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Abstract 

Background Cancer pathology shows disease development and associated molecular features. It provides exten-
sive phenotypic information that is cancer-predictive and has potential implications for planning treatment. Based 
on the exceptional performance of computational approaches in the field of digital pathogenic, the use of rich phe-
notypic information in digital pathology images has enabled us to identify low-level gliomas (LGG) from high-grade 
gliomas (HGG). Because the differences between the textures are so slight, utilizing just one feature or a small number 
of features produces poor categorization results.

Methods In this work, multiple feature extraction methods that can extract distinct features from the texture of histopa-
thology image data are used to compare the classification outcomes. The successful feature extraction algorithms GLCM, 
LBP, multi-LBGLCM, GLRLM, color moment features, and RSHD have been chosen in this paper. LBP and GLCM algorithms 
are combined to create LBGLCM. The LBGLCM feature extraction approach is extended in this study to multiple scales 
using an image pyramid, which is defined by sampling the image both in space and scale. The preprocessing stage is first 
used to enhance the contrast of the images and remove noise and illumination effects. The feature extraction stage is then 
carried out to extract several important features (texture and color) from histopathology images. Third, the feature fusion 
and reduction step is put into practice to decrease the number of features that are processed, reducing the computation 
time of the suggested system. The classification stage is created at the end to categorize various brain cancer grades. We 
performed our analysis on the 821 whole-slide pathology images from glioma patients in the Cancer Genome Atlas (TCGA) 
dataset. Two types of brain cancer are included in the dataset: GBM and LGG (grades II and III). 506 GBM images and 315 LGG 
images are included in our analysis, guaranteeing representation of various tumor grades and histopathological features.

Results The fusion of textural and color characteristics was validated in the glioma patients using the 10-fold cross-
validation technique with an accuracy equals to 95.8%, sensitivity equals to 96.4%, DSC equals to 96.7%, and specific-
ity equals to 97.1%. The combination of the color and texture characteristics produced significantly better accuracy, 
which supported their synergistic significance in the predictive model. The result indicates that the textural character-
istics can be an objective, accurate, and comprehensive glioma prediction when paired with conventional imagery.

Conclusion The results outperform current approaches for identifying LGG from HGG and provide competitive 
performance in classifying four categories of glioma in the literature. The proposed model can help stratify patients 
in clinical studies, choose patients for targeted therapy, and customize specific treatment schedules.
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Introduction
Brain tumors are abnormal cell growths that occur within 
the brain. Brain tumors are classified into several catego-
ries based on their origin, rate of growth, and stage of 
progression [1, 2]. Tumors of the brain may be benign or 
malignant. Benign brain tumor cells seldom infect nearby 
healthy cells. They have defined borders and develop 
slowly (e.g., meningiomas and astrocytomas). Malignant 
brain tumor cells, such as oligodendrogliomas and astro-
cytomas of the higher grade, attack surrounding cells in 
the brain. They have fuzzy borders and spread rapidly. 
Primary brain tumors are classified as low-grade glioma 
(LGG) and high-grade glioma (HGG) [3].

Grades I and II are denoted as LGG, whereas grades 
III and IV are defined as HGG. Grades I and II are astro-
cytomas, grade III is an oligodendroglioma tumor, and 
grade IV is a glioblastoma multiforme (GBM). Astrocy-
toma and medulloblastoma are influenced in children. 
Oligodendroglioma, meningioma, and glioblastoma are 
affected in adults. GBM is an advanced stage of the brain 
tumor with few symptoms, which makes it difficult to 
classify. Early and accurate diagnosis of these malignan-
cies improves patient survival [4].

Histopathology is the field of human tissue analysis for 
a specific disease. The procedure of examining human 
tissue in clinical practice is basically as follows. First, a 
biopsy is collected and sent to the pathology laboratory. 
The tissue is then stained on a glass slide in the lab. The 
aim of the stain is to highlight certain tissue features. For 
example, stained hematoxylin and eosin (H&E) tissue 
provides a dark purple color to the nuclei and rose for 
other structures. The pathologist can use a microscope 
to examine when the tissue is processed and stained 
[5]. Conventionally, pathologists analyze tissue sections 

under a microscope to diagnose or grade brain tumors. 
However, the manual diagnosis process is time-consum-
ing and prone to human mistakes. Then, computer-aided 
brain tumor classification is widely needed [6].

Brain tumors must be detected accurately and early in 
order to be successfully treated. Brain cancer is one of 
the most lethal cancers for both men and women with 
low survival levels [7]. Early detection not only helps to 
develop better drugs but can also keep our lives in due 
time. Brain cancer is the leading cause of mortality in 
females aged 20 and under and males aged 40 and under 
[8]. According to studies, brain cancers are exceedingly 
heterogeneous, which is the fundamental challenge for 
brain tumor categorization and thus diagnosis [9].

Therefore, it is essential to diagnose tumors correctly 
because treatment depends largely on knowing the char-
acteristics of the tumor and how it progresses. Tissue 
histopathology exposes the impact of cancer onset and 
progression at the sub-cellular level [10, 11].Histopathol-
ogy images (HIs) are the principal information source 
for cancer diagnosis and prognosis. Digital microscope 
advancements have enabled the acquisition of high-res-
olution images of whole-slide tissue, increasing the use of 
virtual slides in histopathologic study [12].

The pathological features of grades I-IV are illus-
trated in Fig. 1. All histopathological images in Fig. 1 are 
adapted from the cancer genome Atlas (TCGA) dataset 
[13]. Histopathology is the key approach to distinguish-
ing GBM from LGG. In manual diagnosis, many HIs 
must be examined with various stains to diagnose a sin-
gle instance, which is time-consuming  [14]. Because of 
the increased complexity of HIs, accurate extraction 
of both visible and latent image features has become a 
more difficult challenge. Compared to traditional manual 

Fig. 1 Glioma histopathological characteristics at 40x magnification: a Oligodendrogliomas are characterized by uniform appearing, b Astrocytoma 
consists of fibrillary neoplastic astrocytes, c Oligoastrocytoma contains a mixture of both tumor cell types, and d GBM contains astrocytic cells 
and new blood vessel growth
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diagnosing techniques, computer-aided mechanisms 
produce better results [15].

It takes a lot of time and effort to manually diagnose 
and analyze brain histopathology images. Therefore, 
time and effort will be reduced by automated detection 
and diagnosis, assisting in the disease’s early detection. 
Diagnostic imaging’s popularity has resulted in a signifi-
cant increase in pathologists’ workloads. The data explo-
sion can be managed with Computer-aided diagnosis 
(CAD). With AI classifiers, the computational capacity of 
CAD systems can calculate various quantitative features 
to define tumor characteristics in real time and estimate 
tumor types and grades. Diagnostic processes can be 
sped up, and errors can be minimized with a quantitative 
approach.

This research aims to create computational ways to test 
the hypothesis that gliomas can be classified as LGGs 
or HGGs based on histopathology images. If the tumor 
grade is accurately diagnosed, this will aid in patient 
classification for therapeutic clinical trials. In this paper, 
quantitative feature extraction approaches and advanced 
machine learning methods were applied to analyze HIs. 
We assume that quantifying subtle histological character-
istics extracted from HIS is instructive and leads to the 
stratification of LGG and HGGs with adequate sensitivity 
and specificity.

Statistical properties like entropy, contrast, correla-
tion, homogeneity, and energy can be described using 
gray-level intensity features extracted from HIs. In medi-
cal image analysis, a statistical approach, specifically the 
gray-level co-occurrence matrix (GLCM) and gray-level 
run-length matrix (GLRLM) texture analysis method, are 
common. This paper applied a local binary pattern (LBP) 
for texture analyses to get useful information from the 
HIs. Extraction of features is particularly crucial when 
grading cancer with biopsy pictures. The brain can-
cer grading is often based on the morphologic, textural, 
nucleic, and color moment features.

GLCM has emerged as one of the most effective tex-
ture descriptors for use in image analysis among statis-
tical methods. The standard GLCM algorithm, however, 
extracts features based on a pixel and its next neighbor-
ing pixel. Additional regional patterns on the image are 
irrelevant to it. Therefore, we apply a feature extraction 
method loacl binary GLCM (LBGLCM) that combines 
the LBP and GLCM algorithms that takes into account 
both the texture structure and the spatial informa-
tion. The original GLCM’s limited capacity to capture 
texture data at various scales is another drawback. It 
is often assumed that texture information is fixed at a 
particular image resolution in descriptors. If differing 
scales are taken into account when extracting texture 

descriptors from the photos, the texture descriptors’ 
ability to discriminate between objects can be consid-
erably increased. In order to generate a variety of pic-
ture representations of the original image, the pyramid 
decomposition method is used in this study to intro-
duce a new approach for extending the LBGLCM to be 
more robust under scale variation.

This method concentrates on LBP,GLCM,LBGLCM, 
GLRLM,color histogram analyses and rotation and 
scale invariant hybrid image descriptor (RSHD) which 
based on the fusion of color and texture descriptor to 
process stained biopsies. Texture and color character-
istics are particularly significant in examining the tissue 
image and give an image’s color intensity and distribu-
tion information. This study proposes a hybrid ensem-
ble method for classification using a decision tree (DT), 
support vector machine (SVM) with the kernel of radial 
basis function (RBF), and the fast large margin based 
on the majority voting method.

The key contributions of this study can be summa-
rized in the following points:

• Introducing enhanced classification method to 
classify brain tumors in more detail. It aims to clas-
sify tumors into more specific categories, such as 
astrocytoma, anaplastic astrocytoma, oligodendro-
glioma, and glioblastoma multiforme.

• The use of the rich phenotypes in histology images 
through multivariate pattern analysis approaches 
for glioma grade classification.

• Applying the most discriminative related feature 
extraction methods and combining these features 
in order to improve classification performance.

• The LBGLCM texture descriptor is extended to 
several scales based on a pyramid decomposition.

• The most distinguishing features are fed to a hybrid 
ensemble method for classification.

• To evaluate the proposed system, many perfor-
mance measures are used. In addition, we validated 
our suggested system by comparing it to some 
existing systems.

The texture and color feature extraction techniques 
are used in a novel way in the suggested hybrid model, 
which has never been used to classify tumor grade from 
brain histopathology images before. This makes it dis-
tinctive from other hybrid models. To be more precise, 
we apply six different feature extraction methods-
GLCM, LBP, multi-LBGLCM, GLRLM, color moment 
features, and RSHD-and combine the results to provide 
a more complete and accurate representation of the 
histopathological images.
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The proposed method is predicated on the proposi-
tion that the combination of texture and color features 
can deliver complimentary information that can enhance 
the precision of tumor grade categorization. The intricate 
visual patterns that distinguish different tumor grades 
can be more effectively captured by combining these two 
kinds of characteristics. By sampling the image both in 
space and scale, we create an image pyramid that allows 
us to extend the LBGLCM feature extraction method 
to various scales. This method enables us to capture the 
multiscale properties of histopathology images, which 
can enhance the classification accuracy of brain cancer.

For the reader’s convenience, the used abbreviations in 
this paper are listed in Table 1. The rest of this paper is 
divided into four sections. Related work section reviews 
related work of the brain grade classification and the cur-
rent weaknesses. The suggested framework is described 
in Materials, metrics, and software specification  sec-
tion. The proposed system section contains the proposed 
model’s experimental results, discussion, and compari-
sons. Experimental results  section represents a conclu-
sion and future work.

Related work
Recently, various strategies for the automatic categoriza-
tion of brain cancer have been proposed, which can be 
divided according to feature selection and learning mech-
anism into machine learning (ML) and deep learning 
(DL) technologies. In the field of medical imagery, ML 
algorithms played a crucial role. Since medical imaging 
techniques have become commonly employed in various 

medical applications, such as brain tumor detection and 
identification, researchers have concentrated on building 
automated systems for categorizing tumors with various 
medical imaging techniques.

The design of feature representation is an important 
direction for HIs. Manually produced features are very 
active research topic include fractal [16], morphometric 
features [17], textural characteristics [18], and object-like 
characteristics [19]. For example, Chang et  al. [20] pro-
posed morphometrically scarce tissue characteristics for 
the GBM [21] dataset and tumor, normal, and stromal 
for the KRIC [22] dataset at different places and levels to 
recognize the tumor, necrosis, and transition to necro-
sis. Because of the vast quantity of data, they additionally 
utilized multi-scale spatial pyramid matching. Kong et al. 
[23] classified glioblastoma tumors using DNA methyl-
ation-based techniques that used multi-modal medical 
images. Hand-crafted features, such as histograms of 
oriented gradient (HOG) and binary robust independent 
elementary features, were created for short local image 
descriptors where bag-of-patterns identified tumor 
regions. They also computed auto-encoder deep features 
for segmentation masks in tumor diagnosis.

The diverse and complicated forms, structures, vol-
umes, and positions of brain tumor cells are considered 
some of the main problems for automatic tumor detec-
tion. A mix of the LBP, Gabor wavelet, and HOG patterns 
and segments-based fractal texture analyses (SFTA) is 
suggested by Amin et al. [24] to help prevent brain can-
cer. An unsupervised clustering technique that includes 
an integrated feature vector was the LBP mix of the 

Table 1 The used abbreviations

HIs Histopathology Images MVP Micro vascular of proliferation

LGG Low grade glioma PCA Principal component analysis

HGG High grade glioma H&E Hematoxylin and Eosin

GBM Glioblastoma multiform AUC Area under the Curve

GLCM Gray level co-occurrence matrix ROI Region of interest

GLRLM Gray level run length matrix CNN Convolutional neural network

LBP Local binary pattern ACC Accuracy

DT Decision tree WSI Whole slide image

SVM Support vector machine PSD Predictive sparse decomposition

RBF Radial basis function PCMD Pixel-based color moment descriptor

ML Machine learning CLAHE Contrast limited adaptive histogram equalization

DL Deep learning NMF Non-negative matrix factorization

HOG Histogram of oriented gradient TPR True positive rate

SFTA Segments fractal texture analyses PPV Positive predictive value

RF Random forest SPC Specificity

AANN Adaptive artificial neural network KNN k-nearest neighbors

CAD Computer-aided diagnosis GLM Generalized linear models

ROC Receiver operating characteristic DSC Dice similarity coefficient
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cluster method. The random forest (RF) technique was 
utilized for 0.5 hold-out cross-validation to prevent over-
alignment in complete, enhancing and non-enhancing 
regions with the projection and categorization of tumors. 
An alternative way to classify the brain tumor is devel-
oped using a modified level set method to segment the 
tumor area. The feature sets the invariant Gabor and 
time and the GLCM, which are extracted by employing 
a multilevel wavelet. The adaptive artificial neural net-
work (AANN) is used to select brain tumor prediction 
functions after selecting the features. The whale optimi-
zation algorithm is used to improve the precision of the 
ANN for the layers of the network by Virupakshappa and 
Amarapur [25].

Barkerc et  al. [26] examined the characteristics of the 
pathology images in coarse to fine ways. Spatial features, 
such as the shape of the tile region, color, and texture, are 
retrieved and classified into a clustering system. K-means 
are utilized to cluster the extracted features. The principal 
component analysis (PCA) is implemented to minimize 
the dimensionality and complexity of the data classifica-
tion. Powell et  al. [27] evaluated gliomas of low quality 
with a bag of words. The edge algorithm for detecting 
eosin stains and hematoxylin (H&E) is employed for 
nuclear segmentation. A global value is used to assign a 
threshold. The k-means technique is utilized for extrac-
tion features, and SVM is utilized to categorize total 
short-term and long-term patient survival rates. On the 
other hand,

Bhattacharjee et  al. [28] gathered pathological 
imagery features in glioma patients and applied DL 
models. Different histological markers like pseudo-pal-
isading necrosis, geographic necrosis, and inflamma-
tion, which led to an accuracy (ACC) of 90%, have been 
linked to overall glioma survival [29]. Histology traits 
enhanced glioma forecasting when paired with radiol-
ogy characteristics [30]. Rathore et  al. [31] intended 
to measure the predictive value of each feature type 
(imaging, clinical, and textural) and their combinations 
using a predictive classifier. Using the 10-fold cross-
validation technique, the texture properties were cor-
rectly assessed with an average ACC of 75.12% and an 
area under the curve (AUC) of 65.2%. This study had 
various drawbacks. First, choosing the region of inter-
est (ROI) area was semi-automatically delineated in 
digital pathology pictures, using a computer program 
to discover the ROIs and then an expert to check if 
every ROI was artifact-free. This method could be user-
bias and time-consuming as well.

Hemanth et  al. [32] suggested an approach that 
included a mean-field term within the usual objective 
function of the convolutional neural networks (CNN). 
The study proposed an automatic segmentation approach 

based on CNN, which determines small 3× 3 kernels. 
They used the University of California, Irvine (UCI) 
dataset. Their method included the following levels: data 
collecting, preprocessing, average filtering, segmenta-
tion, feature extraction, and CNN via classification and 
identification.

The analysis pipelines of glioma cases were imple-
mented in grades II, III, and IV by Wang et  al. [33], 
employed H&E and ki-67 tissue-stained whole slide 
image (WSI). The pipeline comprises several processes: 
identification of the ROI, extraction of the picture fea-
ture, selection of features, automatic slide grading, and 
explanation of grading findings. Various image charac-
teristics, such as nucleic forms and sizes and image den-
sity distribution, are calculated and sliced using the RF 
approach. The classifying process used an ML model for 
the best classification performance, automatically adjust-
ing model parameters. The contribution of GLCM and 
GLRLM characteristics in the analysis and categorization 
of brain HIs was demonstrated by Durgamahanthi et al. 
[34]. The fundamental goal of this research was to exam-
ine the complex random field of cancer images using 
GLCM and GLRLM characteristics. These characteristics 
were utilized to distinguish between healthy and cancer-
ous tissues. For classification, the SVM classifier with 
RBF kernel was applied.

Sikder et  al. [35] proposed a model that uses super-
vised learning, CNNs, and morphological operations to 
segment, classify, and detect various cancer cell types 
from MRI and HIS. The cancer grades in this meth-
odology are classified using CNN, and the cancer cells 
are divided using semantic segmentation. The system 
classified every image as malignant or not by using 
the pixel labels from the ground truth during training. 
Ahmad et  al. [36] proposed classifying HIs for-breast 
cancer diagnosis based on transfer learning and DL. 
They used transfer learning to identify breast HIs on a 
minimal number of training photos without decreas-
ing performance by applying the patch selection strat-
egy. In order to extract features from the CNN, patches 
are initially retrieved from WSIs. The discriminative 
patches are chosen based on these features and then 
fed into an Efficient-Net model. An SVM classifier is 
also trained using features taken from the Efficient-
Net architecture. Xiao et  al. [37] proposed skeleton 
and lattice features, which are hand-crafted features. 
The vascular networks in the RCC histopathology 
images are accurately represented by these features in 
their geometric and topological characteristics. Then, 
using a variety of algorithms (both conventional and 
DL models), they created robust benchmark results on 
the VRCC200 dataset. On a second database VRCC60, 
which has 60 annotated images of the vasculature from 
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20 patients, we further demonstrate the benefit and 
robustness of the proposed characteristics.

Dasanayaka et al. [38] introduced a system that catego-
rizes brain tumors into three groups, oligodendroglioma, 
glioblastoma, and astrocytomas. They applied a ResNet 
and DenseNet to classify WSI and a magnetic resonance 
imaging sequence. Prior to classifying the WSI, they used 
preprocessing approaches to obtain a low dimensional 
feature description for patched WSIs as suggested in [39]. 
Following preprocessing, patches with a size of 256 x256 
pixels were used in the input WSI’s determined region of 
interest for the feature extraction step. With the help of 
a pre-trained ResNet-50 model, features are extracted. 
Each patch receives a feature vector from the ResNet 
model with dimensions of 1024X1, which is then sent 
to the classification stage, where a model with a series of 
densely linked layers is used. Attallah and Zaghlool [40] 
suggested an automated classification system to catego-
rize the four subtypes of pediatric medulloblastoma brain 
tumors. They improved subtype identification using HIs 
from two hospitals by combining textural analysis with 
DL approaches. GLCM and GLRM were used to trans-
form the original photos into textural images, which were 
then fed to three DL models (ResNet-101, Inception, and 
InceptionResNet). Additionally, they used the original 
photos to train these three DL models. From the models 
that were trained using both textural and original images, 
they were able to extract deep features.

Ker et  al.  [41] offered a Google Inception V3-based 
automated method for categorizing histological slides 
of breast and brain tissue. According to the study, brain 
histology samples can be classified as normal, LGG, or 
HGG. Additionally, the study unearths the benefits of 
transfer learning across various tissue types, which have 
not before been discussed. Rinesh et  al.  [42] used mul-
tiple techniques on hyperspectral images to analyze the 
localization of brain tumors. A mixture of k-based clus-
tering techniques (k-nearest neighbor and k-means) is 
used to detect tumors, with the firefly algorithm being 
used to determine the ideal value of k. The requirement 
for manual calculation is decreased by this optimization 
method. A multilayer feedforward neural network is used 
for labelling after brain region segmentation.

For the processing of pathological imaging data, Zhou 
et  al.  [43] proposed the adaptive dual-branch network 
(ASI-DBNet). Local and global data are both captured 
by the ResNet-ViT parallel structure. ResNet and ViT 
branch communication is made easier by the adaptive 
sparse interaction block (ASIB). To eliminate extrane-
ous data and improve the feature maps shared between 
the branches, ASIB has an attention mechanism built 
in. In addition to raising the caliber of the final feature 
maps, this improves the interaction’s effectiveness. Khan 

et al. [44] suggested an automated technique for classify-
ing and detecting brain tumors that makes use of a sali-
ency map and enhanced deep learning characteristics. 
The framework includes a saliency map-based tumor seg-
mentation method, fusion-based contrast enhancement, 
feature extraction from the average pooling layer, entropy 
serial fusion, feature selection using a dragonfly optimi-
zation algorithm, and classification using an extreme 
learning machine.

Syedsafi et  al.  [45] suggested a two-step approach for 
analyzing brain tumors. T2-weighted MRI images are 
first divided into tumor and normal tissue categories. 
An SVM classifier trained on 8x8 image block features 
extracted with the GLCM is used in this classifica-
tion. The process then uses a color-based segmentation 
technique to separate FLAIR and T1-weighted Con-
trast-enhanced MRI images. Multi-scale morphologi-
cal texture features and least squares SVM are powerful 
tools used by Khan et al. [46] .

Gül and Kaya [47] examined a dataset of brain images 
that included scans from both tumor and healthy 
patients. They created a two-stage method after being 
motivated by the effectiveness of hybrid models in medi-
cal image analysis. Image enhancement was the main 
focus of the first phase. They made use of three differ-
ent LBP variations: step-LBP, angle-LBP, and the con-
ventional LBP. These algorithms successfully encode 
the images’ local textural information. Using a bat-
tery of eleven classification algorithms, they assessed 
the improved image features that the LBP variants had 
extracted in the second stage. They discovered four 
particularly successful classification algorithms: ran-
dom forest (RF), optimized forest, rotation forest, and 
instance-based learner, through a rigorous selection pro-
cess based on experimental performance.

Nanda et al. [48] presented the Saliency-K-mean-SSO-
RBNN classification model, which combines the salience-
K-mean segmentation technique with the social spider 
optimization algorithm in the Radial Basis Neural Net-
work. For segmenting the tumor region, a hybrid saliency 
map with K-means clustering is used. Next, features are 
extracted from the segmented image using the multireso-
lution wavelet transform, Kurtosis, Skewness, inverse dif-
ference moment, and Cosine transform. Table 2 provides 
an overview of some recent related work.

According to the prior review of the present literature 
on the ML methods, the most significant restrictions in 
the diagnosis of brain grades from histology images can 
be summarized in the following points:

• Very small number of the previous studies imple-
mented multi-classification for the brain tumors 
from HIs.
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• The texture images include useful diagnostic infor-
mation, essential for processing medical images and 
discriminating between benign and malignant can-
cers. However, these traits are insufficient to identify 
and distinguish between all grades. Other reliable 
features must be identified and discriminated.

• Some researchers have suggested a diagnosis of brain 
tumor grades. These models were conservative, inef-
ficient, and imbalanced in the real world.

• Some studies rely on user bias, and it is time-intensive.
• Another major constraint of certain studies is the use 

of retrospective data.

In order to overcome these restrictions, we performed 
all the necessary phases to analyze the biopsy, extract 
characteristics, and classify the images of brain tissue 
that worked well with promising results. Automated 
computerized cancer classification systems will assist 
pathologists in diagnosing and categorizing cancer. We 
were able to collect helpful information from HI using 
,GLCM,GLRLM, LBP, and multi-LBGLCM to recog-
nize cancer grades in biopsy images. The color moment 
method can also be utilized to extract the various color 
information types found in histology biopsy images. 
A color histogram has been implemented in the cur-
rent work to visualize tissue image color variation. Our 
work reveals that texture descriptor at multiple scale 
, pixel-based color moment descriptor (PCMD), and 
RSHD which based on fusion between color and texture 

descriptor can be implemented to extract significant 
characteristics in histological brain cancer images. In 
addition, none of the above approaches worked on hybrid 
ensemble classifying systems, which enabled to produce 
good evaluation by utilizing traditional classifiers since 
the best properties of each classifier combined to provide 
good results.

Materials, metrics, and software specification
This section includes a description of the dataset, hard-
ware and software specifications, and evaluation meas-
ures. This section contains comprehensive details about 
the dataset that used in the study. This dedicated section 
provides a detailed explanation and discussion of the 
performance assessment metrics used to evaluate our 
methodology.

Datasets description
The TCGA [13] provided a set of 821 whole-slide pathol-
ogy images of individuals with glioma (median age: 49.65 
years, male: 427, female: 308, median survival: 761.26 
days). TCGA is comprised of two brain cancer types: 
LGG and GBM. The data collection for LGG covers 
tumors of grade II and grade III. All 821 (506 GBM, 315 
LGG) pictures of TCGA, with a complete pathologic and 
molecular data complement, have been selected to test 
the performance of the proposed system. The dataset is 
described in Table 3.

Table 2 A summary of some current related work

Study Analysis Type Methodology Dataset Performance

Saba et al. [49] Brain tumor detection Utilizing integration between hand-
crafted and DL features

MICCAI challenge databases ACC = 91.7%

Rathore et al. [31] LGG classification Training of SVM models with lin-
ear configuration was made 
with the texturing features.

TCGA ACC= 90.5%

Mousavi et al. [50] Discrimination of LGG and HGG The cell segmentation and the gen-
eration of the cell count profiles 
for identification of the pseudo 
palisading necrosis were developed. 
A hierarchical decision is made 
via a DT mechanism.

TCGA ACC= 89.7%

Wang et al. [33] Automated glioma grading Visual factors with first and second-
order features were retrieved, includ-
ing morphological and sub-visual 
factors.

Shandong Provincial Hospital affili-
ated to Shandong University

ACC= 90%

Khan et al. [44] brain tumor detection and clas-
sification

Using a saliency map and deep 
learning feature optimization

BraTs2018, 2019, 2020 Acc= 95}

Zhou et al. [43] Grading of Brain Cancer The ASI-DBNet which is a ResNet-ViT 
dual-branch network with adaptive 
sparse interactions

N/A Acc= 95.2%

Ker et al. [41] brain histology classification using the Google Inception V3 Private dataset from the Depart-
ment of Pathology at Tan Tock Seng 
Hospital, Singapore

prescion= 98%
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Hardware and software specifications
The proposed system is implemented using pycharm 
2021.1.1 with Keras, Pandas, Itertools, Numpy, Sklearn, 
and Matplotlib libraries. The system is run on a machine 
with 16 GB RAM and Intel(R) Core (TM) i7/4.5 and an 
NVIDIA GeForce GTX with 4 GB VRAM.

Evaluation metrics
We used five measurements to evaluate the proposed 
framework’s performance. These measurements include 
ACC, true positive rate (TPR)/sensitivity, positive pre-
dictive value (PPV)/precision, and specificity (SPC). 
The grading phase is assessed using the Dice similarity 
coefficient (DSC). The DSC calculates the relationship 
between two fields in terms of true/false positive and 
negative values. The greater the DSC, the more precise 
the stage of tissue classification. DSC provides a uni-
fied understanding of the Precision and Recall measure-
ments. It represents the precision and recall harmonic 
mean. This basically suggests that a high DSC cannot 
exist without high precision and recall. A model is doing 
well all around when its DSC is high. DSC should be 
included with Sensitivity and Specificity for technique 
comparability.

(1)ACC =
TP + TN

TP + TN + FP + FN

(2)TRP =
TP

TP + FN

(3)PPV =
TP

TP + FP

(4)SPC =
TN

TN + FP

(5)DSC =
2TP

2TP + FP + FN

The proposed system
A combination of features collected from images of tis-
sue samples and microscopic biopsies was used for a 
hybrid ensemble classification using RBF-SVM, DT, and 
a fast large-margin classifier. In order to extract texture, 
we employed the LBP feature vector and computed 
GLCM and GLRLM. For brain cancer grading, color-
feature extraction has also been done. These character-
istics are appropriate for the various types of pathology 
for the image analysis selected for the research. The 
hybrid ensemble classification has been utilized to clas-
sify different brain cancer grades. The methodology 
provided in Fig. 2 illustrates how color and texture fea-
tures are extracted from an image and how the hybrid 
ensemble classification is performed utilizing the rel-
evant characteristics. It displays the proposed system 
architecture, consisting of four processing steps. First, 
the preprocessing phase is applied to minimize noise, 
remove light effectiveness and enhance the HI contrast. 
Second, the feature extraction phase is performed to 
obtain several important features from HI. Third, the 
reduced feature phase is used to lower the number of 
features analyzed, decreasing the time the system is cal-
culated. The grading stage has finally been developed to 
determine different brain cancer grades. This strategy 
is predicted to enhance the ACC rate of classification 
compared to the method presented in the previously 
published research. The phases of the proposed system 
are described in detail in the following subsections.

Data preprocessing
Due to variations in stain production processes, 
staining procedures used by different labs, and color 
responses produced by various digital scanners, images 
of tissues stained with the same stain exhibit undesir-
able color fluctuation. The H &E stain, which surgi-
cal pathologists utilize to expose histological detail, 
is a good example. The natural dye hematoxylin, pro-
duced from logwood trees, is difficult to standardize 

Table 3 The characteristics of TCGA dataset

Characteristics Complete Dataset Grade-II Grade-III Grade-IV

No. of patients 821 108 207 506

Median overall survival 761.26 1128 842.23 532.45

No. of deaths 516 25 89 390

Age 49.65 40.37 45.68 56.79

Gender Male 513 64 138 311

Female 308 44 69 195
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across batches since it is prone to precipitation while 
in storage, which can lead to daily variations even 
within a single lab. Stain normalization is an important 
step since the diversity in scan and handling circum-
stances. This technique reduces tissue sample varia-
tion. The uniformity of stain intensity has been proven 
to be essential in creating methods for the quantita-
tive analysis of HIs in earlier investigations [51]. This 
paper presents the improved image enhancement 
method based on global and local enhancement. Two 
key steps comprise the suggested technique. First, 
the log-normalization function, which dynamically 
changes the image’s intensity contrast, encounters the 
raw image intensity adjustment. The second technique, 
called contrast limited adaptive histogram equaliza-
tion (CLAHE), is used to improve the photos’ local 
contrast, textures, and microscopic features. After the 
two steps of normalization have applied, the ROI was 
extracted.

In addition to reducing the light reflection impact, the 
preprocessing phase is implemented to enhance the con-
trast of the RGB images ( gn ). The CLAHE approach with 
8× 8 tiles was applied. CLAHE divides the image into 
predefined-size tiles. The contrast transform function is 
then computed separately for each tile. Finally, it merges 
adjacent tiles with bilinear interpolation to prevent arti-
facts from occurring in borders. The contrast-enhanced 
image ( gn ) is fed into the next stage, which extracts 

features from the HIs of the brain. After two normaliza-
tion steps, the approach automatically detects the ROIs 
based on the amount of nucleus in regions to reflect 
cell proliferation. The HIs were initially split into tiles in 
order to permit the process of high-resolution imaging 
with a resolution of 512× 512 pixels [52]. Then, we found 
the five nuclear tiles of the highest density were classified 
as ROIs, using the watershed nuclei identification algo-
rithm for each tile [53].

Feature extraction
In order to extract texture and pixel-based color moment 
features, the two-dimensional (2D) GLCM and color-
moment approaches were applied. Texture character-
istics were extracted from LBP and GLCM, and colors 
from grayscale images were recovered from the original 
color image on three channels.

Texture features
Statistical Method: GLCM is a statistical approach that 
evaluates texture based on pixel space. To assess the 
texture of the image, we generated a GLCM. We then 
extracted statistical measurements from the matrix to 
determine how many pairs of pixels with certain values 
were found in a defined spatial relation between them. 
For feature extraction, the following directions were pro-
vided for the co-occurrence matrix: 0o [0, 1], 45o [-1, 1], 
90o [-1, 0], and 135o [-1, -1].

Fig. 2 The proposed system for classifying brain grades from digital pathology images
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Always within range of [0, 1] are the GLCM matrix. 
For texture analysis, the size of the GLCM matrix for 
sub-images at the first and second levels were 128× 128 
and 64 × 64 . The GLCM calculates six different tex-
ture forms: contrast, homogeneity, correlation, energy, 
entropy, and dissimilarity. The following formulae were 
used to calculate these characteristics:

where p(i − j) is the probability matrix co-occurrence, 
separated by a specified distance, to combine two pixels 
with intensity (i, j). N denotes the grey level of quantiza-
tion, and the means for row i and column j, respectively, 
are µx and µy , and σx and σy are the standard deviations, 
within the GLCM.

GLRLM is a texture analysis method that works espe-
cially well with grayscale images. The patterns created 
by pixels with the same intensity value (gray level) are 
statistically quantified. GLRLM has been widely used in 
a variety of medical imaging modalities, including his-
topathological images, to analyze tissue microarchitec-
ture and detect subtle abnormalities that are not visible 
to the naked eye. GLRLM does more than just analyze 
pixel intensities; it meticulously tracks how many pixels 
of the same intensity line up in a row, generating a map 
of these "runs" and their lengths. This is an overview of 
its features:

• Gray Level: A grayscale image’s pixel intensity, 
which ranges from 0 (black) to 255 (white), with 
intermediate values denoting various shades of gray.

• Run Length: The image is scanned in multiple 
directions ( 0o , 45o , 90o , and 135o ). A run is a col-

(6)Contrast =

N−1

i=0

N−1

j=0

|i − j|2ρ(i − j)

(7)Homogeneity =

N−1
∑

i=0

N−1
∑

j=0

ρ(i − j)

1+ (i + J )2

(8)Correlation =

N−1
∑

i=0

N−1
∑

j=0

ρ(i − j)
(i − µx)(j − µy)

σxσy

(9)Energy =

N−1
∑

i=0

N−1
∑

j=0

ρ(i − j)2

(10)Dissimilarity =

N−1
∑

i=0

N−1
∑

j=0

|i − j|ρ(i − j)

lection of neighboring pixels that have the same 
grayscale. The number of consecutive pixels with 
that specific intensity is referred to as the run’s 
length.

By analyzing features extracted from this map, GLRLM 
provides a quantitative description of the image’s tex-
ture, which is useful for a variety of applications, 
particularly in medical imaging, where distinguish-
ing subtle textural variations is critical for accurate 
diagnosis. The capacity of GLRLM to extract texture 
features associated with the linear or elongated struc-
tures seen in images-structures that might be sugges-
tive of specific pathological traits-is one of its primary 
advantages.

A wide range of features that perfectly capture the tex-
ture of the image are extracted by GLRLM. These char-
acteristics, such as Long Run Emphasis (LRE) and Short 
Run Emphasis (SRE), indicate the frequency of densely 
populated or large areas with comparable intensities. Fur-
thermore, Run Length Non-uniformity (RLN) investigates 
the variation in run lengths itself, while Gray Level Non-
uniformity (GLN) explores the variety of shades within 
runs. Together with other features, these help to provide a 
comprehensive picture of the texture of the image, which 
is important for brain tumor classification, where minute 
differences in texture can make a diagnosis more accu-
rate. The following equations were used to calculate this 
features:

where Ng: The number of gray levels in the picture; p(i,j): 
The normalized value at the GLRLM matrix’s position 
(i,j).

where µg represents the image’s mean gray level.

where µr represents the average run length computed in 
all directions.

(11)SRE =

∑Ng
i=1

∑Ng
j=1 p(i, j)

1+ (i + j)

(12)LRE =

∑Ng
i=1

∑Ng
j=1 p(i, j)

1+ |i − j|

(13)GLN =

Ng
∑

i=1

Ng
∑

j=1

p(i, j) · (i − µg )
2

(14)RLN =

Ng
∑

i=1

Ng
∑

j=1

p(i, j) · (j − µr)
2
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Algorithm 1 Calculate GLCM texture feature

Algorithm 2 Calculate GLRLM texture feature

Local Binary Pattern: LBP is a basic but strong local 
texture descriptor that considers each pixel’s center-value 
neighborhood, and the result is represented as a binary 
code. Suppose having a grayscale image consisting of a 
3x3 pixel block, with X representing the central pixel and 
its eight neighbors:

Assume that the central pixel (X) has a gray level 
of 100. We’ll take a clockwise comparison with each 
of its neighbors. A neighbor’s binary code position is 
assigned a "1" if its intensity is greater than or equal 
to the central pixel. If not, a "0" is put in place. The 
binary string in this case, according to clockwise order, 
is 11001001.

Finally, the LBP feature value is obtained by convert-
ing this binary string to decimal. The decimal value 
in this instance is 201.To compute LBP features, this 

∗ ∗ ∗ ∗ ∗

∗ 120 130 140 ∗

∗ 110 X 130 ∗

∗ 60 70 80 ∗

∗ ∗ ∗ ∗ ∗

process is repeated for every pixel in the image patch. 
Following that, the LBP feature values can be utilized 
for additional analysis, like segmentation [54] or texture 
classification [55].

In a neighborhood (P, R), the fundamental LBP values are 
calculated by Eq. 15.

The intensity value ( gc ) is identical to the density 
of the pixel in the center of the local district, whereas 
( gp) = (0, 1, ...,P − 1) is the grey value of P pixels with 
a R (R > 0) creating a set of neighbors with a circular 
symmetry. In this study, another LBP extension with a 
reduced feature vector for the rotation of invariant regu-
lar modes is used [56]. This paper uses the LBP exten-
sion, which is explicitly familiar with heterogeneity by 
weighting local texture patterns. The second moment 
(variance) of local districts is used to expand LBP histo-
grams with information on heterogeneity to better hold 
the polymorphism in histopathological pictures. The 
texture characteristics are extracted from an area of cir-
cular pixels with p-members and radius R, which were 
referred to as (P, R).

The LBP characteristics and heterogeneity measures 
have been retrieved for three different values (P, R) to take 
advantage of multi-resolution analysis. In addition, we 
studied two different, albeit related, techniques to detect 
heterogeneity: 

1 Second moment (variance) of the average of the 
neighborhood, as presented by Eq. 16. 

2 Local dissimilarity computed based on any concept 
of homogeneity capturing a set of elements uniform-
ity. When every element has the same value, the 
homogeneity of this set is the same. Local homoge-
neity H is calculated as by Eq. 17 [57]. 

 where wij are regional pixels, m is the mid or middle 
value in the region of the pixels, and L is the area size.

Figure 3 shows heterogeneity images in the first row based 
on the notions of variance and differences for an intuitive 
comprehension of the suggested method.

(15)LBPP,R =

P−1
∑

P=0

S(gp − gc)
2P

(16)V =
1

p

p
∑

i=1

(gi − µ)2

(17)H = 1−
1

L

√

∑

i

∑

j

(wij −m)2
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Algorithm 3 Calculate LBP texture feature

Local Binary Gray Level Co-occurrence Matrix 
(LBGLCM): LBP and GLCM are combined to create the 
LBGLCM method. The LBP operator is initially applied 
to the raw image for this process. The LBP operator is 
used to analyze the image and produce a texture image. 
Finally, the resultant LBP image’s GLCM characteristics 
are retrieved. When extracting the features, the Tradi-
tional GLCM algorithm bases its operation on a pixel 
and its subsequent neighbor pixel. Other small-scale 
patterns on the image are irrelevant to it. The LBGLCM 
approach extracts feature while taking into account every 
aspect of texture structure and spatial data. In this study, 
LBGLCM features from histopathological images are 
derived using the same formulas as the GLCM method.

When analyzing textures, scale is crucial informa-
tion because the same texture can appear in many ways 
at various scales. The image pyramid, which is defined by 
sampling the image both in space and scale, is applied for 
expanding the LBGLCM to various scales in this study. It 
is often assumed that texture information is fixed at a par-
ticular image resolution in descriptors. If differing scales 
are taken into account when extracting texture descriptors 
from the photos, the texture descriptors’ ability to dis-
criminate between objects can be considerably increased. 
The method for expanding LBGLCM to make it more 
resistant to scale change is presented in this paper.

The pyramid decomposition is used in this study to 
provide a variety of picture representations of the origi-
nal image and suggests an extension of the LBGLCM to 
different scales. At every resolution level, LBP is pro-
duced, leading to the creation of several scales. A single 
feature descriptor is created by extracting the GLCM 
features from this generated LBP image at each scale. 
To benefit from the information from various scales, 
the features must be combined after being taken from 
each scale. A combination method is used to integrate 
the features in order to accomplish that. Each feature 
descriptor that is retrieved from a particular scale is 
normalized, and all of the normalized features are then 
concatenated to form a single set.

Color moment features
The study of color moments was performed to obtain 
color-based characteristics from brain tissue pic-
tures. A color histogram for the distribution of color 
in microscopic biopsy images is used for the color 
moment analysis. For the tissue image analysis, color 
information is highly significant, and each histogram 
peak represents another color, as illustrated by Fig.  4. 
The figure shows the number of color pixels present 
respectively in the image on the x-axis and y-axis of the 
color histogram.

The PCMD technology was implemented to extract 
color-based information from images of the brain tis-
sue. This method is helpful when the color distribution 
is analyzed between three RGB channels. The 3-color 
channels were split from RGB color images to obtain 
significative color moment information from tissue 
images, as shown in Fig. 5. Then, we independently cal-
culated each channel’s mean, standard difference, skew, 
variance, and kurtosis. The following formulae were 
used to calculate these features.

Fig. 3 Image examples of LBP and heterogeneity based on principles of variance and dissimilarity
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Fig. 4 Brain biopsy images at a microscopic level: a Tissue image of grade II and color histogram, b Image of grade III and color histogram, and c 
Brain HI of grade IV and color histogram in RGB color space

Fig. 5 The HI color moment analyses by dividing RGB color channels: a Original RGB HI stained with H&E combination, b The Red component 
converted from an original, c The green component converted from an original, and d The blue component converted from an original
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where pij is the ith pixel value of the color channel ith pixel 
picture. N is the pixel count in the picture. µi is the aver-
age, σi is the default variation and is generated by the 
square root of the color distribution distinction, si is the 
skewing value, and ki is the kurtosis value.

The HSV color space is utilized to reduce the influence 
of light variations. The component hue (H) has the color 
picture intense value, which is not altered by changes in 
lighting. The saturation (S) component also contrasts well 
with the processed picture [58].

Rotation and scale invariant hybrid image descrip-
tor (RSHD): The RSHD method builds the descrip-
tor over the entire image, which is viewed as a single 
region [59]. The RSHD is an effective merging of the 
color and texture cues that are already present in the 
image. The RGB color is quantized into a single chan-
nel with a smaller number of shades in order to encode 
the color information. The binary structuring pattern is 
used to compute the textural characteristic. By taking 
into account nearby local structure elements, structur-
ing patterns are formed. The structural pattern is inde-
pendently extracted for each quantized shade in order to 
combine the color and texture. This allows to simultane-
ously encode information about both color and texture. 
The local adjacent structure components make it easier 
for the suggested descriptor to gain rotation and scale-
invariant properties. The RSHD divides the RGB color 
space into 64 hues. Utilizing 5 rotation invariant struc-
ture elements, the texture is also retrieved together with 
the color. In order to create an RSHD feature description, 
color and texture data are combined.

Non-negative Matrix Factorization (NMF)-based feature 
reduction
After each pixel has generated the feature vec-
tor, the NMF approach is provided to minimize the 

(18)Mean(µi) =

N
∑

j=1

1

N
ρij

(19)Standarddeviation(σi) =

√

√

√

√

1

N

N
∑

1

(ρij − µy)2

(20)Skewness(si) =
3

√

√

√

√

1

N

N
∑

1

(ρij − µy)3

(21)Kurtosis(ki) =
4

√

√

√

√

1

N

N
∑

1

(ρij − µy)4

dimensionality of the vector feature. NMF is a reduction 
approach on the basis of a low-rank feature space estima-
tion as described by Eq. 22. It also ensures that the char-
acteristics of the additives are non-negative [60].

where x is a non-negative matrix representing the fea-
ture retrieved for every pixel in the processed image. k 
is a positive integer in which k < (i, j) . Two non-nega-
tive matrices, w(i, k) and h(k, i) are calculated. It reduces 
the standard of the x-wh differences. w can be seen as 
the reduced characteristics and F as the relevance of 
these characteristics. The product of w and h provides a 
reduced estimate of the data held within the x matrix. We 
have evaluated numerous k values to optimize the effi-
ciency of the suggested system (from 2 to 100). We dis-
covered that k = 32 performed best among other values.

Classification
At this stage, a classifier is fed the reduced feature matrix 
in order to apply a mark matching a grade type for each 
pixel of the processed brain image. We would like to 
detect, as previously noted, there are four different lev-
els of brain tumor, including oligodendroglioma, astrocy-
toma, oligoastrocytoma, and GBM.

The highly regarded random DT and SVM algo-
rithms are the foundation of our ensemble classification 
approach. This choice results from a two-pronged strat-
egy that builds diversity within the ensemble while lever-
aging each member’s unique strengths. Both random DT 
and SVM have gained recognition for their outstanding 
capabilities and resilience when dealing with complex 
classification tasks, especially those that involve high-
dimensional feature spaces such as those found in histo-
pathological image analysis. By using both random DT 
and SVM, we can take advantage of their complementary 
advantages and build a diverse and powerful ensemble 
that may result in higher classification accuracy for brain 
tumors.

Support vector machine
SVM is a powerful classification algorithm. SVM utilizes 
the kernel function to convert the original data space to 
a higher space. Eq. 23 defines the data separation hyper-
plane function.

where xn is supportive vector data (features from 
brain HI), αn is a Lagrange, and yn is a goal class with 
n = 1, 2, 3, . . . ,N  . RBF kernel function is defined by 
Eq. 24.

(22)x(i, j) ≈ w(i, k)h(k , j)

(23)f (xi) =

N
∑

n=1

αnynk(xn, xi)+ b
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SVM contains C and γ , two main hyper-parameters. 
C is a hyper-parameter adjusting each support vector’s 
influence for the soft margin cost function. γ is a hyper-
parameter that determines the extent to which we desire 
the curvature at the decision limit. The values of γ and C 
were set at [0.00001, 0.0001, 0.001] and [0.1, 1, 10, 100, 
1000, 10000], respectively, and γ and C were selected 
with maximum precision.

Fast large margin classifier
Soft edge SVMs can find hyper-planes with positive slack 
variables to adjust the constraints of Eq.  23. The slack 
variable adjustment allows SVM to lessen the influence of 
optimization by enabling certain situations to be within 
the margins or within another class. The concept of a 
large margin has been determined as a method for cat-
egorizing data based on the classification margin rather 
than as a raw training error. The categorization margin 
is primarily influenced by putting the decision-making 
function far away from any data points. Methods of fast 
marginal aim to reach wide marginal decision-making 
solutions through resolving a restricted quadratic issue 
of optimization and by promoting early stop approaches. 
The fast large classifier considers the above-mentioned 
optimization and convergence approaches to minimize 
errors and increase the hyper-planes’ separation mar-
gin. Such algorithms can help to optimize training pro-
cedures by saving time and resources. Let ρ indicates the 
margin, how far two classes can be separated from each 
other, and therefore how quickly the learning algorithm 
has reached a point of convergence. The true mapping 
f : x → R can be used to classify pattern x, the margin 
may be determined using Eq. 25 [61]. It determines the 
function of margin costs ϑ :: R → R+andϑ risk of f given 
by Eq. 26.

The margin cost function of the AdaBoost algorithm 
ϑ(α) = exp(−α) . Classifiers must attain a broad mar-
gin ρ(f ) for trustworthy training and should also be suc-
cessful in unseen cases. The greatest margin f for the 
ideal hyper-plane can be provided to achieve the Eq. 27 
between the weight vector and threshold.

By regulating the magnitude of w and the number 
of errors in training, we can minimize the following 

(24)k(xn, xi) = exp (−γ �xn − xi�
2 + C)

(25)ρ(f (x,y)) := yf (x)

(26)Rϑ(f ) = Eϑρ(f (x,y))

(27)w∗b∗ = maxmi=1min
(w.xi)+ b

�w�

objective feature, in which the constant above 0, a prop-
erly generalized classifier can be obtained by Eq. 28.

Random decision tree
Random DT is one of the most widely used supervised 
ML techniques. The decisions are influenced by specific 
circumstances and can be interpreted easily. The key 
characteristics that are useful in classification are identi-
fied and chosen. It only selects attributes that return the 
biggest information gain (IG).

where Entropy (E) is defined as: E =
∑

i − probi(log2 probi) 
and probi is the probability of class i.

Majority‑based voting mechanism
The majority vote is commonly applied in the ensemble 
classification. It is also referred to as voting for plural-
ity. The proposed method uses a majority-based voting 
mechanism to enhance the classification results after 
implementing the three classification algorithms dis-
cussed above [62]. Each of these model results is calcu-
lated for each test case, and the final output is anticipated 
based on the majority of results. The y class mark is antic-
ipated by majority votes for each classifier C, as presented 
by Eq. 30.

Experimental results
This section includes a description of the results, and dis-
cussion. The datasets are divided into training and test-
ing sets in the Results section. The training set is then 
used to display the results of various feature extraction 
approaches using the NMF feature selection strategy. 
Then, using five performance measurements, we rep-
resent some tables and figures that support the desired 
idea. Finally, we objectively compare the proposed system 
with some literature research in the Discussion section.

Results
Image augmentation expands the quantity of available 
data by applying domain-specific approaches to create 
altered versions of images. These transformations can 
include things like flips, zooms, and shifts, among other 
things. Image augmentation is distinguished from data 
preparation operations, such as image resizing and pixel 
scaling. Image augmentation is only used on the training 

(28)τ (w, δ) =
1

2
�w�2 + C

m
∑

i=1

δi

(29)
IG = E(ParentNode)− Average E(ChildNodes)

(30)y = mod{C1(x),C2(x), ....,Cn(x)}
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dataset and not on the validation or test datasets. On the 
other hand, data preparation must be done consistently 
across all model datasets [63]. The data was then synthe-
sized using a combination of affine image transforma-
tions, including rotation, shifting, scaling (zoom in/out), 
and flipping. We have evaluated a wide range of values 
for k for NMF feature reduction ( k = 2, 4, ...., 100 ). In this 
case, k refers to the number of feature vector elements. 
We noticed that k = 32 provides the best results for any 
glioma grades, reducing vector dimensions between 182 
and 28 elements.

After preprocessing, 8,061 ROI from 821 different 
patients were used in our study for training and test-
ing. To analyze the performance of our model, we spe-
cifically partitioned the dataset into 10 equal-sized 
folds and used 10-fold cross-validation. Approximately 
7,255 ROIs from 739 patients made up 9/10 of the 
data in each fold, which was utilized for training, and 
approximately 806 ROIs from 82 patients made up the 
remaining 10% of the data, which was used for test-
ing. Each fold was tested exactly once throughout each 
of the ten iterations of this procedure. This method 
allowed us to test our model’s performance and gen-
eralizability in a robust manner. With a 40% split 
between training and testing data, we also performed 
hold-out validation. Specifically, we used 40% of the 
data (about 3,224 ROIs from 328 patients) that were 
randomly chosen for testing, and the remaining 60% 
(about 4,837 ROIs from 493 patients) that were used 
for training.

Figure  6 illustrates the ACC results in relation to the 
selection of various parameter k values for different brain 
glioma grades of the NMF approach. In order to evalu-
ate the proposed method’s performance, we calculated 
the general ACC for the brain tumor classification. We 
compared the results with eight different state-of-the-art 
classifiers, namely K-nearest neighbor (KNN), general-
ized linear models (GLM), naive Bayesian ,RF, DT, SVM, 
gradient boosting trees (GBT), extreme gradient boosting 
(XGBoost) and DL classifier. In order to prevent overfit-
ting, all results are collected using the 10-fold cross-val-
idation technique. The results are shown in Table  4 for 
various models and different methods of features. The 
results of the accuracy of each brain glioma grade for 
10-fold cross-validation are summarized in Table 5. The 
proposed system achieved an average overall accuracy 
of 95.8% for all tested images. Moreover, GLM, KNN, 
naive Bayesian, DT, RF, SVM,GBT,XGboost and DL clas-
sifier attained 92.1, 91%, 92.6%, 92.5%, 93.5%, 92.7, 93.7, 
94.3, and 94.7%, respectively. The average accuracy of 
each glioma grade during holdout validation (40 percent 
for testing) is shown in Table  6. For all examined types 
of brain tumor images, the suggested approach had an 
overall average accuracy of 96%. While GLM, KNN, naive 
Bayesian, DT, RF, SVM,GBT,XGboost, and DL classifiers 
achieved 90.8%, 92%, 92.4%, 92.4%, 93.6%, 93.8%, 93.6%, 
94.5%, and 94.8%, respectively. The results show that the 
proposed system, which is based on the hybrid ensemble 
technique, performs better than other state-of-the-art 
approaches.

Fig. 6 The accuracy obtained by experimenting with various k parameter values in the NMF technique
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By plotting the TPR against the false positive rate 
(FPR), the receiver operating characteristic (ROC) 
curve for the three respective classes is created. Figure 7 
depicts the multiclass model’s relationship between sen-
sitivity and specificity. For brain tumor grade, we deter-
mined the TPR and PPV. Table 4 presents the findings 
of PPV and TPR by the same value k = 32 for NMF and 
with the 10-fold cross-validation technique. The table 
displays the system’s capacity to identify gliomas of vari-
ous forms. We evaluated the performance of the pro-
posed classification by comparing its results with three 
different state-of-the-art grade classification methods. 

The comparison with the state-of-the-art techniques is 
shown in Table 7.

Discussion
Recent advances and improvements in medical image 
tools have provided medical practitioners with ease and 
innovation. These developments help improve several 
fields of medicine, including disease detection, treat-
ments, and prompt clinical application decision-making. 
Substantial medical information is generated daily in 
hospitals. Expert systems of clinical support are essen-
tial for the decision-making of health professionals. 

Table 4 The comparison of the accuracy results for the different models and multiple methods of features

KNN GLM Naïve Bayesian RF DT GBT XGboost SVM The 
Proposed 
classifier

GLCM 84.2 85.6 88.1 88.9 89.2 90 90.2 89.7 90.8

GLRLM 80.3 84.6 86.5 87.4 87.8 88.2 89 88.4 90.2

LBP 86.4 87.5 89 90.3 89.2 90.7 90.5 90.6 91.7

Multiple-LBGLCM 88 89.3 90.2 91.6 90.4 92 92.6 91.9 93.2

Color Moment Features 71.6 73.9 80.7 81.2 80.5 82.4 83.7 82.3 85.1

RSHD 88.4 88.8 90.4 91.2 89.7 92.3 92.8 90.6 92.7

Statistical methods (GLCM+ GLRLM) 85.5 89.4 88.6 90.5 90.6 90.9 91.3 90.2 91.8

Statistical methods + LBP 89.4 90.7 91.3 92.6 92.1 92.7 93 92.4 93.8

Statistical methods + Color Moment Features 85.7 87.2 88.3 89.4 90.4 90.1 90.7 90.8 91.8

LBP + Color Moment Features 87.2 89.1 89.8 91.3 90.8 91.5 91.8 91.2 92.4

Multiple-LBGLCM+ Color Moment Features 88 91.2 92.1 92.9 92.1 92.8 93.4 91.8 94.1

Statistical methods + LBP + Color Moment Features 90.6 91.4 91.3 91.1 92.8 93 93.2 93.3 94.6

The Proposed method 91 92.1 92.6 93.5 92.5 93.7 94.3 94 95.8

Table 5 The ACC (%) of different grades of tested brain tumor images by using NMF (k = 32) and 10-fold cross-validation

Classifiers KNN GLM RF DT Naïve Bayesian GBT XGboost SVM DL classifier The 
Proposed 
classifier

Grade II 91.4 92 93.7 92.8 93 93.8 94 94.2 94.8 96.2

Grade III 90.7 92.1 93.5 92.5 92.3 93.6 94.4 94 94.7 95.6

Grade IV 90.8 92.3 93.3 92.7 92.5 93.6 94.5 93.8 94.7 95.7

Average 91 92.1 93.5 92.6 92.6 93.7 94.3 92.7 94.7 95.8

Table 6 The ACC (%) of different grades of tested brain tumor images by using NMF (k = 32) and holdout validation technique (40% 
for testing)

Classifiers KNN GLM RF DT Naïve Bayesian GBT XGboost SVM DL classifier The Proposed

Grade II 91.2 91.8 93.8 92.6 92.8 93.6 94.4 94 94.9 96.4

Grade III 90.6 92.1 93.5 92.3 92.2 93.6 94.6 93.7 94.8 95.8

Grade IV 90.7 92.2 93.5 92.4 92.3 93.6 94.5 93.6 94.7 95.8

Average 90.8 92 93.6 92.4 92.4 93.6 94.5 93.8 94.8 96
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Medical computer research aids physicians and other 
professionals in their search for the finest possible solu-
tions for taking advantage of these booming quantities of 
information.

Early identification and effective treatment options 
are needed to deal effectively with brain tumor ill-
nesses. The treatment options depend on the tumor 
stage and the tumor grade when diagnosed. In the 

early phase of relevant feature extraction, conventional 
identification systems use some rudimentary machine-
learning algorithms which extract only high-level and 
low-level capabilities. Here we provided a novel com-
bination of profound and machine-learning methods 
for extracting and classifying functions. In the clas-
sification of brain tumors, the whole procedure was 
superior.

Fig. 7 The area under the ROC curve for a multiclass brain tumor

Table 7 The comparison between the proposed system and state-of-the-art techniques

Method ACC(%)

Mousavi et al. [50] Pseudopalisading Necrosis and MVP is identified using a combination of specific spatial and morphological filters 
with DT classifier.

84.7

Bhattacharjee et al.[28] texture analysis was performed using Haar wavelet transformed GLCM, Color features was obtained using PCMD 91.7

Rathore et al. [31] Utilizing a predictive classifier to evaluate the combined impact of clinical, textural, and traditional imaging 
aspects

90.4

Wang et al. [33] Extract first-order and second-order features along with visual factors such as morphological parameters. 90

Durgamahanthi et al. [34] Haralick features based on GLCM and GLRLM have been combined, and SVM has been utilized for classification. 93

The Proposed Method A hybrid ensemble classification model was trained using a combination of color intensity and texturing features 
(GLCM, GLRLM, and LBP).

95.8
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Our study aimed to distinguish between Grade II, III, 
and IV brain tumors, excluding Grade I tumors. These 
grades have complicated treatment requirements and 
fast growth rates, which present a serious clinical chal-
lenge. We could focus on features in the histopathologi-
cal images that specifically distinguish these aggressive 
malignancies by eliminating Grade I tumors, which have 
a different biological behavior. By using this method, we 
were able to investigate further how well texture and 
color features distinguish the key characteristics that set 
these high-grade tumors apart, which may result in the 
development of more reliable classification models for 
better clinical decision-making.

The image can be viewed as a layout of various sections 
with varying color, texture, and shape. The neighborhood 
plays a significant impact in how the human visual sys-
tem perceives the nearby structures since it provides a 
rich of texture and shape information. Structure elements 
have a significant impact on texture representation. How-
ever, these structural components are only somewhat 
rotationally invariant. The local adjacent structures of 
images belonging to the same class are quite similar, and 
if this information can be recorded in a rotation-invariant 
way, it can be useful for image classification. The current 
approach combines color and texture information to pro-
vide an image descriptor that is naturally rotation- and 
scale-invariant. To achieve this union, separate textural 
clues from each color are extracted.

The combination of structural and statistical methods 
used in LBP approaches increases the performance of 
texture analysis, and this is their most significant char-
acteristic. The approach also has a simple implementa-
tion and a minimal computing cost. Additionally, it is 
unaffected by monotonic variations in illumination. The 
suggested method includes all structural information 
that was obtained using local binary patterns, and it also 
extracts additional information utilizing information of 
magnitude to increase discriminative power. The GLCM 
idea has been applied to extract the statistical character-
istics for the categorization of texture images. By calcu-
lating the frequency of occurrence of identical patterns 
in various directions, GLCM directly interacts with the 
intensity of the images and offers the spatial relationship 
of the pixels in the image, making it beneficial for the 
extraction of texture characteristics.

Using the LBGLCM approach, features are extracted by 
taking into account every aspect of texture structure and 
spatial data. These benefits allow the LBGLCM method 
to outperform the other state of the arts algorithms in 
image analysis. Scale is crucial information for texture 
analysis because the same texture might seem differ-
ently at various scales. Multiple scales of the GLCM and 
LBP combination have been shown to be a very effective 

texture descriptor for use in feature extraction. Features 
that are based on color are regarded as being reliable and 
stable. They are not affected by changes in scale, rota-
tion, or direction. In addition, the calculation of the color 
feature is a rather easy procedure. It is thought that HSV 
color space is appropriate for color description because 
of its properties. This is due to the fact that, for photo-
graphs acquired in diverse lighting situations, the image 
luminance is separated from the color information in the 
HSV color space, which might positively affect the fur-
ther processing of these images.

The proposed ensemble classifier performs best com-
pared to many classifiers, such as SVM, KNN, naive 
baysean,DT, RF,GBT,XGboost,and DL classifier which 
are applied in this paper. In general, the goal was to 
improve performance using conventional classification 
systems. From Table  5, we can conclude that the pro-
posed approach exceeds the comparative classifiers with 
ACC equals 95.8%. Figure 8 visulaize the giloma classifi-
cation accuracy using different classifiers which indicates 
the proposed classifier with the highest performance. In 
the hybrid ensemble classification system, we utilized the 
RBF-SVM, fast large margin, and DT since they deliver 
the greatest performance in many evaluation criteria 
compared to others. Sensitivity results indicate the good 
determinative tumors that are benign since they are only 
a positive total division between the genuine total benign 
tumor. Specific results are good determinatives for 
malignant tumors since it is just a total negative division 
between total actual malignant tumors. DSC describes 
the equilibrium between precision and sensitivity, which 
is essential for unequal class distribution. Precision 
describes the actual TP percentage, which is rather high 
for the suggested approach, of the full projected positive 
TP+FP. Overall, Table 7 compare the performance of the 
proposed classification methodology with the recently 
state of the arts.

Conclusion and future work
Histopathology images are commonly utilized for diag-
nosing the brain and determining cancer malignancy. 
Biopsied tissue is stained with H&E and inspected 
under the microscope by pathologists to identify the 
histological grades of the brain. This work aims to 
develop an automated glioma grading platform based 
on ML models. This study’s main objective is to assess 
the complicated random field of cancer images with 
color intensity (color moment features) and texture 
features (GLCM, LBP, multi-LBGLCM, GLRLM, and 
RSHD) and the fusion of various features. Using differ-
ent methods for texture features, we could get helpful 
information from histology pictures to predict cancer 
grades. In the proposed method, a hybrid ensemble 
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classification was used. All the procedures required for 
analyzing, extracting, and classifying photos of biop-
sies were implemented, which performed well in brain 
tissue images. The proposed method shows a high 
accuracy when compared favorably to several state-of-
the-art techniques. The results show that the suggested 
approach can be useful to a pathologist in efficiently 
classifying histopathological slides into LGG and HGG 
categories, especially when examining a large number 
of slides is required. Although this study concentrated 
on using color and texture features for analysis, In 
future work, we will try to include other morphologi-
cal features as well, which could provide a deeper com-
prehension of the image data. In the process, we hope 
to advance deep learning for brain tumor classifica-
tion and develop more reliable and accurate diagnos-
tic tools. Also, Future studies aim to expand the scope 
of this work beyond glioma classification by including 
diverse medical image datasets (skin, breast, and lung).
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