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Abstract 

Renal tumors are one of the common diseases of urology, and precise segmentation of these tumors plays a crucial 
role in aiding physicians to improve diagnostic accuracy and treatment effectiveness. Nevertheless, inherent chal-
lenges associated with renal tumors, such as indistinct boundaries, morphological variations, and uncertainties 
in size and location, segmenting renal tumors accurately remains a significant challenge in the field of medical image 
segmentation. With the development of deep learning, substantial achievements have been made in the domain 
of medical image segmentation. However, existing models lack specificity in extracting features of renal tumors 
across different network hierarchies, which results in insufficient extraction of renal tumor features and subsequently 
affects the accuracy of renal tumor segmentation. To address this issue, we propose the Selective Kernel, Vision 
Transformer, and Coordinate Attention Enhanced U-Net (STC-UNet). This model aims to enhance feature extraction, 
adapting to the distinctive characteristics of renal tumors across various network levels. Specifically, the Selective 
Kernel modules are introduced in the shallow layers of the U-Net, where detailed features are more abundant. By 
selectively employing convolutional kernels of different scales, the model enhances its capability to extract detailed 
features of renal tumors across multiple scales. Subsequently, in the deeper layers of the network, where feature maps 
are smaller yet contain rich semantic information, the Vision Transformer modules are integrated in a non-patch man-
ner. These assist the model in capturing long-range contextual information globally. Their non-patch implementation 
facilitates the capture of fine-grained features, thereby achieving collaborative enhancement of global–local informa-
tion and ultimately strengthening the model’s extraction of semantic features of renal tumors. Finally, in the decoder 
segment, the Coordinate Attention modules embedding positional information are proposed aiming to enhance 
the model’s feature recovery and tumor region localization capabilities. Our model is validated on the KiTS19 dataset, 
and experimental results indicate that compared to the baseline model, STC-UNet shows improvements of 1.60%, 
2.02%, 2.27%, 1.18%, 1.52%, and 1.35% in IoU, Dice, Accuracy, Precision, Recall, and F1-score, respectively. Furthermore, 
the experimental results demonstrate that the proposed STC-UNet method surpasses other advanced algorithms 
in both visual effectiveness and objective evaluation metrics.
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Introduction
Renal tumors, as a prevalent affliction in urology, exhibit 
an escalating incidence trend year by year. Compared to 
other tumors, early diagnosis of renal tumors is challeng-
ing, often resulting in patients reaching advanced stages 
by the time symptoms are identified, leading to a higher 
mortality rate. Additionally, the diverse array of renal 
tumor types presents significant differences in treat-
ment response and prognosis. Hence, precise segmen-
tation of renal tumors in medical image analysis holds 
paramount importance, providing crucial information 
for tumor assessment, treatment planning, and prognosis 
determination.

With the development of artificial intelligence tech-
nology, more and more machine learning methods, 
including deep learning methods, are being applied to 
the biomedical field [1]. Chandrasekar et al. [2] consider 
the limited possibility of drug testing in the pregnant 
population and use various algorithms such as K-Near-
est Neighbors (KNN), Support Vector Classifier (SVC), 
and Multi-Layer Perceptron (MLP) to predict the fate 
of drugs crossing the placental barrier, achieving good 
predictive results. Ansari et  al. [3] discuss the effective 
method of using existing knowledge to understand and 
predict the effects of drugs on neurological diseases. By 
accurately predicting using machine learning models, 
drug candidates that can be repurposed for neurologi-
cal diseases are effectively identified. After that, machine 
learning and deep learning models are used by Ansari 
et  al. [4] to analyze twelve-lead electrocardiogram sig-
nals to estimate complex metrics such as age and gen-
der. This study [5] employs deep learning for automatic 
food recognition systems. The results demonstrate that 
EfficientNet-V2 achieves performance close to the best-
performing individual model on the MEFood dataset, 
while also having the lowest resource utilization and the 
shortest inference times. Clearly, computer-aided detec-
tion or diagnostic technologies [6, 7] provide significant 
momentum for the advancement of the biomedical field.

In the field of medical image segmentation, deep learn-
ing continues to demonstrate strong vitality [8, 9]. Convo-
lutional Neural Networks (CNNs) [10] have successfully 
extracted image features, overcoming the limitations of 
traditional segmentation methods requiring manual fea-
ture extraction. As a classic architecture in deep learn-
ing, CNNs exhibit robustness to noise in medical images, 
enabling target recognition, feature extraction, and 
automatic segmentation. Long et  al. [11] proposed the 
milestone Fully Convolutional Neural Network (FCN), 
replacing fully connected layers with convolutional layers 
and introducing transpose convolution, enabling the pro-
cessing of images of any size and overcoming the limita-
tion of CNNs requiring fixed input image sizes. However, 

FCN is insensitive to image details and does not consider 
relationships between pixels. The emergence of FCN has 
prompted extensive research into image segmentation 
algorithms, resulting in numerous segmentation mod-
els based on FCN improvements. Zhao et al. [12] intro-
duced PSPNet, featuring a pyramid pooling module that 
aggregates context information from different regions to 
enhance the ability to obtain global information. Chen 
et  al. [13] introduced DeepLabv3 + , which builds upon 
previous versions with multiple improvements. By incor-
porating key techniques such as dilated convolutions, 
multi-scale atrous spatial pooling, and a decoder, the 
model enhances the accurate segmentation performance 
for objects at various scales. Ronneberger et  al. [14] 
introduced a symmetric U-shaped network, U-Net, con-
necting features of the same level between the encoder 
and decoder through skip connections to effectively fuse 
low-level and deep-level image features. Due to U-Net’s 
significant contribution to medical image segmentation, 
it quickly became a common benchmark, leading to the 
development of many improved U-Net-based segmenta-
tion models. Oktay et  al. [15] applied attention mecha-
nisms to the U-Net segmentation network, proposing 
Attention U-Net, which effectively focuses on salient 
regions and suppresses irrelevant background regions. 
Zhou et al. [16] introduced a nested U-Net architecture 
— UNet +  + , which improves image segmentation accu-
racy by adding connection modes and multi-scale feature 
fusion. Alom et  al. [17] improved information propaga-
tion by introducing residual connections and a recurrent 
structure, proposing R2U-Net. Jafari et  al. [18] propose 
DRU-Net, which integrates the strengths of ResNet and 
DenseNet, achieving higher segmentation accuracy. Lou 
et  al. [19] proposed DC-UNet, which achieved signifi-
cant performance improvements on challenging datasets 
by designing efficient CNN architectures to replace the 
encoder and decoder, and applying residual modules to 
replace skip connections. Some researchers have pro-
posed lightweight medical image segmentation models 
[20–22], which demonstrate superior segmentation per-
formance while reducing the number of parameters.

However, the aforementioned network models pre-
dominantly rely on CNNs and excel in capturing local 
features for long-term relationship modeling. Despite 
their proficiency in local feature extraction, CNN-based 
methods for segmentation tasks lack the ability to inter-
pret long-term image correlations, thereby failing to 
extract global features. Inspired by the self-attention 
mechanism in Transformers [23] from the field of natural 
language processing, Dosovitskiy et  al. [24] extended it 
to visual tasks, introducing the Vision Tansformer (ViT) 
that surpasses the limitations of CNNs. TransUnet, pro-
posed by Chen et  al. [25], was among the first studies 
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to incorporate the Transformer structure into medical 
image segmentation. This model combines the strengths 
of CNNs in emphasizing local details and Transformers 
in globally modeling, providing a robust alternative for 
medical image segmentation. Cao et  al. [26] introduced 
SwinUnet, a pure Transformer structure similar to U-Net 
for medical image segmentation. Marked image blocks 
are fed into a U-shaped Encoder-Decoder architecture 
based on Transformers through skip connections for 
local and global semantic feature learning.

Despite the widespread adoption of ViT in medical 
image segmentation to address the limitations of tradi-
tional CNNs in global context modeling, there are still 
significant constraints in terms of computational cost and 
learning fine-grained features. Xie et  al. [27] proposed 
CoTr, which employs CNN for feature extraction and uti-
lizes an efficient deformable Transformer to model long-
range dependencies on the extracted feature maps. This 
approach significantly improves the accuracy and effi-
ciency of 3D medical image segmentation while reducing 
computational and spatial complexities. Rehman et  al. 
[28] introduced MaxViT-UNet, which effectively uti-
lizes multi-axis self-attention mechanisms, allowing the 
model to focus on features at both local and global axes. 
This enhances discriminative ability between target and 
background regions, contributing to improved segmenta-
tion efficiency. Bian et al. [29] improved the self-attention 
mechanism in Transformers and introduced local multi-
scale information to complement feature information. 
They proposed a Transformer-CNN Interactive (TCI) 
feature extraction module to build TCI-UNet, enabling 
the network to model global context information while 
paying attention to crucial local details. Wu et  al. [30] 
introduced a Multiscale Efficient Transformer Attention 
(META) mechanism for rapid and high-precision polyp 
segmentation. In this approach, efficient transformer 
blocks are employed to generate multiscale element-wise 
attention. Chen et al. [31] proposed Patches Convolution 
Attention based Transformer UNet (PCAT-UNet), which 
is a U-shaped network based on a Transformer with a 
convolutional branch. It incorporates skip connections to 
fuse deep and shallow features from both sides. By lev-
eraging the complementary advantages of both aspects, 
it can effectively capture global dependencies and details 
in the feature space of lower layers. Ibtehaz et  al. [32] 
explored several advantages of Transformer-based U-Net 
models, particularly remote dependencies and cross-
level skip connections. They attempted to simulate these 
aspects using convolutional operations and proposed 
ACC-UNet, a fully convolutional U-Net model that com-
bines the inductive bias of CNNs and design decisions 
from Transformers. Its performance rivals that of Trans-
former-based models, such as SwinUnet or UCTransNet.

While the aforementioned segmentation methods can 
be applied to the segmentation of renal tumors, consid-
ering the inherent characteristics of renal tumors such 
as blurry boundaries, uncertainty in morphology, size, 
and location, some researchers have explored renal 
tumor segmentation methods based on deep features. 
Yu et  al. [33] proposed Crossbar-Net, which captures 
both global and local appearance information of renal 
tumors from vertical and horizontal directions simulta-
neously. Through iterative training in a cascaded manner, 
two-directional sub-models are trained, complementing 
each other for self-improvement and ultimately achieving 
better segmentation performance. Sun et  al. [34] intro-
duced FR2PAttU-Net, incorporating R2Att networks 
and parallel convolutions to enhance the model’s width. 
Additionally, the model employs a fuzzy set enhancement 
algorithm to enhance adaptability to different image 
scale features, enabling high-precision tumor segmenta-
tion even in cases of unclear renal tumors. Hwang et al. 
[35] proposed RBCA-Net, which enhances segmenta-
tion performance through the use of a two-stage cas-
cade approach. Hu et  al. [36] presented TA-UNet3 + , 
replacing the encoder part of the neural network with 
a visual transformer and innovatively adding a new 
attention mechanism—Encoder-Decoder Transformer 
(EDformer)—to learn local features in skip connections.

However, existing models lack specificity in extracting 
features of renal tumors at different network hierarchi-
cal levels, leaving room for improvement in effectively 
and accurately segmenting renal tumors. To address this 
issue, we propose STC-UNet, a renal tumor segmenta-
tion method based on enhanced feature extraction. This 
method adapts to the unique features of renal tumors 
at different network levels, achieving highly accurate 
automatic segmentation of renal tumors in abdominal 
CT images. In this paper, we emphasize the following 
contributions:

•	 Unlike a simple approach of enhancing feature 
extraction, this paper focuses on the targeted 
enhancement of unique features at different network 
layers when extracting renal tumor features.

•	 This study represents a novel attempt to combine 
CNN and Transformer: integrating a non-patch 
implementation of ViT into a deep network with 
smaller feature maps and richer global features to 
enhance the extraction of semantic features in the 
deep network.

•	 Our model is validated on the KiTS19 dataset, show-
ing improvements over the baseline model with 
increases of 1.60%, 2.02%, 2.27%, 1.18%, 1.52%, and 
1.35% in IoU, Dice, Accuracy, Precision, Recall, and 
F1-score, respectively.
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•	 Evaluation on CT images of actual renal tumor 
patients from the First Affiliated Hospital of Zheng-
zhou University demonstrates the superior segmen-
tation performance and generalization ability of 
STC-UNet.

The remainder of this paper is organized as follows: 
Section II provides a detailed description of the network 
architecture proposed in this paper. Section III intro-
duces the relevant settings of our experiments. Section 
IV conducts comprehensive experiments and visualiza-
tion analysis. Section V discusses the effectiveness and 
impact of the proposed method. Finally, Section VI sum-
marizes the entire work.

Methodology
This paper proposes STC-UNet, a kidney tumor seg-
mentation model that enhances feature extraction at dif-
ferent network levels. Based on the U-Net architecture, 
this model incorporates the SK module, the patch-free 
ViT module, and the coordinate attention mechanism to 
achieve precise segmentation of kidney tumors. The fol-
lowing sections will introduce the proposed model archi-
tecture and each of its modules in detail.

STC‑UNet
To achieve precise segmentation of renal tumors, this 
paper proposes an improved version of the U-Net model, 
named STC-UNet. In the U-Net network architecture, as 
the network layers deepen, the detailed information of 
the input image gradually diminishes, while the semantic 
information progressively increases. Therefore, our STC-
UNet is based on enhanced feature extraction to accom-
modate the unique features of renal tumors at different 
network hierarchical levels.

In this paper, the first, second, and third stages of the 
original U-Net model are defined as shallow layers, while 
the fourth and fifth stages are defined as deep layers. 
Capitalizing on the richness of image detail information 
in the shallow layers of the U-Net model, we introduce 
the Selective Kernel (SK) [37] module. By selectively 
utilizing convolutional kernels of different scales, the 
model can capture and retain these details at earlier lay-
ers, enhancing the extraction of multi-scale details of 
renal tumor features. Addressing the characteristics of 
the U-Net model, where the deep network exhibits rich 
semantic features and smaller-sized feature maps, we 
integrate a non-patch implementation of the ViT mod-
ule into its deep network. It enables the model to capture 
long-range contextual information globally. To over-
come the limitations of traditional ViT in local informa-
tion modeling, its non-patch implementation facilitates 
pixel-level information interaction, aiding in capturing 

fine-grained local details. The non-patch implementation 
of the ViT module enhances global–local information 
synergy, thereby strengthening the model’s extraction of 
semantic features related to renal tumors. Finally, in the 
U-Net decoder section, the Coordinate Attention (CA) 
[38] mechanism is introduced. By embedding positional 
information into the channel attention mechanism, it 
enhances the model’s feature recovery and tumor region 
localization capabilities. The network structure of our 
proposed STC-UNet is illustrated in Fig. 1.

Selective Kernel network
Renal tumors usually have richer detailed features, 
including gray scale distribution, homogeneity, margins, 
texture, density/intensity changes and other detailed 
information. By analyzing these detailed features, doctors 
and researchers can obtain more quantitative informa-
tion about the tumor, such as the growth rate, malignancy 
degree, and prognosis of the tumor, which is important 
for tumor diagnosis and evaluation. During the encod-
ing stage of U-Net, the downsampling process through 
pooling operation, the size of the feature map becomes 
smaller and lower resolution, which will lead to a part of 
the detail information is lost. During the decoding stage 
of U-Net, while the original image size can be recovered 
through the up-sampling operations, the lack of informa-
tion from the encoding stage means that the simple jump 
connections employed during the up-sampling process 
do not fully leverage the tumor feature information in the 
feature map. This results in the recovered features lacking 
detailed information and edge sharpness.

The U-Net shallow network produces high-resolution 
feature maps with rich detailed information. Therefore, 
this paper introduces the SK module into the U-Net’s 
shallow network, where detailed information is abun-
dant. The SK module employs an innovative design by 
incorporating multiple-scale convolutional kernels and 
an attention mechanism to enhance the extraction of 
detailed features from renal tumors of various sizes and 
shapes. The network structure of the SK module is illus-
trated in Fig. 2, and it primarily consists of the following 
three steps:

Split: The original feature map X ∈ R
H×W×C goes 

through three branches with convolutional kernel 
sizes of 3× 3 , 5× 5 , and 7× 7 , respectively, to obtain 
new feature maps U1, U2 , and U3.
Fuse: Features from multiple branches are fused to 
obtain a feature map U with multiple sensory field 
information. feature map U is generated by global 
average pooling to embed global information 
s ∈ R

C , and then s is passed through the fully-con-
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nected layer to obtain a compact feature z ∈ R
d , 

which reduces the dimensionality to improve effi-
ciency.
Select: Multiple feature vectors a, b, and c pro-
cessed by softmax are used to multiply channel-by-
channel the feature maps U1, U2 , and U3 extracted 
by multiple branches in the Split stage to get the 
feature maps V1, V2 , and V3 of the channel atten-
tion, respectively, and finally the feature maps V1, 
V2 , and V3 of the channel attention are fused to get 
the final feature map V of the channel attention.

Vision transformer
Renal tumors typically exhibit diverse semantic features, 
encompassing information such as tissue type, morpho-
logical structure, spatial distribution, and pathological 
regions. Accurately identifying and analyzing the seman-
tic information of tumors can assist doctors in making 
more precise diagnoses. Although U-Net is capable of 
perceiving semantic features, its implementation still 
relies on convolution, leading to limited receptive fields. 
This limitation results in insufficient extraction of seman-
tic features related to renal tumors.

Fig. 1  The network structure of STC-UNet. It is an improvement upon the U-Net model. In its shallow layers, specifically the skip connections 
in the first three stages, we incorporate the SK modules. In its deep layers, after the skip connections in the fourth stage and the double 
convolutions in the fifth stage, we introduce non-patch-based ViT modules. Additionally, in its decoder, we embed the CA modules

Fig. 2  Selective Kernel Network. This structure consists of three branches, each equipped with convolutional kernels of sizes 3, 5, and 7, respectively
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To enhance the model’s long-range dependency mod-
eling capability, a ViT module with global feature per-
ception is introduced into the deep network of U-Net. In 
traditional ViT approaches, the original image is usually 
divided into fixed-sized blocks, which are then passed 
through the Transformer Encoder to extract features. 
However, this method may lose some fine-grained pixel-
level information critical for tasks like renal tumor seg-
mentation that require high precision. Using ViT in a 
non-patch manner involves directly inputting the entire 
image into ViT, making the input sequence length equal 
to the number of pixels in the input image. This allows 
self-attention interaction between pixels, addressing the 
limitation of traditional ViT in lacking local interaction 
information and preventing the loss of detailed features. 
While this approach introduces additional parameters 
and computational complexity, the reduced feature map 
size in the deep layers of U-Net significantly decreases 
the model’s computational demands and memory 
requirements compared to pixel-level processing of the 
original image. Therefore, this paper introduces the ViT 
module into the deep network of U-Net, enhancing the 
extraction of global features related to renal tumors. 
Additionally, the pixel-level information interaction facil-
itated by the non-patch implementation of ViT improves 
the extraction of local features. In summary, incorporat-
ing a non-patch ViT module into a deep network with 
rich semantic information contributes to the coordi-
nated enhancement of global and local features, thereby 
strengthening the extraction of semantic features related 
to renal tumors. The network structure of the non-patch 
ViT module in this paper is illustrated in Fig.  3. The 
implementation principles and details can be divided into 
the following steps.

Pixel embedding
Since we use a non-patch implementation of the ViT 
module in this paper, the input sequence of the model 
will be a one-dimensional array composed of pixels from 
the image. As an example of embedding this module in 
the fourth layer of U-Net, the input image X ∈ R

H×W×C 
undergoes three downsamplings, resulting in a feature 
map with the shape X4 ∈ R

H
16×

W
16×512C . Where H ×W  

represents the resolution of the original image, and C 
represents the number of channels. Therefore, the effec-
tive sequence length input to the Transformer is H16 ×

W
16 . 

This sequence is then mapped to D dimensions using a 
trainable linear projection.

Position embedding
Since the transformer model does not have the ability to 
handle the positional information of the sequence, it is 
necessary to add positional encoding to each element of 

the sequence. The resulting sequence of embedding vec-
tors serves as input to the encoder.

Transformer encoder
After feature embedding and positional embedding, the 
resulting feature sequence is fed as an input to the Trans-
former Encoder, which consists of multiple encoder 
layers, each containing a multi-head self-attention mech-
anism and a feed-forward neural network. Layer normal-
ization (LN) is applied before every block, and residual 
connections are applied after every block. These layers 

(1)
z0 = xclass; x

1
pE; x

2
pE; · · · ; x

N
p E + Epos ,E ∈ R

(1·1·C)×D
,Epos ∈ R

(N+1)×D

Fig. 3  Network structure of vision transformer
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are capable of global context modeling and feature repre-
sentation learning of feature sequences.

Multilayer Perceptron (MLP)
After a series of encoder layers, the feature representa-
tion of a Class Token is output, which is fed into the MLP 
module to output the final classification result.

Coordinate attention
In the previous section, the U-Net model is improved by 
enhancing both the detailed features of renal tumors and 
semantic feature extraction, at which point the decoder 
of the model has adequately captured the feature infor-
mation of renal tumors. However, in order to help the 
model locate the tumor region more accurately, the 
decoder needs to establish long-distance connections to 
better understand the correlation between channels and 
learn the spatial location information of different regions 
in the image. Therefore, in this paper, the CA module is 

(2)z‘ℓ = MSA(LN (zℓ−1))+ zℓ−1, ℓ = 1 ... L

(3)zℓ = MLP(LN (z‘ℓ))+ z‘ℓ, ℓ = 1 ... L

(4)y = LN (z0L)

added to the decoder part of the U-Net model to enhance 
feature recovery and tumor region localization capabili-
ties, and its network structure is shown in Fig. 4.

The coordinate attention mechanism achieves precise 
encoding of positional information for channel relation-
ships and long-range dependencies through two steps: 
embedding of coordinate information and generation of 
coordinate attention.

Coordinate information embedding
Due to the difficulty in retaining positional information 
with global pooling in channel attention, the coordinate 
attention mechanism decomposes global pooling into 
horizontal and vertical directions. Specifically, given 
an input X, we encode each channel along the horizon-
tal and vertical coordinates using pooling kernels with 
spatial extents of (H, 1) or (1, W) , respectively. There-
fore, the output of the c-th channel at height h can be 
expressed as:

Similarly, the output of the c-th channel at width w can 
be expressed as:

(5)zhc (h) =
1

W

∑

0�i<W

xc(h, i)

Fig. 4  Network structure of coordinate attention
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The aforementioned transformations aggregate fea-
tures along two spatial directions, generating a pair of 
direction-aware feature maps. This allows the attention 
block to capture long-range dependencies along one spa-
tial direction while retaining precise positional informa-
tion along the other, thereby aiding the network in more 
accurately localizing the objects of interest.

Coordinate attention generation
In the coordinate attention generation phase, the global 
receptive field is utilized to encode precise positional 
information. Specifically, the aggregated feature maps 
generated by Eqs. (5) and (6) are concatenated and then 
passed through a shared 1× 1 convolutional transforma-
tion function F1, resulting in:

Here, [·, ·] denotes the concatenation operation along 
the spatial dimension, and δ represents a nonlinear acti-
vation function. We then split along the spatial dimen-
sion into two separate vectors f h and f w , and apply two 
1× 1 convolutional transformations Fh and Fw to f h and 
f w respectively, yielding:

The outputs gh and gware then expanded and used as 
attention weights. Finally, the output of the coordinate 
attention Y  is given by:

Experimental setup
Dataset
This study evaluates the performance of a model using 
the KiTS19 dataset from the 2019 Kidney Tumor Seg-
mentation Challenge [39]. The dataset includes abdomi-
nal CT scan images from 210 patients, with manual 
annotations by experts for the segmentation labels of the 
kidney and tumor regions, all in NIFTI format.

To reduce the complexity of renal tumor segmenta-
tion and improve the accuracy of tumor segmentation, 
preprocessing is performed on the original CT images. 
Slicing is applied to the 3D data of each patient along the 
transverse plane, resulting in a series of 512 × 512-sized 
images. Subsequently, window width and window level 

(6)zwc (w) =
1

H

∑

0�j<H

xc
(

j,w
)

(7)f = δ

(

F1
([

zh, zw
]))

(8)gh = σ

(

Fh

(

f h
))

(9)gw = σ
(

Fw
(

f w
))

(10)yc
(

i, j
)

= xc
(

i, j
)

× ghc (i)× ghc
(

j
)

adjustments are made to enhance the contrast between 
renal tumors and other tissues. Negative samples are 
excluded by removing slices that did not contain renal 
tumors. Furthermore, a region of interest is selected by 
cropping areas containing renal tumors from the effective 
2D slices. The cropped images are then resampled, resiz-
ing them to a uniform size of 512 × 512 pixels.

The processed dataset divides 5327 images randomly 
into training (4262 images) and testing (1065 images) sets 
at an 8:2 ratio. During subsequent training, online data 
augmentation techniques, including random cropping, 
flipping, and color distortion, are employed to dynami-
cally augment the input data, generating diverse train-
ing samples. This effectively alleviates overfitting and 
enhances the model’s generalization capabilities.

Evaluation indicators
To assess the effectiveness of our proposed method, we 
employ common objective evaluation metrics, including 
Intersection over Union (IoU), Dice, Accuracy, Precision, 
Recall, and F1-score, to evaluate the model’s segmenta-
tion performance on renal tumors. The values of these 
metrics range from 0 to 1, with larger values indicating 
better segmentation performance of the model.

The IoU represents the ratio of the intersection to the 
union between the predicted sample and the actual sam-
ple, as expressed in Eq. (11):

The Dice coefficient is a similarity measure for sets, 
commonly used to calculate the similarity between two 
samples, as defined in Eq. (12):

Accuracy represents the percentage of correctly pre-
dicted samples out of the total samples, as shown in 
Eq. (13):

Precision represents the proportion of true positive 
samples among all samples predicted as positive by the 
model, as shown in Eq. (14):

Recall denotes the proportion of all samples with posi-
tive true labels that the model successfully predicts as 
positive, as in Eq. (15):

(11)IoU =
TP

FN + FP + TP

(12)Dice =
2× TP

2× TP + FN + FP

(13)Accuracy =
TP + TN

TP + FP + TN + FN

(14)Precision =
TP

TP + FP
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The F1-score represents the harmonic mean of preci-
sion and recall, as shown in Eq. (16):

where TP, TN, FP, FN represent the number of renal 
tumor pixels that are classified correctly, the number of 
background pixels that are classified correctly, the num-
ber of renal tumor pixels that are classified incorrectly, 
and the number of background pixels that are classified 
incorrectly in the CT images, respectively.

Implementation details
In our experiments, our model is trained using the Adam 
optimizer with a learning rate set to 0.00001, a batch size 
of 4, and 50 epochs. We train all models on the NVIDIA 
GeForce RTX 4090 (24  GB) Graphics Processing Unit 
(GPU), and the same settings and training strategies are 
applied.

In CT slice images of renal tumors, as renal tumors 
usually occupy only a small portion of the image, the 
majority of pixels belong to non-tumor regions. The 
actual tumor region is relatively small, leading to a signif-
icant class imbalance issue. To address this problem, we 
employ a composite loss function composed of a dice loss 
and binary cross-entropy loss. The formula is as follows:

where Dice Loss and BCE Loss represent the dice loss 
and binary cross-entropy loss, respectively. Their formu-
las are as follows:

(15)Recall =
TP

TP + FN

(16)F1− score = 2×
Precision× Recall

Precision+ Recall

(17)Total Loss = Dice Loss + BCE Loss

(18)Dice Loss = 1−

2
N
∑

i=1

(

yipi
)

+ ∈

N
∑

i=1

(

yi + pi
)

+ ∈

(19)

BCE Loss = −
1

N

N
∑

i=1

[

yi · log(pi)+
(

1− yi
)

· log(1− pi)
]

where yi represents the true value of the i-th pixel, pi rep-
resents the predicted value of the i-th pixel. N is the total 
number of pixels, and ε is a smoothing value to prevent 
division by zero issues.

Experimental results
Ablation studies
In this study, we extend the baseline U-Net model by 
incorporating three additional modules: SK, ViT, and CA. 
To investigate the impact of these modules on the seg-
mentation performance of the proposed method, a series 
of ablation experiments are conducted in this section. 
The effects of each module on the model performance 
are assessed using evaluation metrics. Sequentially, the 
SK module, ViT module, and CA module are added to 
the baseline model, and the experimental results are pre-
sented in Table 1. The table indicates that with the addi-
tion of each module, the segmentation performance of 
the model improved to varying degrees. Moreover, when 
all modules are integrated, the model achieves optimal 
segmentation performance. This observation affirms the 
effectiveness of the three proposed modules in enhancing 
the segmentation capabilities of the model.

Comparison with state‑of‑the‑arts
To validate the superiority of STC-UNet, a comparative 
experiment is conducted by inputting test images into 
pretrained U-Net [14], PSPNet [12], Deeplabv3 + [13], 
UNet +  + [16], DC-UNet [19], TransUnet [25], SwinUnet 
[26], MaxViT-UNet [28], and the proposed model. For an 
unbiased assessment of the impact of different methods 
on renal tumor segmentation, multiple evaluation met-
rics are employed, as shown in Table  2. The introduc-
tion of the SK module, with its multiscale convolutional 
operations, feature fusion, and selection mechanism, 
results in an increase in the parameter count. Addition-
ally, the non-patch-based ViT module typically involves 
a higher number of parameters, resulting in an increased 
computational complexity and reduced processing speed. 
Thanks to the dual-channel CNN architecture, DC-
UNet boasts a reduced parameter count of 10.81 million 
and achieves a high model FPS (frames per second) of 
76.28. The multi-axis self-attention mechanism in Max-
ViT-UNet enables spatial interaction of local and global 

Table 1  Ablation experiments

U-Net SK ViT CA IoU(%) Dice(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)

√ 95.80 94.92 94.27 97.05 96.18 96.61

√ √ 96.34 95.62 95.49 97.16 96.99 97.08

√ √ √ 97.13 96.60 96.33 97.92 97.56 97.74

√ √ √ √ 97.40 96.94 96.54 98.23 97.70 97.96
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information, resulting in optimal Accuracy and Recall of 
97.23% and 98.15%, respectively. It exhibits commend-
able segmentation performance, albeit with some limita-
tions in precise boundary segmentation. In comparison 
to the baseline U-Net model, the proposed STC-UNet 
model demonstrates improvements in IoU, Dice, Accu-
racy, Precision, Recall, and F1-score by 1.60%, 2.02%, 
2.27%, 1.18%, 1.52%, and 1.35%, respectively. Further-
more, when compared to several mainstream segmenta-
tion models, our proposed model achieves the optimal 
values for IoU, Dice, Precision, and F1-score. Therefore, 
the experimental results suggest that the proposed model 
possesses a certain degree of superiority.

To further demonstrate the segmentation effectiveness 
of our proposed method on renal tumors, five images 

are selected randomly from the test set for visualization. 
As shown in Fig. 5, due to factors such as varying tumor 
sizes, diverse morphologies, indistinct boundaries, and 
interference from adjacent tissues, each model exhibits 
distinct segmentation results for renal tumors. For the 
first two images, most models demonstrate incomplete 
segmentation and rough contours in the tumor regions. 
In the third and fourth images, where tissues with colors 
and textures similar to tumors are present, U-Net strug-
gles to differentiate effectively. In the fifth image, smaller 
tumors result in instances of under-segmentation by 
U-Net, UNet +  + , and DC-UNet, while PSPNet, Dee-
pLabv3 + , TransUnet, SwinUnet, and MaxViT-UNet 
exhibit cases of over-segmentation and mis-segmenta-
tion. Meanwhile, the STC-UNet proposed in this paper 

Table 2  Segmentation results of different models on the KiTS19 dataset

Method IoU(%) Dice(%) Accuracy(%) Precision(%) Recall(%) F1-score(%) Params(M) FPS(img/s)

U-Net [14] 95.80 94.92 94.27 97.05 96.18 96.61 13.40 35.07

PSPNet [12] 95.33 94.30 95.06 95.71 96.71 96.20 46.58 31.89

Deeplabv3 + [13] 95.97 95.14 95.24 96.69 96.83 96.76 41.20 32.26

UNet +  + [16] 96.40 95.69 94.85 97.69 96.57 97.12 39.96 33.36

DC-UNet [19] 94.47 93.14 95.34 94.06 96.89 95.43 10.81 76.28
TransUnet [25] 90.94 87.98 87.97 91.99 91.98 91.98 67.87 50.85

SwinUnet [26] 93.39 91.62 93.03 93.52 95.35 94.42 41.55 32.32

MaxViT-UNet [28] 97.13 96.61 97.23 97.33 98.15 97.74 27.26 18.72

STC-UNet 97.40 96.94 96.54 98.23 97.70 97.96 41.06 27.79

Fig. 5  Visual Segmentation Results of Various Models on the KiTS19 Dataset. a is original image, b is the Ground truth, c is the output of U-Net, 
d is the output of PSPNet, e is the output of Deeplabv3 + , f is the output of UNet +  + , g is the output of DC-UNet, h is the output of TransUnet, i 
is the output of SwinUnet, j is the output of MaxViT-UNet, k is the output of Our STC-UNet
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exhibits a more comprehensive extraction of detailed 
and semantic features related to renal tumors. It places 
greater emphasis on both local and global information 
of the tumors, enabling a more precise segmentation 
of the renal tumor region. In summary, the segmenta-
tion performance of our model surpasses that of several 
other models, making it better suited for the task of renal 
tumor segmentation.

Model generalization verification
In order to validate the effectiveness of STC-UNet in 
segmenting renal tumors and assess its generalization 
capability, we collaborate with the First Affiliated Hos-
pital of Zhengzhou University to acquire abdominal CT 
images from 10 patients with renal tumors. All data are 
annotated for renal tumors in CT images under the guid-
ance of professional radiologists specialized in medi-
cal imaging, and the annotations are ultimately verified 
through their examination. Our STC-UNet is then tested 
on this dataset, and the results are compared with U-Net 
[14], UNet +  + [16], DC-UNet [19], SwinUnet [26], and 

MaxViT-UNet [28]. The evaluation metrics are presented 
in Table  3. It can be observed that compared to other 
models, DC-UNet achieves the highest Accuracy and 
Recall, while our proposed STC-UNet model achieves 
optimal values for IoU, Dice, Precision, and F1-score. 
Subsequently, we select three CT image cases randomly 
for visualization, as illustrated in Fig. 6, to showcase the 
segmentation performance of various models under dif-
ferent conditions. It is evident that U-Net, UNet +  + , 
DC-UNet, and SwinUnet exhibit subpar segmentation 
results, whereas MaxViT-UNet and STC-UNet demon-
strate superior segmentation performance. While DC-
UNet provides comprehensive coverage of renal tumors, 
it also exhibits instances of erroneously segmenting some 
background regions as tumors, which explains its high 
Accuracy and Recall. MaxViT-UNet achieves good seg-
mentation results, but its ability to delineate boundaries 
is comparatively weaker. In summary, our STC-UNet 
model outperforms other models in terms of segmenta-
tion effectiveness and showcases superior generalization 
capabilities.

Table 3  Segmentation results of various models on the renal tumor dataset from the first affiliated hospital of Zhengzhou University

Method IoU(%) Dice(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)

U-Net [14] 85.90 79.18 81.89 84.50 87.93 86.12

UNet +  + [16] 86.72 80.74 79.44 88.07 86.29 87.16

DC-UNet [19] 85.74 78.87 92.06 80.34 94.71 85.91

SwinUnet [26] 84.10 75.55 76.49 83.09 84.33 83.70

MaxViT-UNet [28] 89.49 85.62 89.85 87.99 93.23 90.41

STC-UNet 89.85 86.23 84.34 92.17 89.56 90.82

Fig. 6  Visual Segmentation Results of Various Models on the Renal Tumor Dataset from the First Affiliated Hospital of Zhengzhou University. a 
is original image, b is the Ground truth, c is the output of U-Net, d is the output of UNet +  + , e is the output of DC-UNet, f is the output of SwinUnet, 
g is the output of MaxViT-UNet, h is the output of Our STC-UNet
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Discussion
To address the segmentation challenges posed by the 
unclear boundaries, variable morphology, size, and posi-
tion of kidney tumors, this paper proposes an improved 
version of U-Net, named STC-UNet, designed for precise 
kidney tumor segmentation by enhancing feature extrac-
tion at different network levels. It is well-known that in 
the U-Net architecture, as the network depth increases, 
the detailed information of the image gradually decreases 
while the semantic information increases. STC-UNet 
aims to enhance feature extraction to capture unique fea-
tures at different network levels. First, we introduce the 
SK module into the shallow network of U-Net, where 
detailed features are abundant. The selection module 
within the SK module adaptively decides which scales of 
convolutional kernels to use on each channel. By selec-
tively applying different scales of convolutional kernels, 
the SK module enhances the representation capabili-
ties of features, thereby capturing multi-scale features 
at various levels. The SK module in the shallow network 
captures rich detailed and multi-scale features, address-
ing the challenges of unclear boundaries and uncertain 
sizes of kidney tumors.Second, we integrate the ViT 
module without patch splitting into the deep network 
of U-Net, where semantic features are abundant. The 
ViT module, with its inherent properties, effectively cap-
tures the global context information in the image. By not 
splitting patches in the deep network where the feature 
map is smaller, it reduces the loss of detailed informa-
tion, compensating for the ViT module’s limitation in 
handling local information. The ViT module in the deep 
network captures rich semantic features while reducing 
the loss of detailed information, further enhancing the 
model’s ability to extract complex features, thereby better 
addressing the challenges posed by the unclear bounda-
ries, morphology, size, and position of kidney tumors. 
Finally, combining the strong context information cap-
turing capabilities brought by the SK and ViT modules, 
we introduce the coordinate attention mechanism in the 
decoder part, enabling more accurate feature capture of 
the tumor region, thereby further improving the preci-
sion and accuracy of segmentation.

Our STC-UNet’s computational efficiency is worth dis-
cussing. The introduction of Transformer modules does 
increase the computational complexity of our model. 
However, we only introduce Transformers in the deep 
layers with small feature maps, minimizing the impact 
on overall computational load. This design of the ViT 
module without patch splitting leverages the advan-
tages of Transformers in extracting high-level features 
while reducing the loss of local details and, to some 
extent, decreasing computational complexity. Addition-
ally, according to our experimental results, STC-UNet, 

as the optimal segmentation model, achieved an infer-
ence speed of 27.79 FPS. Although this is slightly below 
the widely accepted real-time segmentation standard 
of 30 FPS, considering that kidney tumor segmenta-
tion requires high precision rather than strict real-time 
performance, we believe this is acceptable. Despite per-
forming efficiently on high-end GPUs, STC-UNet’s per-
formance on CPUs is significantly slower, making it less 
suitable for real-time applications in low-resource set-
tings. Future work could focus on model optimization 
techniques, such as model pruning, quantization, and the 
use of more efficient Transformer variants, to enhance 
the computational efficiency of STC-UNet.

Conclusion
In this paper, we propose an improved version of U-Net, 
named STC-UNet, for kidney tumor segmentation. This 
is a segmentation network based on enhanced feature 
extraction for different network levels. Compared to 
other advanced 2D medical image segmentation models, 
our STC-UNet achieves higher accuracy and superior 
segmentation performance. On the KITS19 dataset, the 
Dice coefficient for kidney tumors reaches 96.94%, IoU 
reaches 97.40%, and Precision reaches 98.23%. Next, we 
apply STC-UNet to CT images of real patients with kid-
ney tumors at the First Affiliated Hospital of Zhengzhou 
University. The experimental results show that STC-
UNet exhibits a certain level of robustness and generali-
zation capability, demonstrating favorable segmentation 
outcomes.

However, this study has several limitations. Firstly, the 
computational efficiency of STC-UNet is compromised 
due to the integration of complex modules, which may 
limit its applicability in real-time scenarios. Secondly, the 
generalization capability of STC-UNet needs further vali-
dation on larger and more diverse datasets to ensure its 
robustness across different clinical settings. Future work 
could focus on optimizing the computational efficiency 
of STC-UNet and exploring its performance on a wider 
range of datasets.
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