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Abstract

Breast cancer is a prevalent disease and the second leading cause of death in women globally. Various imaging
techniques, including mammography, ultrasonography, X-ray, and magnetic resonance, are employed for detection.
Thermography shows significant promise for early breast disease detection, offering advantages such as being non-
ionizing, non-invasive, cost-effective, and providing real-time results. Medical image segmentation is crucial in image
analysis, and this study introduces a thermographic image segmentation algorithm using the improved Black
Widow Optimization Algorithm (IBWOA). While the standard BWOA is effective for complex optimization problems,

it has issues with stagnation and balancing exploration and exploitation. The proposed method enhances explora-
tion with Levy flights and improves exploitation with quasi-opposition-based learning. Comparing IBWOA with other
algorithms like Harris Hawks Optimization (HHO), Linear Success-History based Adaptive Differential Evolution
(LSHADE), and the whale optimization algorithm (WOA), sine cosine algorithm (SCA), and black widow optimization
(BWO) using otsu and Kapur's entropy method. Results show IBWOA delivers superior performance in both qualita-
tive and quantitative analyses including visual inspection and metrics such as fitness value, threshold values, peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and feature similarity index (FSIM). Experimental
results demonstrate the outperformance of the proposed IBWOA, validating its effectiveness and superiority.
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Introduction

According to the World Health Organization, Breast can-
cer is the second most common cancer among women
worldwide after lung cancer. Breast cancer accounted for
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ship, and frequent checks are required for those who may
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be at risk. It is most commonly seen in the ducts, which
are tubes that deliver milk to the nipple, and the lacrimal
gland, which is the milk-producing center. This form of
malignancy has been observed in both men and women;
nevertheless, women are significantly more likely to suf-
fer from it. This is represented in the fundamental differ-
ence between the breasts of both sexes, where malignant
cells are frequently identified in milk-producing cent-
ers, lobules, milk transporting canals, and ducts [3]. An
anatomy image of the woman’s breasts is shown in Fig. 1,
along with the most preferable and sensitive area of can-
cer development. Breasts are the exterior structures of
the female organism, so imaging tools can identify abnor-
malities in it. There are various imaging approaches for
early breast cancer detection such as Magnetic Reso-
nance Imaging (MRI), ultrasound, X-Ray imaging, and
Computed Tomography (CT). The most widely employed
method is mammography; it is also the most effective
screening tool [4]. It employs X-rays to print an image of
the breast to detect cancer and provide accurate results.
This method is usually followed in the age group of
50 years to 70 years. Despite its efficiency, it has several
limits and downsides, one of which is the risk of wrong-
ful convictions or negatives owing to a large number of
variables analyzed for evaluation. Furthermore, because
of the pressure on the breast, the mammography proce-
dure is unpleasant for females also this procedure is not
recommended for dense breasts.

More pleasant and secure alternatives for breast-testing
are thermal imaging. The thermal screening process is
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Fig. 1 Most sensitive area for malignant tissue [5]
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quick, easy, safe, painless, non-invasive, and inexpensive.
It can identify tumor development at a preliminary phase
and is also valid for dense breasts. Breast thermography
uses infrared light to detect the vasculature energy emit-
ted out from the breast’s membrane [1]. This is significant
since malignant tumors have greater metabolic activity
than healthy tissue. Because breast tumors very seldom
develop symmetrically for each breast, physicians fre-
quently use asymmetrical assessment to analyze breast
thermogram images. The rise in temperatures aids in the
detection of malignant cells by analyzing the existence of
unsymmetrical thermal trends in each breast’s thermo-
gram [6]. Thermography has seen a surge in popularity in
recent years, particularly for the breast diagnosis process.
This is owing to the allure of its low-risk strategy and the
possible development in signal processing and Artificial
intelligence.

The eventual objective of current research on this sub-
ject is to develop a precise and reliable tumor diagnos-
tic that can be used as a benchmark for breast cancer
examination purposes. The area of thermal images and
their implications have been resurrected as a result of
recent technical developments. A breast cancer diagno-
sis is among the most prevalent usage of thermal imag-
ing. Thermography, on the other hand, has not yet been
accepted as a common approach for this objective. Fur-
thermore, even though mammography is hazardous to
health, even then the doctors prefer it over thermogra-
phy findings. If thermal imaging improves to a reasonable
level, it may be presented as a suitable alternative option.
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Image segmentation is a critical step in image process-
ing that is used in areas including object recognition,
pattern classification, robotics vision, diagnostic imag-
ing, farming, and cryptography. The categorization sys-
tem may fail if the segmentation result is erroneous. The
segmentation approach has been used to tackle several
difficulties. Based on a given thresholding value, seg-
mentation divides an image into multiple homogenous
sections or segments with comparable qualities such as
texture, colour, intensity, contrasts, shape, and size. There
are two types of thresholds: bilevel and multilayer. In
the basic lesson, a specific threshold value is utilized to
divide the image into two homogeneous portions. The
latter approaches are used to divide an image into more
than two sections using a histogram of pixel intensi-
ties. Because of substantial image thresholds, choosing
threshold values is critical when segmenting an image. As
a result, either parametric or non-parametric approaches
are used to frame it as an optimization problem.

Because existing multilevel image thresholding tech-
niques are sometimes computationally costly, meta-heu-
ristics optimization approaches have attracted interest
such as differential evolution (DE) [7, 8], ant colony opti-
mization algorithm (ACO) [9], gravitational search algo-
rithm (GSA) [10], Particle swarm optimization (PSO)
[11, 12], bacterial foraging algorithm (BFO) [13], cuckoo
search (CS) [14], grey wolf optimizer (GWO) [15], harris
hawks optimization (HHO) [14], and moth-flame optimi-
zation (MFO) [16]. The number of thresholds employed
in this experiment can affect the study’s importance.
Numerous meta-heuristic approaches used to solve
various optimization issues usually have flaws such as
entrapment in local regions, premature conversion, and
insufficient global searchability. Scholars may now sug-
gest improved and hybrid versions as well as improved
methodologies based on these findings. In optimization
problems, considering a candidate and its inverse solu-
tion at the same time can speed up converging to a glob-
ally optimum solution. Opposition-based learning (OBL)
and Lévy Flight are two of the most effective methods for
improving meta-heuristic algorithm search performance.

The Black Widow Optimization Algorithm (BWOA)
is a recently developed population-based meta-heuristic
optimization approach influenced by black widow spi-
ders’ peculiar mate selection [17]. This method mimics
the distinctive behavioral traits of black widow spiders by
imitating their mating behavior. This approach involves
different phases known as initialization, cannibalism,
mutation, and convergence. When a female wants to
procreate, she sprays chemicals on selected parts of her
web to lure the male black widow. Animals with insuf-
ficient fitness are eliminated from the loop at this stage,
resulting in early convergence. These first spiders opted
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to procreate the future group in pairs. The female black
widow eats the male black widow either during or after
mating. She then pulls preserved sperm cells from her
reproductive level of functioning and releases them into
egg pouches. The spiderling emerges in the egg pouches
as early as eleven days after the egg is placed. They dwell
together on the parental web for several days; sibling can-
nibalism is detected at this time. As a result, they lift off
by being propelled by the wind.

Contribution and Motivation

The BWOA is a good alternative for solving numerical
optimization benchmark problems and in engineering
applications [18, 19]. However, it has some drawbacks:
convergence speed, stagnation in local optima, an insuf-
ficient balance between exploitation/exploration, and low
diversity. The following two stages are employed in the
IBWOA version: (1) Levy flights and (2) Quasi Opposi-
tion-based learning (QOBL). Levy flights are amended
to enhance the exploration capability of the basic BWOA
algorithm [20]. Whereas quasi opposition-based learn-
ing is presented to improve the exploitation capacity
[21]. An image-processing would be evolved as the major
challenge in this arena. The major goal of this study is to
provide a reliable and high-performance thermal image
analysis for the diagnosis of breast cancer. The presented
algorithm will enhance the balance between exploration
and exploitation and also prevent stuck in the local solu-
tions. To solve the aforementioned limitations, this paper
suggests the use of a metaheuristic approach to segment
thermographic images for breast cancer detection. This
study intends to advance image segmentation investiga-
tion by presenting an enhanced IBWOA based on QOBL
and Lévy Flight method. As per the author’s best knowl-
edge, it’s the first time that BWOA has been used for
image segmentation in thermal imaging of breast cancer
images. The proposed IBWOA algorithm is applied in
the image segmentation process. The major contribu-
tions and objectives of this paper can be summarized as
follows:

+ Conduct background study and literature review of
thermal breast imaging, image segmentation using
various optimization techniques.

+ Propose an improved BWOA using levy flight pro-
cess has been proposed for solving the image seg-
mentation problem using Otsu and Kapur’s entropy
as an objective function.

+ A Novel quasi opposition-based learning is pre-
sented to improve the exploitation ability and balance
between exploration and exploitation.

+ Performance comparison of improved BWOA is per-
formed with existing state of art techniques such as
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Harris Hawks Optimization (HHO) [22], LSHADE
[23], Whale Optimization Algorithm (WOA) [24],
Sine Cosine Algorithm (SCA) [25], Slap Swarm Algo-
rithm (SSA) [26], and Black Widow Optimization
Algorithm(BWOA) [27] and Quantitative analysis is
carried out using threshold, PSNR, SSIM, and FSIM
based parameters.

Organization of paper:

The remainder of the paper is structured as follows:
Sect. “ Related Works” reviews related works, while
Sect. “ Materials and methods” details the materials and
methods. Sect. “Proposed Methodology: Improved Black
Widow Optimization algorithm (IBWOA)” outlines the
proposed methodology. Sect. “Experimentation setup
and Results” presents and analyzes the experimental
results. Finally, Sect. “Conclusions and future work” con-
cludes the paper and discusses future research directions.

Related works

Thermal imaging

In medical terms, thermal imaging is the practice of
applying the heat energy fluctuations released by the
body parts and translating them into images that can be
evaluated by professionals. This particular concept has
a long and illustrious history, traced to ancient cultures.
The ancient People used their symbols to sense heat
generated from limbs in evaluating and treating sick-
ness. Furthermore, Greeks used clay or mud to record
the temperature of human organs, with the irregularity
being discovered by watching the region which dries out
first. Thermal imaging of the breasts refers to the vari-
ation in the heat map deep within the skin among nor-
mal and cancerous tissues. The presence of a tumor in
the body raises the heat of the cells and around it [28]. A
balanced assessment of normal and cancerous tissues is
generally used by professionals. The process for utiliz-
ing thermography to screen for breast cancer is relatively
simple. It begins with a visual examination of the area of
the chest. This enables doctors to link any unexpected
activity to the heat map.

Image segmentation

For diagnosing breast cancer, image segmentation is a
necessary stage. The classification system may fail if the
segmented outcome is incorrect. To make the analytical
stage easier, segmentation divides an image into various
parts based on recognized information such as color,
pattern, intensity, or movement [29, 30]. A visualization,
detection, identification, and quantifying assessment
are usually performed after a segmentation technique.
Furthermore, thresholding has been widely used in the
automated process of medical image analysis as a means
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of assisting doctors in the diagnosis phase. Even though
there are numerous works on fully automated and
semi- automated segmentation, the assessment of images
and evaluation remains a challenge even today also. The
major reason behind this is the complex frameworks
with common characteristics, noise situations, poor con-
trast, and inferior boundaries, all of which are common
in medical images. Support Vector Machine (SVM) [31-
33], decision tree, K-nearest neighbor (k-NN) [26, 34,
35], Bayesian network (BN) [36], artificial neural network
(ANN) [35, 37, 38], deep learning (DL) [39-41], and con-
volutional neural networks (CNNs) [42-44] are widely
used method in machine learning for classification and
problem analysis.

The early thermography trials for breast cancer detec-
tion were ineffective due to thermal imaging technology’s
inability to monitor temperature differences. Cameras
have grown more sensitive as a result of technologi-
cal advancements, and temperature disparities in breast
infrared thermography of tumor patients have been
emphasized.

Thermal imaging are useful for breast cancer diagnosis,
assessment of benign diseases, and follow-up operations
since 2014 [32, 42]. In this context, as explained, ther-
mal imaging has become the focus of various investiga-
tions involving breast cancer diagnosis in recent years.
We'll go through a few of these in this subsection. The
development of a Computer-Aided Diagnostic (CAD)
approach for breast cancer classification always begins
with the segmentation of a Region of Interest. The goal
of Region of Interest segmentation is to isolate the breast
areas from the surrounding tissue. The researchers of
[3] presented a thermography-based breast cancer clas-
sification approach as a novel process for classification.
This approach is based on categorizing breast thermal
images into three groups: healthy, harmless, and cancer-
ous. Pre-processing stage and segmentation, extraction
of features, feature selection employing ant colony opti-
mization and particle swarm optimization, and classifica-
tion using a Multi-class support vector machine are the
primary phases in this approach. The integration of the
curve variable k and the gradient vector flow is employed
as a segmentation approach [45]. To characterize the seg-
mented breast cancer dataset, the authors used a convo-
lutional neural network (CNN). They employed a mix of
binary masks, k-means clustering, and the signature bor-
der for feature extraction. In the study [46] AlFayez et al.
utilized the Multilayer Perceptron (MLP) and Extreme
Learning Machine (ELM) as classification techniques
(ELM). Ibrahim et al. [47] suggested a horizontal pro-
jection profile (HPP) examination to segment both the
right and left breasts by locating the top, left, lower, and
right boundaries. HPP was utilized to identify the top
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and bottom boundaries, while Vertical Projection Profile
(VPP) was utilized to identify the left and right borders.
After employing HPP, Sathish et al. [48] applied asym-
metric assessment, a novel alternative for segmentation
that relies on locating the point of intersection to sepa-
rate the right and left breasts [28, 48].

Shahari S and Wakankar [49], utilized the segmen-
tation technology known as hot region segmentation
strategy, which relies on explicitly dividing objects from
backdrops after implementing the k-means clustering
algorithm, that was implemented to categorize colors
for Lab mode after converting from RGB mode to show
and compare the distance between colors. Gongalves
et al. [33] relied on using three kinds of thermal images
for an individual, whether healthful, normal, or danger-
ous, to diagnose breast cancer using machine learning
algorithms. They used a mix of feature extraction algo-
rithms following segmenting the ROI. Hossam et al
introduced a novel automated segmentation approach
in [38], which included pretreatment, segmentation,
and segregation for an area of interest, followed by ROI
segmentation towards the image. Just the segmentation
ROI was subjected to the feature extraction technique.
Ultimately, support vector machines (SVM) and artificial
neural networks were used to generate output. Multilevel
thresholding of Breast Thermal images using the Drag-
onfly algorithm was proposed by Diaz-Cortés et al. [1].
The temperature distribution of the photos is used as a
source for segmenting grayscale breast infrared images.
[50] suggest colour segmentation of aerial photos using
nature-inspired optimization techniques. As objective
functions, Otsu’s between-class variance and Kapur’s
entropy were used to evaluate the techniques’ effective-
ness. For colour segmentation of satellite images, Kapur’s
entropy-based objective function performs better, while
the Cuckoo’s search strategy is more economical. He and
Huang [51] proposed an effective krill herd (EKH) opti-
mization strategy for multilayer thresholding of colour
images, based on Otsu’s method with Kapur and Tsal-
lis entropy as objective functions. When compared to
the krill herd algorithm, the effective krill herd (EKH)
method performs better krill herd (KH). Oliva et al. [52]
offer a multilayer thresholding approach based on the
electromagnetism optimization (EMO) algorithm. The
objective functions are Otsu’s and Kapur’s entropy cri-
teria, and the source is a histogram of photographs. For
image segmentation, Samantaray et al. [14] proposed a
hybrid Artificial Bee colony-Salp Swarm algorithm (ABC-
SSA). In a multilevel thresholding issue utilizing Kapur’s
entropy as the objective function, the hybrids technique
outperforms the ABC [53], Sine Cosine Algorithm (SCA)
[25], Social Spider Optimization (SSO) [54], and SSA
algorithms [26].
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Pare et al. [55] presented multilevel thresholding of
satellite images utilizing optimization algorithms Wind
Driven Optimization (WDO) [56], Bacterial Foraging
Optimization (BFO) [57], Firefly Algorithm (FA), Artifi-
cial bee colony algorithm (ABC), Differential evolution
(DE), and Particle swarm optimization (PSO) with image
energy curves as input. Kapur’s entropy, Tsallis entropy,
and Otsu’s approach are utilized as objective functions.
The entropy-based DE algorithms developed by Kapur
generate superior segmented images. Bhandari et al. [56]
presented multilevel thresholding utilizing WDO and
CS, utilizing Kapur’s entropy as the aim function. The
studies describe multilevel thresholding employing mul-
tiple optimization strategies. Using maximizing Otsu’s,
Kapur’s, and Tsallis’s entropy, Bhandari et al. [58] sug-
gested a modified artificial Bee colony (MABC) optimizer
for multilayer thresholding of aerial photos. When com-
pared to the ABC approach, the MABC technique pro-
vides superior segmented images. Acharya et al. [59] uses
a support vector machine (SVM) for 50 breast images for
automatic diagnosis and classification using the texture
feature. Milosevic et al. [34] presented classification, and
segmentation of breast thermal images using SVM, Naive
Bayes classifier, K Nearest Neighbor classifier, and GLCM
features.

Nonetheless, these methods have drawbacks; for
instance, they are computationally costly, especially as
the number of thresholds grows [12]. As a result, multi-
level thresholding is seen as a unique issue that must be
overcome. Meta-heuristic approaches are extensively
used in the associated literature to tackle these difficul-
ties on these grounds. Nature inspires metaheuristic
algorithms to find application in many areas like phys-
ics, biology, and social behavior, among other subjects.
Many researchers have utilized them to discover the ideal
values for real-world situations because of their ease of
implementation, versatility, and good performance.
Many meta-heuristic algorithms have been presented in
recent years like swarm intelligence (SI) [60] like Parti-
cle Swarm Optimization (PSO) [11], Ant Colony Opti-
mization (ACO) [61], Artificial Bee Colony (ABC) [53],
Teaching Learning Based Optimization (TLBO) [62],
Gray Wolf Optimization (GWO) [63], Salp Swarm Algo-
rithm (SSA) [26], and evolutionary computing (EC) [64]
like Differential evolution (DE) [65], etc. Along with all
these optimizations many different modified versions
of these algorithms have also been proposed for exam-
ple Cuckoo Search Algorithm via lévy flights, Learning
enthusiasm-based TLBO (LebTLBO) [66, 67], Modified
Naked Mole Rat Optimization (mNMRO) [68], etc. Zhao
et al. proposed a variant of the Slime Mould Algorithm
(SMA) [69], which had been used for the segmentation
of computed tomography (CT) images using multilevel
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thresholding using Renyi’s entropy as the primary objec-
tive function. Many such algorithms have been pre-
sented recently to improve the superiority of image
segmentation.

Materials and methods

To understand our work, this part gives the thoughts
about the materials and procedures necessary for the
construction of the suggested segmentation approach.

Dataset

The person must then normalize by being at ambi-
ent temperature (18 °C to 25 °C) for fifteen minutes.
The person must strip down the upper half of his or
her body, above the waistline to the neck. The whole
mechanism and arrangement are well explained in
Fig. 2. In which the patient at room temperature is
exposed in front of an IR camera and corresponding
thermal images at different positions are shown. The
dataset for breast cancer is taken from Digital Data-
base for Screening Mammography (DDSM): Breast
Cancer Image Dataset [70] (http://visual.ic.uff.br/dmi/
prontuario/home.php). Breast cancer may be detected
via thermal imaging analysis, which involves multiple
processes like preprocessing, segmentation, and clas-
sification of features. Thermal image processing’ pre-
processing and segmentation phases are believed to
be the most important procedures in identifying can-
cerous tissue since they may enhance the precision of
retrieving information and the classification of normal
and abnormal situations. The contour (breast area) may
be retrieved from the thermal image in the preliminary
step by deleting undesirable parts such as the neck and

Patient
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shoulders. This is accomplished by transforming pho-
tos to grayscale for segmentation. The three phases of
preprocessing include identifying the region of inter-
est, improving the thermal image, and normalizing the
image matrix.

Methods

To perform segmentation based on image threshold-
ing, Otsu’s between-class variance and other maxi-
mum entropy methods like Kapur’s entropy [71],
Renyi’s entropy [72], and Tsallis entropy [61] have been
developed. This kind of approach combines informa-
tion theory successfully, but the probability of a gray
level value being shown primarily affects the meth-
odologies. Another reason for influencing or affect-
ing the segmentation results is to ignore the gray level
value of the pixels. In 1979, Otsu proposed a thresh-
olding method that maximizes between-class variance
and minimizes intraclass variance to achieve optimum
threshold values [73]. The brightness and contrast of
an image do not affect the 1-D Otsu method, further-
more, it is a procedure with the less computational
cost for a small number of thresholds. The segmenta-
tion results of an image using Otsu are better. Never-
theless, the algorithm primarily considers only the gray
level value, for that reason, it fails to produce optimum
results in the case of noisy images. Depending upon
the number of threshold values, thresholding may be
defined by bi-level (BT) or multi-level (MT) threshold-
ing. Bi-level thresholding divides an image into two
distinct regions, while MT creates multiple regions in
an image.

Thermal Images

Fig. 2 Thermal imaging mechanism (Image Dataset [Online]. Available: http://visual.ic.uff.or/dmi/prontuario/home.php)
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Otsu between-class variance

The between-class variance introduced by the Otsu is a
nonparametric automatic method for image segmen-
tation. It employs techniques to determine a thresh-
old value to separate a histogram into different groups
[74]. Conventional techniques offer bi-level threshold-
ing image thresholding but due to the tiny differences
between the object and the context of a complex image,
bi-level thresholding is unable to properly determine
the ideal threshold. Hence, the segmentation problem
has been reported as a multilevel problem in literature,
but practically it becomes difficult to implement. Otsu’s
and Kapur’s approaches are therefore inappropriate for
multilevel image segmentation applications in the real
world. According to the literature, 3—4 threshold values
will cover all the points in the histogram, thus there is no
need to go beyond that [53, 75]. An exhaustive search for
multilevel segments will result in an exponential increase
in processing time as the number of thresholds rises.
When it comes to the usage of photographs, it might be
tough to know where to start. Discern the valleys and
bottoms, particularly in circumstances when the valley is
wide and flat, with a lot of noise. The data in this inci-
dent concerning surrounding pixels in the original image
might change to make the histogram better helpful for
thresholding. This approach is straightforward and unaf-
fected by the image’s intensity or brightness. The classic
Otsu approach, on the other hand, is a solitary classifi-
cation technique. The object inside the two classes could
no longer be differentiated after applying the method to
split the image into two classes. Other targets can be dis-
tinguished between the two classes; consequently, these
two classes must be further divided. Different classes are
segmented using the multi-threshold Otsu approach. To
split the actual photo into d classes, d-1 thresholds are
required for the multi-level technique. As a result, the
array of thresholds used for image segmentation is rep-
resented as th=[th,, th,, th,,.., thy ;]. Each class may be
defined in Eq. 1.

C1 <—{O,1,....,th1}
Cp < {thy+ Lithy+2,...,thy1}
. (1)

Cy < {thd+1,téd+2,....,L—1}

The interclass variance/ between class variance 0§ is
given by the following equation.

01% =wi (U1 — /,LT)2 + .o wn(y — /LT)2 + ..
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for average pixel levels of classes C; and C,,. The expres-
sion of 11 and ., are given by Eq. 3.

. theyy -1 .
S i D imthy+1 i i=thy_,+1 i
py = SEVEE = SEREE L M= ——
w1 Wy W41
(3)
n thy g1 L-1
wg = Zpinwb = Z Diseevnn wg = Z Di (4)
i=0 i=thy+1 i=thy_1+1

It is necessary to compute the probability distribution
pi that is given by Eq. 5

nj
bi= N (5)

where #; is the number of pixels having grey level i and
N is the total number of pixels. In Otsu’s method, the
intraclass variance is calculated and it provides optimum
threshold values. Considering i as a certain class for a
given image b having L gray levels (1,2,..., L) in the range
[0, L-1]. Extended between the class value is given by
f (k) between-class variance is represented in Eq. 6.

M
fk) = Z wi(pi — pr)? (6)
i=1

while considering the above classes Otsu method can
be easily extended to multilevel thresholding for M-1
thresholding levels. Where w; isa zeroth-order cumu-
lative moment for i class and pr is mean intensity for
hole image.

Sorsu(T) = @, = Argmax(f (k)),0 <k <L—1
(7)
where forsy is an objective, and the required optimal
threshold value of pixel can be derived from it by maxi-
mizing Eq. 7. Fitness function considering i multilevel
threshold values is given by the following equation.

Sorsu(Ti) = &, = Argmax(f (k)),0 <k <L-1,i=1,2,...,d—1

(8)

Kapur Entropy

Kapur’s entropy approach has caught the considerable
interest of researchers and is commonly utilized for image
segmentation problems due to its amazing results. For
multilevel thresholding segmentation, Kapur’s entropy is
a useful and practical statistic. The image is divided into

wg(pa_1 —pr)’ 2)

Where wpandw, are the probability of the same grey-
scale pixel of classes Cj and C,, given in Eq. 1, uo and

separate classes using Kapur’s entropy, and the amount
of the entropy decides if the group is homogeneous.
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Based on information theory, Kapur’s entropy method-
ology shows the ideal thresholding values by maximiz-
ing the entropy of every separate class or the summation
of entropies. Kapur’s entropy has a simple mathematical
and very simple procedure to be followed and provides
a significant level of stability. It possesses many positive
points such as fast processing, a high level of classifica-
tion performance, and also provides viable separation
between distinct classes based on the entropy of the orig-
inal image. By maximizing the objective function value,
Kapur’s entropy discovers the optimal threshold values.
To tackle the problem of image segmentation different
automatic processes are evolved, which can choose the
optimum statistical characteristic and threshold auto-
matically. The value of entropy ‘H’according to the Shan-
non theorem is given by Eq. 9.

n
- Z P;log, P; (9)
i=1

Where with P; as the possibility of the i gray level and
n’ defines the total grey level number. Kapur’s entropy is
used to find a single optimal threshold value by maximiz-
ing the below expression.

fKapur(T) =Hy + Hp

(10)

Different entropies associated with distinct classes may
be described as the following equation

t1—1 t1—1

DPi
Py Py =
Z o nw wa = Zpl (11)
L-1 P D) L-1
B ol > pi (12)

In order to extend the Kapur’s entropy from bi-level to
multilevel thresholding further entropy classes may be
added as given in Eq. 13.

t1—1 t1—1
Hy = — Z Poinlt,wq = lei

tz 1 ty—1
H_—Zﬁl’;ln Lwp =Y. pi

i=t1 i=t

t3—1 t3—1 (13)

—_Z 7wC_Zpl
11

-1
=— Z p:nlnw O = Zpi
i=ty i=t
Kapur’s entropy is used as an objective function to find
optimal thresholding values by maximizing the following
function given by Eq. 14 [76].
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m
Dy = argmaxZH,-(th),O <th<L-1
i=0

fKapur(T) = (14)
Skapur (T), will provide multiple optimal threshold values
as mentioned in Eq. 15 [56]

fKapur(T) =fKapur (thi), i=12,3,............ k

(15)
where T represents a vector having multiple threshold
values thy, thy, ths, ... .thi_1 and i correspond to a spe-
cific class.

Black Widow Algorithm

The Black Widow Optimization (BWOA) is a recently
developed population-based meta-heuristic optimiza-
tion approach for solving complicated engineering opti-
mization issues [27]. This method mimics the distinctive
behavioral traits of black widow spiders by imitating
their mating behavior. The black widow spider belongs
to the Araneae family and has eight legs. The infamous
and well-known black widow spiders belong to the Latro-
dectus subfamily of spiders. Latrodectus is a genus of
spiders that includes the black widow. The black widow
weaves her web at all times of the day and night, while
the female widow spends most of her adult life in a simi-
lar location. When a female black widow wants to mate,
she marks a few locations on her web to attract the male.
The suggested technique, like other conventional meth-
ods, starts with an initializing spider population, with
each spider representing a potential value. The spiders’
initializations are in couples and are attempting to gen-
erate new offspring. A female spider consumes the male
subsequent after or during or post pairing and eventually
transports the sperm to the egg sacs. After one and a half
weeks of placement, offspring emerges from the egg vesi-
cles. The offspring will stay in the mother web for many
weeks and during this stay time sibling cannibalism is
decided. As a result, the spiderlings are blown away from
the web. The next section outlines the entire procedure
of the BWOA methodology phases. It has four phases as
described in Fig. 3.

Population initialization

The variable values of the problem parameter must create
an adequate framework for the resolution of the present
issue to solve an optimization problem. This frame-
work is referred to as a “chromosome” in GA and a “par-
ticle position” in PSO, but it is referred to as a “widow”
in the BWOA. The possible answer to each challenge has
been modeled like a Black widow spider in the BWOA.
The findings of the issue variables are shown on each
Black widow spider. The architecture should be treated
as an array in this study can fix objective functions. The
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Black Widow
Algorithm
| I I |
Population Procreate Cannibalism Mutation Convergence
initialization
Fig. 3 Different phases of the original BWOA algorithm
black widow spider evaluates every problem’s possible
solution. Each black widow spider displays the values of Cannibalism
the issue variables. The solution provided by BWOA is
referred to as widow given by Eq. 16 and it generates an I % 1
array of 1 X K, for the problem of dimension K, Sexual Sibling Mother
. Cannibalism cannibalism cannibalism
widow = [x1,%2,.......... Eon (16)
Fig. 4 Different phases of Cannibalism
Every value of the array [xl,xz, .......... me,] will be

a floating-point number. The fitness of a widow is deter-
mined by Eq. 17 applying the fitness model F to widow of

F(widow) = F(xl,xz, .......... xKW) (17)

The optimization method is started by populating the
spider’s population with a prospective widow matrix of
size Kyar,Kpop. Then, through mating, a pair of parents is
chosen at random to carry out the procreating stage, in
which the male black widow is consumed by the female
black widow during or after mating.

Procreate

Because the pairings are self-governing, they start to
mate to replicate the next population. As a result, each
pair spontaneously mates in their web, regardless of the
possibilities. In the physical realm, each pairing produces
over a million eggs; nonetheless, Finally, some of the web
infants that are muscular are saved. This is where we are
right now with this strategy. In the real world, each mat-
ing can produce approximately 1000 eggs, but only the
strongest spiderlings survive. Similarly, in this algorithm,
to facilitate reproduction, an matrix called alpha («) is
created along with a widow array containing random
numbers. After that, progeny is formed by exploitation
the array of random numbers. In this context, x1 and x
represent father and mother, while V7 and V, represent
the children, as described in Eq. 18.

(18)

Vi=axx1+0—a) Xx
Vo=axx+(1—a) xx

Cannibalism
In this phase, three different Cannibalism processes
will happen and they are given in Fig. 4. First is sexual

cannibalism, in which a female widow will eat a male
widow. The gender of the widow will be identified by
their respective fitness function value.

The second type is sibling cannibalism, in this only
fittest will survive and the strong candidate will eat the
weak sibling. The number of survived offspring will be
determined by the cannibalism rating denoted by CR.
In a few cases, even mother widow is eaten by their baby
spiders.

Mutation

The mute pop quantity is randomly determined within
the population during the mutation process. Every
response can shift two components in the array at the
random structure as mentioned in Fig. 5. The mutation
rate is calculated using Mute,,,, data.

Convergence

There will be three stopping/ termination conditions
that can be tested in three phases, similar to previous
algorithms: (1) obtaining the stated degree of accuracy,
(2) observing no fluctuation in the fitness value, and (3)
obtaining the required degree of precision. The BWOA is
used to solve several benchmark optimization issues, and
the best solutions are gathered.

Proposed methodology: Improved Black Widow
Optimization algorithm (IBWOA)

The Black Widow Optimization (BWOA) is a population-
based meta-heuristic optimization technique for tackling
difficult engineering optimization problems that were
recently created [27]. This approach imitates the mating
activity of black widow spiders to emulate their particular
behavioral features. The black widow spider has eight legs
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4N\

X1 | Xp | e

Random number numbers are 2 and n

X1 | X2 XKyar

Fig. 5 Mutation process

and is a member of the Araneae family. The Latrodectus
subfamily of spiders includes the famed and well-known
black widow spiders. The black widow spider belongs to
the Latrodectus genus of spiders. The female widow lives
most of her adult years in a similar position as the black
widow, who builds her web at all hours of the day and
night.

System model

Improved Black Widow Optimization algorithm
(IBWOA) will include two major modifications to its
existing basic structure. Lévy flight process is used to
drive the procreation stage, and hence it will enhance the
exploration capability of the basic Black Widow Optimi-
zation algorithm and enrich the exploitation capacity and
create a balance between the exploration and exploita-
tion quasi opposition-based learning (QOBL) is adopted.
Further, details of Lévy flights, opposition-based learning
(OBL), and quasi-opposition-based learning (QOBL) are
provided in the following subsections.

Lévy flights

By construction, Lévy flights are Markov processes and
are a representation of a random process [20], which
involves step length as Lévy distribution. To minimize
algorithmic stagnation and entrapment in local minima,
the Lévy flight distribution is included in the BWOA
approach. It also helps to improve the exploring power
and exploration potential of this optimization method
by boosting its chance of creating novel solutions.
Lévy flight is a random procedure for producing a new
response based on an arbitrary walk with Lévy steps. The
following is the new population position based on the
Lévy distribution [69]. This step will model the IBWOA
and update the matrix alpha with a/. Also, new offspring
will be named as V" and VJ®" calculated according to
Eq. 19

{Vlnewzotlxxl-i-(l—oﬁ)XJCg} (19)

VI =ar x x4+ (1 —a/) x x1

The Lévy flight is characterized by the combination of
small and sporadically large step sizes, which enhances
the search capability of the model during optimization.

The standard Lévy flight distribution parameter for step
size (Lévy) is given by Eq. 20.

Re

Lévy = 0.01 x T (20)

IR7|#
where, Rs and Ry are normal distribution arbitrary values
consist of the standard deviation og,andog, respectively,
and are calculated as Rg = normtzl(O, aﬁs)and& = normal (0, (71%7)'
The Lévy flight o, is formulated by Eq. 21.

ra+p) x sin(%) 7

RRUCORIRCY

where I" corresponds to standard gamma function, and
is in the limit [1, 2] and assumed to be 1.5 [77].

(21)

Opposition-based learning

Tizhoosh suggested opposition-based learning (OBL) [78]
as an effective search means to prevent convergence speed
in 2005. The central concept behind OBL is to produce the
opposite result in the search area given by Eq. 22 and then
use the objective function to assess both the initial and
opposing solutions. The best option will then be kept and
used in the following iteration. Generally, the OBL tech-
nique has a higher chance of providing optimum answers
that are closer to each other than random solutions.

Youi,i®) =u+1—xi(t),i€[1,2,.......... 1] (22)

Where, x,p;;(t) is the opposite solution presented by
the current given solution x;(t) at given time ¢.

Quasi Opposition-Based Learning

Rahnamayan et al. [21] presented a variation of OBL
dubbed  quasi-opposition-based learning (QOBL)
depending on the given description. The QOBL tech-
nique, unlike OBL, used a quasi-opposite result instead
of the opposing solution. As a result, the QOBL tech-
nique outperforms the prior strategy in terms of discov-
ering globally optimum solutions. The quasi-opposite
response may be computed using the fundamental prin-
ciple of opposing solutions by Eq. 23:
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Xqobl,i(t) = rand(T:"obLi@)) (23)

Where, x,4;,;(t) is the opposite solution, x,op;(¢) is
quasi opposition-based learning solution, u is upper
bound, and / is lower bound. The pictorial representation
and scheme of quasi-opposition-based learning (QOBL)
are shown in Fig. 6.

The proposed IBWOA algorithm enhances the existing
BWOA by combining the Lévy flight process and quasi-
opposition-based learning with the standard BWOA
algorithm. The pseudo-code of the IBWOA is explained
in Algorithm 1.

Algorithm 1. Improved Black Widow Optimization Algorithm (IBWOA)
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Experimentation setup and results

IBWOA is programmed in Matlab2021, implemented on
windows 10 over a 64-bit environment on a computer
with an Intel Core 17 processor, and 10 GB memory. The
parametric value chosen for different variables is chosen
as a percent of Crossover 0.8, 51 independent runs, the
maximum number of 350 iterations for each test image,
mutation value 0.4, cannibalism 0.5, and size of popula-
tion taken as 50. For comparative analysis six meta-heu-
ristic algorithms are considered, which are Harris Hawks
Optimization (HHO) [22], LSHADE [23], Whale Opti-
mization Algorithm (WOA) [24], Sine Cosine Algorithm

Start

Generate the random population x;

//Phase of Procreation and Cannibalism
for J =1 tor,do

offspring generation using equation (18);
male spider destroyed by a female;
Storage of remaining solution in Pop?2;

end for

/IPhase of Mutation

for/ =1 tom,do
Solution selection from Popl;

Save the residual solution in Pop3;
end for

/IProcess of Updation
Updation of Pop=Pop2+ Pop3;
Obtain the best optimal solution;
Obtain the best optimal solution from Pop;
End

// Population Initialization; Define parameters “Search Agents number = 50, Rate of procreating, rate of
Cannibalism, rate of mutation, number of iterations t,,, and fitness function F,”.

Compute quasi-opposition of the population x4,p;;(t) using equation 23;
reproduction number r, evaluation based on procreation rates;
optimal selection of 7, from the population Pop and store in Popl;

Randomly select two widows as a parent from Py ;
update new offspring according to equation (19)

weak offspring is destroyed by a strong using cannibalism rate;

Evaluation of mutation number m, using mutation rate;

randomly mutate and generation of new chromosomes;

Lower
bound Xobl,i 2
_o

Upper
X bound

Fig. 6 Representation of Quasi Opposition-Based Learning
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(SCA) [25], Slap Swarm Algorithm (SSA) [26], and Black
Widow Optimization Algorithm(BWOA) [27].

Experimental setup

All the parameters in the experiment are fixed as per the
default values proposed in the basic research paper. The
method was evaluated across 35 independent runs with
a maximum of 350 iterations for each test image for an
unbiased test image comparability. For a valid compari-
son, all methods use the same simulation environment.
The application of the IBWOA for thermal image seg-
mentation is described in this study. This approach is
tested specifically in the instance of Breast Thermog-
raphy. To qualitatively and quantitatively examine the
data, a group of 10 photos from the database is randomly
picked from the complete database of digital database for
Screening mammography (DDSM): breast cancer image
dataset [70]. Artificial objects such as tags, gauges, and
branding are removed from the photos to emphasize seg-
mentation. The random images having positive and nega-
tive cases are considered for experimentation and Fig. 7
represents a positive and a negative case image. The
optimum values are shown in bold values. These ten test
images and their corresponding histogram graphs are
represented in the Table 1.

Experimental parameters

The peak signal-to-noise ratio (PSNR) indicates the amount
of noise present in the resultant image as compared to the
original image [79-81]. The PSNR between original or
ground truth /g and the segmented image Iy, is calculated
as mentioned in Eq. 24 and the RMSE is provided by Eq. 25.

255
where
M N
RMSE = \/ i1 ZE;(;;G ) (25)

where the size of an image is M N, a higher PSNR value
is desirable and it represents less amount of noise that

et ~—
-«-"

a) Breast thermogram: Benign

~
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has been added during the processing [82]. Structural
Similarity Index is another parameter used to evaluate
given by the following Eq.

Quipg + C1) 2o + Co)

SSIM(L,I;) =
PTGl F O +ol + Gy 29

where pu (orr) and pr(or) are the mean intensity of
images IS and I, respectively, where oy is the govern-
ance of I and IS, and C; and C; coefficient values are equal
to 6.5025 and 58.52252, respectively.

The Feature Similarity Index (FSIM) is an important
parameter used to estimate the similarity between the
original image and the segmented image. Its value lies
between the range of [-1, 1] and a higher value is desired
and given by the following equations.

S SPCyy
FSIM = =—=/———
o 27)
St = Spc x Sg (28)
_ 2PC1PCy + T1
7= PCT 4 PC2 + T (29)
2G1Gy + Ty
G = (30)

G +GE+ T,

Where PC is phase consistency of the original image,
PC; phase consistency of segmented image and 77 is a
positive constant. Where G; & Gy are the gradient con-
stant of the original and segmented image respectively
and 7> is again a constant positive.

A comparative analysis is carried out with existing
state-of-the-art multilevel thresholding techniques like
Harris hawks optimization (HHO) [22], LSHADE [23],
Whale optimization algorithm (WOA) [24], Sine cosine
algorithm (SCA) [27], and Black widow optimization
[27]. The parameters selected for comparison with the
above-mentioned techniques are threshold values, Peak
signal-to-noise ratio (PSNR) [74], Structural similarity
index module (SSIM) [83], and Feature similarity index
(ESIM).

b) Breast thermogram: Malignant

Fig. 7 Representation of benign and malignant cases. a Breast thermogram: Benign. b Breast thermogram: Malignant
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Table 1 Dataset along with associated histogram
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Result and discussion: IBWOA based on Otsu’s results

This subsection provides the results based on Otsu’s
fitness function as given in Eq. 8 using IBWOA. The
suggested IBWOA-based breast thermal image segmen-
tation approach is compared to different algorithms using
Otsu’s method to obtain the best potential threshold
value, applied over ten thermography images. The thresh-
old values for 2, 3, 4, and 5 levels are depicted in Table 2.
It is noticeable that most algorithms give the same
threshold values for the 2nd and 3rd levels but show dif-
ferent values for higher thresholding levels. The compu-
tational solution of the suggested technique, the IBWOA
algorithm, is presented and discussed in this subsection.
Equation 8 uses Otsu’s between-class variance as a fitness

function. For all the thermal imaging test images utilized
in the studies, Tables 4 and 5 show the segmented images
derived from the proposed IBWOA with various levels
of thresholds, including [Th=2, 3, 4, 5]. The distribution
of the best-selected thresholding values over the histo-
gram is also included in the findings. Table 3 presents
the results after applying the IBWOA-Otsu method to
the thermography images. It has three sub-parts: the first
part shows segmented images after deploying Otsu, the
second part demonstrates the histogram graph plotted
with the best/optimum histogram values, and the third
part provides convergence graphs. Convergence graphs
depict how many iterations are required for the thresh-
olding results to stabilize. It’s critical to maintain track
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Table 2 The Otsu’s optimal thresholds values
Testlmage Th HHO LSHADE WOA SCA SSA BWOA IBWOA
Test-imagel 2 87155 87 155 87 155 87 155 87 155 87 155 87 155
3 85149175 85149175 85149175 83148176 85149175 85149177 85148174
4 83141161184 83141161184 83141161184 78133152183 83141161184 90141164190 83140159 182
5 82136152167 82136152167 82136152167 72143153162 82136152167 89134145166 81136152167
187 187 187 184 187 191 187
Test-image2 2 73134 73134 73134 75134 73134 74134 73134
3 71127168 71127168 71127 168 71126164 71127168 78126 169 71127168
4 69120142178 69120142178 69120142178 57121142175 69120142178 70122145182 68119141177
5 68118138161 68117137160 68118138161 64114140164 68118138161 69121146163 5115135158192
196 196 196 200 196 202
Test-image3 2 81163 81163 81163 82163 81163 81163 81162
3 73135179 73135179 73135179 72137177 73135179 71135179 73134178
4 72129162198 72129162198 72129162198 64128160195 72129162198 77130162198 72129162198
5 70123148173 70123148173 70124149174 80122147176 70124149174 71124148173 70123148172
204 204 204 197 204 203 203
Test-imaged 2 95170 95170 95170 94170 95170 94170 95170
3 87154176 87154176 87154176 82154176 87154176 88154176 88154176
4 71130158177 71130158177 86152171187 68149169184 86152171187 75131158177 70129158177
5 71129156172 70129156172 73128156172 47119152167 71129156172 67127156172 67125153170
187 186 187 183 187 187 186
Test-image5 2 87162 87162 87162 87161 87162 87162 87161
3 83150185 83150 185 83150185 75150185 83150 185 83150 185 83150 184
4 81143169199 81143169198 81143169199 73138159186 81143169199 80142168198 80 141 166 194
5 77134155177 77134155177 77134155177 60120152176 77134155177 76134155177 74133155177
205 205 205 203 205 204 205
Test-image6 2 78146 78 146 78 146 77 146 78 146 78 146 78 146
3 76141188 76141188 76141188 81142189 76 141188 76141188 76141188
4 74133161196 74133161196 74133161196 69138164197 74133161196 73134162196 74133161196
5 1121145166 73129154172 74130155173 165135163203 73130155173 72130155174 71122145166
199 203 204 204 204 199
Test-image7 2 85163 85163 85163 84163 85163 85163 85163
3 74144180 74144180 74144180 70145182 74144180 74144180 74144179
4 50108154183 50108154183 51109154183 4599153179 50108154183 50108153183 50108153182
5 50106149174 50106149174 51106149174 66114152176 50106149174 49105150175 50106 148174
199 199 199 204 199 201 199
Test-image8 2 91165 91 165 91 165 91 165 91 165 91 165 91 165
3 87155190 87155190 87155190 92 155190 87155190 85155190 87155189
4 84146174201 84 146 174 201 84146174201 68140171199 84146174 201 86 147 175 201 84146 173 199
5 83141165185 83141165185 83142166186 73146166183 83141165185 83141164184 83140164 184
209 209 210 212 209 210 207
Test-image9 2 90174 90 174 90 174 91173 90 174 90 174 90 174
3 89165206 89 165 206 89 165 206 91163 203 89165 206 90 165 206 89165 206
4 80138173210 80138173210 80138173210 68142171208 80138173210 78138174210 80138173210
5 5588120156 80137168196 80137168196 182144173215 80137168196 74137169197 78137168 196
200 220 221 221 223 221
Test-image10 2 82153 82153 82153 81153 82153 82153 82153
3 80144178 80144178 80144178 82144176 80144178 79144177 79144178
4 76129156181 76129 156 181 76 129 156 181 82134163190 76129156 181 76128 156 181 76128 155 181
5 75126152175 75126152176 75126152175 76125149177 75126152175 74127153176 75127152175
195 196 195 196 195 197 195
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Table 3 Results after applying IBWOA-Otsu’s method to the
thermography images
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of computation convergence. Convergence graphs show
how a method improves over time, which is important
for determining its effectiveness. Table 3 shows superior
convergence results. It is also concluded from the con-
vergence results that the computational complexity is
not very high, as IBWOA achieves optimum results even
before 10 iterations for two, three, and four threshold val-
ues. Segmentation using five threshold values is a little
more complex, as it takes more iterations to reach opti-
mum values.

Table 4 displays the fitness outcomes obtained from
each level using the proposed IBWOA and other com-
parison algorithms, based on mean and standard devia-
tion (STD). The most important values are shown in
bold. A lower STD, in contrast to the mean, is preferred
since it represents less variance between the outcomes
provided by each strategy. As the situation becomes more
complex, the STD rises along with the number of thresh-
olds. According to the findings, the suggested IBWOA
outperforms the original BWOA and WOA for all test
images at all levels. It also performs better than the HHO,
LSHADE, and SCA. For most test images, the LSHADE
method is comparable to the proposed IBWOA and out-
performs other algorithms. However, as seen in the table,
the IBWOA excels in twenty-five different experiments.
Among all competing algorithms, the WOA produces the
least favorable results. The SCA, on the other hand, did
not achieve any significant value in its mean findings.

In terms of the SSIM values based on the IBWOA algo-
rithm and other comparison algorithms presented in
Table 5, it can be seen that IBWOA generally performs
better than the other algorithms. It shows significant
results in all images at all levels except for image 7. The
SCA exhibits higher SSIM values for two specific cases:
test image-7 at level 2 and test image-5 at level 2. Fur-
thermore, the WOA provides the best values in six dif-
ferent experiments, and LSHADE achieves one best value
for test image-10 at level 2.

Image thresholding aims to produce more informa-
tive photographs using a limited number of thresholds.
The PSNR (Peak Signal-to-Noise Ratio) is a performance
metric frequently used to assess the quality of an out-
put image compared to the original. While tradition-
ally used for evaluating image quality, PSNR has been
adapted to evaluate multi-dimensional signal function-
ality. In Table 6, a higher mean PSNR value indicates
better image segmentation when considering the algo-
rithm’s thresholds. HHO and SCA provide only three and
one best values, respectively, while LSHADE and WOA
achieve five and seven best values, respectively. BWOA
has limitations, yielding only three best values. In con-
trast, IBWOA delivers twenty-four best values out of
forty experiments. Table 7 presents the FSIM (Feature
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Table 8 Kapur's optimal thresholds values
Testlmage Th HHO LSHADE WOA SCA SSA BWOA IBWOA
Test-imagel 2 52115 52115 52115 52116 52115 54115 52115
3 52115213 52115213 52115213 56 106 210 52115213 52115213 52115213
4 52115181215 52115181215 52115181215 51114185228 52115181215 52115181215 52115181215
5 4880115181 1952115180 52115151184 1857110179 52115151184 5284115181 1952115183 215
215 215 219 233 219 215
Test-image2 2 105176 105176 105176 106 176 105176 105176 105176
3 105158196 105 158 196 105 158 196 101 155190 105 158 196 105 158 196 105 158 196
4 98127158196 448715819 4687126179 4888152197 4487 158 196 44 87 158 196 44 87 158 196
5 4487123158 4487123158 44 87 124 158 4487125169 4487123158 44 87123 158 44 87123 158 196
196 196 196 194 196 196
Test-image3 2 127189 127189 127189 128 191 127189 127189 127189
3 105155201 105155 201 105155 201 106 154 205 105155 201 4586 167 105155 201
4 458614219 45 86 146 196 45 86 146 196 4586147 199 4290138 205 45 86 146 196 45 86 146 196
5 4486128167 164387 146196 4586128 167 3168112163 4586 128 167 4586 128 167 4586128 167 208
208 208 228 208 208
Test-image4 2 42128 42128 42128 42130 42128 42128 42128
3 44101137 44101137 4497137 44104 136 4497137 44101137 4497137
4 4497137 206 4497 137 206 44101137206 50101135204 4497137206 44101137206 4497137 206
5 4496134160 164992133213 4488130160 1646 98 140 207 4496 134 160 4493134160 1642107 137 206
206 206 206 206
Test-image5 2 121203 121203 121203 121203 121203 121203 121203
3 41109203 41109 203 41109 203 37108 205 41109 203 41109 203 41109 203
4 41109157204 41109157204 41109158204 48109152209 41109157204 41109157204 41109157 204
5 3972111156 3972111157 3872111157 3879111156 4172111156 3972111157 3972109 157 204
204 204 204 209 204 203
Test-image6 2 137190 137190 137190 138192 137190 137190 137190
3 4696190 22137190 46 96 190 22131189 22137190 22137190 22137190
4 4696143192 4696 143 192 4696 143192 4591131187 4696 143192 4696 143 192 4696 143192
5 4596143187 224596143190 4896143187 213992134199 4696 143187 224696143192 225096 145193
221 221 221
Test-image7 2 34114 34114 146 200 147 199 146 200 34114 146 200
3 34114198 37114198 41114198 33116195 34114198 34114198 34114198
4 34114155200 34114154200 38114155200 39114149196 34114155200 34114155200 34114155200
5 3069114154 3069114 154 3072114155 2752113152 3069114155 3069114155 3069114155 200
200 200 200 204 200 200
Test-image8 2 148208 148 208 148 208 148 210 148 208 148 208 148 208
3 49109 208 49109 208 49109 208 50109 201 49109 208 49109 208 49109 208
4 49108160210 49108159208 49108160210 50110166209 49108160208 49108159208 49108 159 208
5 49107144174 48108 158202 4880110160 50104143177 49108158202 49107144174 4880110161 208
211 230 210 219 230 211
Test-image9 2 142214 142 214 142 214 141 214 142 214 142 214 142 214
3 47106177 132177 220 132177 220 133176219 132177 220 131175218 47106177
4 47106163217 47106163217 47106163217 54100155216 47106163217 47106163217 47106163 217
5 4793139181 1847106 164 5193139181 4692 140 181 5193139181 1847106 163 4793139180218
220 217 220 219 220 217
Test-image10 2 148210 148 210 148 210 143 211 148 210 148 210 148 210
3112158210 22 148 210 112158 210 87149222 22148 210 22148 210 22148 210
4 50102157210 50102157210 51102157210 48101168208 50102157210 50102157210 50102157210
5 44102133163 50102133163 2265102157 226393143219 2250102157 50102133163 2250102157210
210 210 210 210 210
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Table 9 Results after applying IBWOA- Kapur's method to the
thermography images
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Similarity Index) values for ten test images at 2, 3, 4, and
5 level thresholds, with IBWOA achieving the maximum
number of best values.

Result and discussion: IBWOA-based Kapur results

The performance of the proposed thresholding strat-
egy based on IBWOA applied to breast thermographic
images using Kapur’s entropy as the objective function is
examined and discussed in this paragraph. Table 8 pre-
sents the threshold values derived from levels 2, 3, 4, and
5 using various algorithms, including HHO, LSHADE,
WOA, SCA, and BWOA, as discussed in the previous
section. The quality of the thresholded images employ-
ing Kapur’s method is assessed and compared using
thresholding values, SSIM, PSNR, and FSIM. Each test
image includes four thresholding levels [Th=2, 3, 4, 5],
as was done with Otsu’s algorithm. Table 9 consists of
three rows: the first row contains segmented images after
applying Kapur’s entropy, the second row shows the dis-
tribution of the best-selected thresholding values gener-
ated by IBWOA plotted on the histogram of each test
image, and the third row provides convergence graphs.
The mean and standard deviation of fitness, SSIM,
PSNR, and FSIM are shown in Tables 10, 11, 12, and 13,
respectively.

Table 10 presents the fitness outcomes received from
each level using the proposed IBWOA and other com-
parison algorithms, based on mean and standard devia-
tion (STD). The most important values are shown in
bold. Ideally, the mean should be higher and the STD
lower. The proposed IBWOA achieves the highest mean
values for different test images compared to other algo-
rithms. Table 11 compares the mean and standard devia-
tion of the Structural Similarity Index Measure (SSIM)
for all methods, with optimal findings highlighted in
bold, indicating superior image segmentation. Out of
forty total experiments, the HHO algorithm yields the
best SSIM values four times, LSHADE and SCA each
achieve two, and WOA provides three optimal results.
The IBWOA method, followed by the BWOA algorithm,
consistently obtains the best SSIM values. SSIM is crucial
for determining the quality of the structures that remain
after segmentation, helping to identify the best approach
for segmenting breast thermographic images.

Table 12 shows the PSNR output data. As previously
mentioned, PSNR evaluates the similarity between the
output image and the source, with higher values indicat-
ing better threshold efficiency. It is clear that IBWOA
outperforms the original BWOA in terms of PSNR for
all test images at each level, surpassing all other tested
algorithms. Table 13 presents the mean and standard
deviation of the Feature Similarity Index Metric (FSIM)
based on Kapur’s entropy as the objective function, with
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optimal findings denoted in bold. Bold values indicate
superior results for quality segmentation. The LSHADE
algorithm performed poorly, achieving only two optimal
results across all test images and levels. The HHO and
WOA algorithms also underperformed, each generating
the best results only four times. Among all methods, the
proposed IBWOA generates the best FSIM values. The
BWOA also identifies better threshold values, yielding
expected results with better features using FSIM. This
table demonstrates that several methods can work effec-
tively with a limited number of variables.

Conclusions and future work

In conclusion, breast cancer remains one of the most
common cancers, and early detection is crucial for reduc-
ing mortality. Thermography offers a cost-effective and
suitable screening method compared to mammography,
ultrasound, and MRI, as it detects abnormal tempera-
ture changes indicative of breast cancer. Effective medi-
cal image segmentation is vital for accurate analysis, and
thresholding is a key technique in this process. This study
presents an innovative approach for determining optimal
thresholding values using the Improved Black Widow
Optimization Algorithm (IBWOA), which combines
quasi-opposite-based learning and the Lévy optimization
algorithm to enhance the exploitation phase and avoid
local optima. The performance of IBWOA was compared
with other techniques, including HHO, LSHADE, WOA,
SCA, and BWOA, using Otsu’s and Kapur’s methods on
thermal images from the DMR-IR database. The results,
evaluated through fitness values, PSNR, SSIM, and FSIM,
demonstrated that IBWOA outperforms the other meth-
ods. Future work will focus on integrating deep learn-
ing methodologies like Convolutional Neural Networks,
expanding datasets, and combining multiple imaging
modalities to further enhance diagnostic accuracy and
applicability in real-world scenarios.
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