relatively 

Fig. 2 Confusion matrix. a-f represent the different CNN architectures. The top and bottom rows represent the confusion matrix of RA recognition 
and staging obtained by different CNN architectures, respectively. For each confusion matrix, the horizontal axis represents the model predicted 
label, and the vertical axis represents the true label

Fig. 3 The ROC curve on RA recognition. a and b represents the ROC curve of training set and test set
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scattered in the RA recognition task due to the signifi-
cant variations between different RA stages.

Loss curve
Figure 6 shows the variation of the loss function for dif-
ferent methods in RA recognition and staging, respec-
tively. It is clear that the loss decreases as the number of 

epochs increases during training. For RA recognition, the 
training loss of ResNet50 seems to reach the threshold 
within 10 epochs, while other models basically converge 
within 40 epochs. However, the training loss for RA stag-
ing converges much slower than that for RA recogni-
tion. For RA staging, ResNet50 converges around epoch 
60, while other models converge around epoch 90. The 

Fig. 4 The ROC curve on RA staging. a-f represent the normal patients and patients with RA at different stages. For each RA stage, the top 
and bottom figures represent the training ROC curve and the test ROC curve, respectively
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convergence of loss proves the stability and generaliza-
tion of the proposed model.

Discussion
In this study, we present a fully automated diagnos-
tic model based on CNN architectures, aiming to assist 
physicians in diagnosing RA. We demonstrate the fea-
sibility and effectiveness of the model by analyzing and 
comparing five well-known CNN architectures. The 
model achieves excellent AUC and high sensitivity in 
both RA recognition and staging. In the test set, Goog-
LeNet achieves AUC of 97.80% and sensitivity of 100.0% 
in RA recognition, and VGG16 achieve AUC of 83.36% 
and sensitivity of 92.67% in RA staging. The experimen-
tal results demonstrate that the model can diagnose RA 
quickly and accurately. Therefore, the model can effec-
tively assist physicians in diagnosing RA quickly and 
accurately to minimize misdiagnosis rates, especially for 

physicians working in resource-limited areas and lacking 
experience.

Many researches [32, 33] treat deep learning model 
as a black box as it lacks interpretability, which limits 
its application in the field of medical image analysis. In 
our study, we adopt the t-SNE-based visualization tech-
nique to improve the model interpretability. In the RA 
recognition and staging tasks, t-SNE visualization clearly 
shows which samples the model maps to the same clus-
ters. From Fig. 5, it can be observed that although some 
sample points fall into clusters, this mainly occurs among 
samples from adjacent stages. The reason is that for sam-
ples from adjacent stages, the differences in lesions are 
not distinct. However, for the majority of samples and 
those with larger differences between stages, the repre-
sentation clusters exhibit clear distinctiveness.

To our knowledge, there are only a few previous stud-
ies that have focused on the diagnostic performance 

Fig. 5 Representation visualization by t-SNE. The columns represent the different CNN architectures. The top and bottom rows represent the RA 
recognition and staging, respectively. In each figure, different colors represent the representations of different classes of RA samples

Fig. 6 Comparing loss functions on the training dataset. a and b represent the RA recognition and staging loss, respectively
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of CNN-based approaches to diagnose RA within the 
hand joints on radiographs [26, 34–36]. Morita et  al. 
[34] propose the finger joint detection method estima-
tion method using support vector machine on 45 RA 
radiographs. Experimental results show that the pro-
posed method detects finger joints with an accuracy of 
81.4%, and estimated the erosion and joint space narrow-
ing score with an accuracy of 50.9% and 64.3%, respec-
tively. They use a small number of images for training and 
testing, which may lead to over-fitting. Ureten et al. [35] 
develop an automated diagnostic method using a CNN 
on hand radiographs to help physicians diagnose RA. 
The method is trained on 135 right-hand radiographs 
and tested on 45 radiographs with a sensitivity of 68.18% 
and a specificity of 78.26%. Compared with our method, 
they achieve a lower sensitivity. To identify RA from 
normal patients, Mate et  al. [36] also propose a CNN-
based classification model and evaluate the model on a 
dataset containing 290 radiographs. The results show 
that the method achieves an accuracy of 94.46%, as well 
as a sensitivity of 95.0% and a specificity of 82.0%. How-
ever, the above two studies focused only on RA recogni-
tion without staging, yet early-stage RA is crucial for RA 
treatment and rehabilitation. Hioki et  al. [26] develop 
an automatic assessment system for RA based on deep 
learning, which simultaneously realizes the RA recogni-
tion and staging. However, the model is validated on only 
50 radiographs, which may lead to over-fitting and weak 
robustness.

In conclusion, although existing studies have shown 
relatively high performance in RA diagnosis, these stud-
ies have two common shortcomings, namely small 
samples or limited tasks. The former tends to lead to 
over-fitting, which impairs the generalization and robust-
ness of the model [26, 34, 35]. To address the issue, we 
collect and annotate a moderate number of samples, as 
well as these samples are implicitly expanded by data 
augmentation techniques when training the model. The 
latter neither fully exploits the potential of the model nor 
satisfies the clinical needs, resulting in weak feasibility 
and applicability [35, 36]. Thus, we validate five popular 
CNN architectures on two RA diagnosis tasks to exploit 
the potential of the presented model. The experimental 
results show the clinical reliability and significance of the 
model.

Furthermore, it is well known that the strong classifica-
tion ability of CNN benefits from its discriminative rep-
resentational learning. Thus, the discriminative power 
of our proposed model is mainly attributed to the fol-
lowing two aspects. On the one hand, the model learns 
aggregated representations within the same category and 
separated representations among different classes. Par-
ticularly, the model is still able to learn discriminative 

representations under the sample imbalance. On the 
other hand, the model has a low false negative rate for RA 
recognition, i.e., few or even no RA samples are classified 
as normal. Meanwhile, for RA staging, most prediction 
errors also occur between adjacent RA classes. This is 
because there may be more than one joint with RA in the 
same hand with different stages, and we take the high-
est stage as the final RA label for the hand. In addition, 
joints in adjacent RA stages are relatively similar in shape 
and structure. Both aspects increase the difficulty of rep-
resentational learning. Nevertheless, the results demon-
strate the effectiveness of the CNN-based model for RA 
diagnosis.

Accurate diagnosis of RA patients has important clini-
cal significance for the treatment of RA. There is a lack of 
reliable CAD systems for RA diagnosis. In this study, we 
demonstrate the feasibility and applicability of the CNN-
based model in RA diagnosis. Furthermore, The potential 
application of the model is that it can help in identifying 
patients with early RA. Since there is currently no cure 
for RA, it is crucial to control it at an early stage.

Although the proposed CNN-based model achieves 
excellent performance in RA recognition and staging, 
there are still the following limitations or challenges. 
Firstly, there is a relatively low accuracy of the RA staging 
due to the small differences between adjacent RA stages. 
Therefore, it is necessary for future studies to improve the 
learning ability of discriminative representations based 
on deep learning methods such as contrastive learning. 
Secondly, there is a challenge of insufficient high-quality 
annotated images in medical image analysis. We believe 
that transfer learning or unsupervised learning will be an 
effective way to solve the problem. Finally, RA examina-
tions include radiographs, laboratory examinations, and 
others. It is a highlight of future research to build multi-
modal learning methods that integrate different data for 
more accurate diagnosis.

Conclusion
In this study, we present an innovative CNN-based 
approach to build an automatic RA diagnostic model, 
aiming to assisting physicians in diagnosing RA quickly 
and accurately. For this purpose, we explore the feasibil-
ity and applicability of five different popular CNN archi-
tectures based on radiographs. In particular, GoogLeNet 
and VGG16 achieve the best results in RA recognition 
and staging with AUCs of 97.80% and 83.36%, respec-
tively. Extensive experimental results demonstrate that 
the presented CNN-based model achieves excellent per-
formance in both tasks. Overall, the model can assist 
physicians in diagnosing RA, especially in resource-lim-
ited areas and for inexperienced physicians. In future 
work, we will continue to optimize the network and 
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incorporate patients’ laboratory data and multi-center 
data into the model to build a more comprehensive diag-
nostic model.
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