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Abstract
Background  The purpose of this study is to develop and validate the potential value of the deep learning radiomics 
nomogram (DLRN) based on ultrasound to differentiate mass mastitis (MM) and invasive breast cancer (IBC).

Methods  50 cases of MM and 180 cases of IBC with ultrasound Breast Imaging Reporting and Data System 4 
category were recruited (training cohort, n = 161, validation cohort, n = 69). Based on PyRadiomics and ResNet50 
extractors, radiomics and deep learning features were extracted, respectively. Based on supervised machine 
learning methods such as logistic regression, random forest, and support vector machine, as well as unsupervised 
machine learning methods using K-means clustering analysis, the differences in features between MM and IBC were 
analyzed to develop DLRN. The performance of DLRN had been evaluated by receiver operating characteristic curve, 
calibration, and clinical practicality.

Results  Supervised machine learning results showed that compared with radiomics models, especially random 
forest models, deep learning models were better at recognizing MM and IBC. The area under the curve (AUC) of the 
validation cohort was 0.84, the accuracy was 0.83, the sensitivity was 0.73, and the specificity was 0.83. Compared to 
radiomics or deep learning models, DLRN even further improved discrimination ability (AUC of 0.90 and 0.90, accuracy 
of 0.83 and 0.88 for training and validation cohorts), which had better clinical benefits and good calibratability. 
In addition, the information heterogeneity of deep learning features in MM and IBC was validated again through 
unsupervised machine learning clustering analysis, indicating that MM had a unique features phenotype.

Conclusion  The DLRN developed based on radiomics and deep learning features of ultrasound images has potential 
clinical value in effectively distinguishing between MM and IBC. DLRN breaks through visual limitations and quantifies 
more image information related to MM based on computers, further utilizing machine learning to effectively utilize 
this information for clinical decision-making. As DLRN becomes an autonomous screening system, it will improve the 
recognition rate of MM in grassroots hospitals and reduce the possibility of incorrect treatment and overtreatment.
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Introduction
Mass mastitis (MM) is a chronic, benign, non-specific 
inflammatory disease of the breast, which typically 
affects non-pregnant women aged 30 to 40 years old, and 
its incidence accounts for 1–5% of all breast diseases dur-
ing the same period. The pathological features of MM 
mainly include suppurative mastitis, plasma cell mastitis 
and granulomatous mastitis [1]. Invasive breast cancer 
(IBC) is the most common breast mass type malignant 
disease, mainly affecting non-pregnant women above 40 
years old, and accounting for 75–80% of all breast cancers 
during the same period. The pathological features of IBC 
mainly includes ductal and lobular carcinoma [2]. MM 
lacks specific clinical manifestations. In clinical practice, 
MM may present with breast masses, nipple invagina-
tion, ulcers, and axillary lymph node enlargement [3]. 
On ultrasound examination, MM can present as irregular 
hypoechoic masses, blurred edges, lobulated and other 
malignant signs [4]. MM may mimic IBC manifestations 
in clinical and imaging studies, especially those of inva-
sive ductal carcinoma [5].

The clinical management of breast mass lesions is pri-
marily through percutaneous needle biopsy or com-
prehensive visual imaging assessments, including 
ultrasound, mammography, and magnetic resonance 
imaging. However, due to the tumor heterogeneity, per-
cutaneous needle biopsy results may not always be accu-
rate, and invasive procedures can cause patient anxiety 
and discomfort. Visual imaging evaluations mainly rely 
on the American College of Radiology (ACR) Breast 
Imaging Reporting and Data System (BI-RADS) assess-
ment, with some MM lesions classified into category 
4 based on suspicious mammographic or sonographic 
findings [6]. These MM lesions often undergo surgi-
cal intervention with lumpectomy or mastectomy, and 
the management strategies for MM and IBC are differ-
ent in clinical practice. MM often receives antimicrobial 
therapy, while surgical treatment is more common for 
IBC, which can have a significant psychological impact 
on patients [7]. Based on the above background, accu-
rately identifying MM from BI-RADS 4 categories is of 
great significance for patients to avoid misdiagnosis and 
overtreatment.

However, due to the uneven distribution of medi-
cal imaging equipment and the differences in subjective 
diagnostic experience of ultrasound physicians, differen-
tiating MM from IBC remains a formidable challenge [8]. 
Ultrasound, as the most widely used screening method 
for breast masses, also faces the aforementioned chal-
lenges. That is to say, visible imaging cannot meet the 
current demand for precise risk stratification in MM. 
In recent years, artificial intelligence (AI) has matured 
and developed in the field of medical imaging. AI is a 
technology based on computer technology that breaks 

through the visualization of medical images and quan-
tifies the deeper information carried by medical images 
[9], including radiomics and deep learning. Radiomics 
and deep learning have been widely practiced in the 
diagnosis and treatment of breast cancer. For example, 
the ultrasound radiomics model developed based on 
12 features could effectively distinguish triple negative 
breast cancer and fibroadenoma [10]; the deep learning 
network was trained and validated based on 1055 ultra-
sound images from two centers, and could predict the 
axillary lymph node metastasis in patients with primary 
breast cancer who were clinically negative [11]. More 
importantly, radiomics and deep learning have the pos-
sibility of complementing tumor information. As a new 
study method of combining two kinds of AI, deep learn-
ing radiomics (DLR) has become more and more fasci-
nating in recent years. For example, ultrasound based 
deep learning radiomics nomogram (DLRN) was used 
to evaluate the pathological complete response of locally 
advanced breast cancer to neoadjuvant chemotherapy 
[12]. Interestingly, the value of DLRN in identifying MM 
and IBC has not yet been elucidated.

This study is the first to elucidate the application value 
of radiomics and deep learning features in identifying 
MM and IBC in ultrasound BI-RADS category 4 based 
on various machine learning algorithms, in order to accu-
rately identify MM and reduce its risk classification for 
reducing the possibility of incorrect treatment and over-
treatment. In addition, this study conducted a systematic 
review of the current study status on the identification of 
MM and IBC.

Methods
Breast study dataset
This retrospective study was conducted in accordance 
with the principles of the Helsinki Declaration and 
was approved by the Institutional Ethics Committee of 
Maoming People’s Hospital, which exempted patients 
from written informed consent. This breast cohort data-
set was a review of all patients with breast mass lesions 
who underwent ultrasound examination at Maoming 
People’s Hospital from January 2020 to December 2022, 
and was based on the second edition of BI-RADS, each 
lesion was designated as category 4. Inclusion criteria: 
(1) Suspected breast lesions with mass, receiving ultra-
sound examination within 1 month; (2) Breast lesions 
were diagnosed as mastitis or invasive breast cancer by 
biopsy or surgery after ultrasound examination. Exclu-
sion criteria: (1) Non pathologically confirmed breast 
lesions with mass; (2) Patients who receive any breast 
treatment before examination; (3) Ultrasound image loss 
or poor quality. Finally, 50 cases of MM and 180 cases of 
IBC were included, with an average age of 48 years, aged 
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21–86 years, including 87 cases BI-RADS 4a, 46 cases of 
BI-RADS 4b, and 97 cases of BI-RADS 4c.

Ultrasound imaging protocol
The acquisition of ultrasound images of breast mass 
lesions were based on various ultrasound diagnostic 
instruments: Mindray Resona7, LOGIQ E9/10, and Phil-
ips EPIC7C, equipped with high-frequency linear array 
probes (L11-3U; ML9L; and L12-5 and L12-3), with 
frequency of 5-13  MHz, and in a supine position (with 
both hands holding their heads). All ultrasound doctors 
had 3 years or more of experience in diagnosing breast 
lesions and were trained to collect images in standard-
ized manners, which were the largest and clear images 
of the lesion. Image interpretation was based on BI-
RADS, which was reviewed by two ultrasound doctors 
(one with over 10 years of work experience and the other 
with over 5 years of work experience). Subsequently, all 
breast lesions were analyzed in Medical Digital Imaging 
and Communication (DICOM) format and loaded into 
the ITK-SNAP 3.8.0 software [13]. The image edges inter-
pretation (regions of interest, ROIs) were determined 
and described by the two ultrasound doctors mentioned 
above, and the clinical and histopathology data were 
unknown. Representative achievements of MM and IBC 
were shown in the Fig. 1.

Radiomics and deep learning features extraction
All ROIs were resampled to a resolution of 1 mm × 1 mm 
× 1 mm. The ComBat method was applied to correct dif-
ferences in radiomics feature changes resulting from 
variations in ultrasound equipment [14]. The Python 
programming software based on the PyRadiomics pack-
age was used to extract 1316 radiomics features from 
ultrasound images and transformed images for analysis 
of the imaging phenotype of breast mass lesions [15]. 
A total of 107 original features were extracted from the 
original image, including: shape features, first-order sta-
tistical features, gray-level co-occurrence matrix (GLCM) 
features, gray-level run length matrix (GLRLM) features, 
gray-level size zone matrix (GLSZM) features, gray-level 
dependence matrix (GLDM) features, and neighbor-
ing gray tone difference matrix (NGTDM). After image 
transformation, additional 1209 features were extracted: 
744 wavelet features, 93 exponential features, 93 square-
root features, 93 gradient features, 93 logarithm features, 
and 93 square features. In addition, wavelet transform 
was an eight directional transformation of ROIs based on 
the order of high and low frequency components, obtain-
ing eight types of wavelet features, namely HHH, HHL, 
HLH, LHH, LLL, LLH, LHL, and HLL.

The convolutional neural network model constructed 
a deep nonlinear neural network with multiple hidden 
layers, which was used to extract and combine low-level 

Fig. 1  Representative achievements of MM and IBC
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features layer by layer to form higher-level abstract fea-
tures, avoiding the complex extraction process of tradi-
tional machine learning. The deep convolutional neural 
network model ResNet50 was used to extract deep learn-
ing features, consisting of 50 layers and was a shallow 
structured model [16]. The above ROIs were cropped to 
the maximum grayscale image of breast lesions based on 
the lesion boundary. The grayscale images had adopted 
random horizontal and vertical flipping enhancement 
strategies, randomly cropping to 224 × 224 pixels and 
outputting the images as the model input of the original 
images. The raw images and pathological labels of each 
breast lesion were input into the ResNet50 model. The 
ResNet50 model was pre trained using the ImageNet 
dataset, followed by transfer learning on the training 
cohort images [17]. During the training process, consid-
ering the output probability and pathological labels, the 
cross entropy loss function was used to update the net-
work weights to complete the prediction, with a batch 
size of 64. After the training of the ResNet50 model was 
completed, the network parameters of the model were 
fixed, and then the fixed model was used as a feature 
extractor. A total of 2048 deep learning features were 
extracted from the second to last layer of the ResNet50 
model in the training and validation cohorts.

Deep learning radiomics nomogram development
To identify valuable differential features that were closely 
related to MM, features were analyzed using either 
the unpaired t-test if they were normally distributed or 
the Mann-Whitney U test otherwise.  Features with a P 
value of less than 0.01 were screened out. Subsequently, 
based on the “caret” R packet, the breast cohort dataset 
was randomly divided into training cohort (n = 161) and 
validation cohort (n = 69) with a ratio of 7:3. In order to 
improve feature comparability, the features values of 
cohorts were normalized to the same order of magni-
tude using the Z-score method. In the training cohort, 
Pearson correlation coefficient was used for the correla-
tion between features. If the correlation coefficient was 
greater than 0.99, one of the features were removed. The 
remaining features were presented in recursive feature 
estimation (RFE) [18], and the models were developed 
by selecting the optimal subset of features based on their 
importance. Logical regression (LR), random forest (RF) 
and support vector machine (SVM) machine learning 
algorithms were applied to develop radiomics and deep 
learning models based on the optimal feature subset, and 
optimize model parameters through five-fold cross vali-
dation to improve generalization and reduce error [19–
21]. The validation cohort validated the generalization 
effect of the models based on the same feature subset 
and development parameters of the training cohort. In 
addition, radiomics and deep learning features had been 

validated to complement imaging phenotype information 
[22]. DLRN were developed based on the optimal subset 
of radiomics and deep learning features. The develop-
ment process was the same as above.

Deep learning phenotype to validate the heterogeneity of 
mass mastitis and invasive breast cancer
Machine learning can be divided into supervised learn-
ing and unsupervised learning. At present, most stud-
ies on unsupervised learning are based on the radiomics 
features, while the value of unsupervised learning based 
on the deep learning features have not been clarified. The 
above mentioned was the analysis of supervised learn-
ing. Unsupervised learning, that is, cluster analysis can 
achieve unbiased classification phenotype of anatomi-
cal structure by reducing the variability of observers, 
and can provide representative standard information 
for each classification phenotype [23]. K-mean cluster-
ing analysis is a mature unsupervised learning method, 
which was implemented based on the “ConsensusClus-
terPlus” package, and was used for deep learning feature 
phenotype classification in this study (parameter-setting: 
reps = 1000, pItem = 0.8, pFeature = 1, clusterAlg = km, dis-
tance = euclidean) [24]. The selected optimal deep learn-
ing feature subset was included.

Literature retrieval based on ultrasound identification of 
MM and IBC
On the PubMed database, relevant literature was 
searched with the keyword “Breast AND Mastitis AND 
Ultrasound” to comprehensively review the literature 
on the differentiation of MM and IBC. Based on the full 
text of the literature, parameters were collected, includ-
ing lead author, publication year, study cohort, and image 
type.

Statistical analysis
SPSS 17.0 and R 3.68 software were used for statistical 
analysis and plotting. Continuous variables were repre-
sented by mean values ± standard deviations, and t-test 
was used for comparison; categorical variable were rep-
resented by examples (%), and Chi square test was used 
for comparison. The intraclass correlation efficient (ICC) 
was used to evaluate the stability of the optimal subset 
features among two different doctors. Univariate analy-
sis was conducted to investigate the relationship between 
the optimal subset features and MM. The receiver oper-
ating characteristic curve (ROC) was applied to evaluate 
the performance of the models, and the area under the 
curve (AUC), accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE) were calculated. Calibration curve analysis 
and Hosmer-Lemeshow (HL) test were used to evaluate 
models calibration and goodness of fit (P > 0.05 indicated 
that the models were well fitted). Delong test was used 
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to evaluate the performance differences between differ-
ent models [25]. Continuous Net Weight Classification 
Improvement (NRI) was used to evaluate the ability to 
improve classification effectiveness of models [26]. Deci-
sion Curve Analysis (DCA) was used to evaluate the net 
clinical benefit or utility of models [27]. P < 0.05 was con-
sidered statistically significant.

Results
Baseline analysis of breast cohort dataset
In this study, 50 cases of MM were included, including 
27 cases of pure purulent mastitis, 5 cases of lymphoid 
plasma cell mastitis, 6 cases of granulomatous masti-
tis, and 12 cases of breast lobular purulent inflamma-
tion with granulomatous inflammation. There were 
43 cases of BI-RADS 4a, 2 cases of BI-RADS 4b, and 5 
cases of BI-RADS 4c; The average size of the lesions was 
28.6 ± 13.7  mm, ranging from 8 to 71  mm. 180 cases of 
IBC were included, most of which were ductal carci-
noma. There were 44 cases of BI-RADS 4a, 44 cases of 
BI-RADS 4b, and 92 cases of BI-RADS 4c; The average 
size of the lesions was 24.5 ± 10.6 mm, ranging from 7 to 
64  mm. Age (P < 0.01), BI-RADS classification(P < 0.01), 
the difference between MM and IBC was statistically 
significant, and lesion size (P = 0.06) was not statistically 
significant. However, age (P = 0.46), lesion sizes (P = 0.05), 
and BI-RADS (P = 0.91) were not statistically significant 
in both the training and validation cohorts.

Deep learning radiomics nomogram development
Through hypothesis test, 1316 radiomics and 2048 deep 
learning high-dimensional features were identified to be 
related to the nature of breast lesions with mass, leav-
ing 281 radiomics features and 64 deep learning features 
(P < 0.01). The remaining features were further removed 
from 69 and 0, 195 and 45 radiomics features and deep 
learning features through PCC and RFE, respectively. 
Finally, machine learning models were developed based 
on 17 radiomics features and 19 deep learning fea-
tures, which showed good consistency under the depic-
tion experience of different ultrasound physicians, with 
ICC ≥ 0.75. Through univariate analysis, 9 radiomics fea-
tures and 14 deep learning features were determined to 
be closely related to MM, which the odds ratio (OR) val-
ues of 8 features were ≥ 1.48, and 9 features were ≥ 1.45, 
respectively.

Table  1 showed the predictive performance of 
radiomics and deep learning models for MM. In the 
radiomics models, the RF models performed better than 
LR or SVM models, which prediction performance in 
the training and validation cohort was as follows: AUCs 
were 0.73 [95% confidence interval (CI), 0.64–0.82] and 
0.76 (95% CI, 0.62–0.87), ACC were 0.64 and 0.67, SEN 
were 0.80 and 0.93, SPE were 0.60 and 0.59, respectively. Ta
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Interestingly, the RF models performed equally well in 
deep learning models, which predictive performance 
in training and validation cohort was as follows: AUCs 
were 0.87 (95%CI, 0.80–0.93) and 0.84 (95%CI, 0.71–
0.94), ACC were 0.78 and 0.81, SEN were 0.91 and 0.73, 
SPE were 0.74 and 0.83, respectively. The above analysis 
summarized that the deep learning feature appears to be 
superior to the radiomics feature in all machine learning, 
and in the validation cohort, AUCs ≥ 0.75, ACC ≥ 0.65, 
SEN ≥ 0.73, and SPE ≥ 0.61. Unfortunately, further evalu-
ation through the Delong validation revealed that there 
was no significant performance difference between 
radiomics and deep learning models, except for the RF 
training cohort model (P = 0.01) and the SVM validation 
cohort model (P = 0.03).

Based on 17 radiomics features and 19 deep learn-
ing features, DLRN were developed by integrating 5 
radiomics and 10 deep learning features under the same 
process, and their predictive performance were shown in 
Table  2. The RF model still performed well, which pre-
dictive performance in training and validation cohort 
was as follows: AUCs were 0.90 (95%CI, 0.85–0.96) and 
0.90 (95%CI, 0.80–0.98), ACC were 0.83 and 0.88, SEN 
were 0.83 and 0.80, SPE were 0.83 and 0.80, respectively. 
Unfortunately, the Delong test found no performance dif-
ference between the DLRN nomogram and deep learn-
ing models. However, compared to deep learning models, 
continuous NRI showed significant improvement in the 
identification and reclassification of MM in the remain-
ing cohorts (P < 0.05), excluding SVM-DLRN in the 
training cohort. Specifically, continuous NRI showed RF-
DLRN improved by 48% (P = 0.009) in the training cohort 
and 61% (P = 0.03) in the validation cohort. It was not dif-
ficult to see the superiority of the RF models in develop-
ing two types of features. Furthermore, the calibration 
curve and Hosmer-Lemeshow test showed that both the 
RF-DLRN training cohort (P = 0.91) and validation cohort 
(P = 0.22) had good consistency between prediction and 
pathological reality. DCA demonstrated the excellent 
performance of DLRN in clinical decision-making, which 
compared to single radiomics or deep learning model, 
DLRN had greater potential clinical application value and 
could provide better net benefits (Fig. 2).

Deep learning phenotype to validate the image 
heterogeneity of mass mastitis and invasive breast cancer
By conducting K-means clustering analysis on 19 deep 
learning differential features, the clustering effect also 
was best when K = 2 in the training and validation 
cohorts, respectively. That was to say, through deep 
learning features, 230 patients could be divided into two 
clusters (A and B) based on image heterogeneity. In addi-
tion, the results of principal component analysis also 
indicated that deep learning effectively divided patients 

into two clusters, validating the results of K-means clus-
tering analysis. Among them, in the training and vali-
dation cohorts, there were 130 and 52 cases, 31 and 17 
cases were divided into cluster A and cluster B. More 
excitedly, the distribution of MM and IBC in these two 
clusters was different (training cohort, P < 0.01; validation 
cohort, P < 0.01), MM was more concentrated in cluster 
B, and IBC was more concentrated in cluster A (Fig. 3). 
This confirmed and reaffirmed the difference of imaging 
phenotypes between MM and IBC, that was, MM had its 
own specific imaging information.

Literature retrieval based on ultrasound identification of 
MM and IBC
Of the 628 literature, 12 were identified to be related to 
the differentiation between MM and IBC, of which 2 
were artificial intelligence (AI) studies (Table  3). One 
study on AI was on radiomics, and the other as on deep 
learning. Among the other 10 studies, 2 were contrast-
enhanced ultrasound studies, 1 was ultrasound com-
bined with superb microvascular imaging studies, and 7 
were ultrasound combined with elastic studies. Types of 
mastitis included plasma cell mastitis and granulomatous 
mastitis. Nine studies evaluated using AUC, sensitivity, 
and specificity; One study only used AUC for evaluation; 
Two studies were evaluated using differential statistical 
analysis [5, 28–38].

Discussion
The purpose of this study was to develop and validate 
machine learning models developed based on radiomics 
features and deep learning features of ultrasound images 
that could identify MM from breast disease for potential 
clinical value. The supervised machine learning results 
showed that the deep learning models were better able to 
identify MM and IBC compared to the radiomics mod-
els, especially the RF model, with an AUC of 0.84, ACC 
of 0.83, SEN of 0.73, and SPE of 0.83 for the validation 
cohort. Moreover, compared to the radiomics or deep 
learning models, DLRN even further improved discrimi-
nation (AUC of 0.90 and 0.90, ACC of 0.83 and 0.88 for 
training and validation cohorts) with better clinical ben-
efit and good calibrability. In addition, the information 
heterogeneity of deep learning features in MM and IBC 
was again validated by unsupervised machine learning 
clustering analysis, indicating that MM has unique imag-
ing-informed phenotype and can potentially be applied 
to clinical practice to increase the recognition rate of 
MM.

Visual imaging still faces great clinical challenges in 
distinguishing the same imaging manifestations of differ-
ent diseases. MM can mimic IBC by presenting with the 
same visual features, such as crab foot shape, burr shape. 
For inexperienced primary doctors, MM can easily be 
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misdiagnosed as IBC to the point of classification as a 
high-risk group classified in BI-RADS category 4 or even 
higher. In the present study, 86% (43/50) of MM were 
classified as BI-RADS 4a, 51% (92/180) of IBC were clas-
sified as BI-RADS 4c, and still 24% (44/180) of IBC were 
classified as BI-RADS 4a, which is similar to the previous 
studies [35]. Clinical management of breast lesions with 
mass in BI-RADS category 4 is likely to be interventional 
and no longer an observational strategy [39]. However, 
there is a clear differential benefit in the treatment strate-
gies for IBC and MM. Preoperative noninvasive imaging 
evaluation is particularly important, and conversely it is 
clear from the above results that conventional ultrasound 
was no longer well suited to such clinical needs. There-
fore, in recent years, many studies have further expanded 
this part of the study based on conventional ultrasound. 
Previous studies were summarized in this study, and it 
was found that ultrasound combined with elastography 
or ultrasonography was two techniques that had been 
studied more often, especially elastography. For example, 
shear wave velocity was significantly different in 26 cases 
of mastitis and 79 cases of breast malignancy with an 
AUC of 0.70 [30]; quantitative parameters of ultrasonog-
raphy allowed risk downgrading in 30 cases of MM with 
an AUC of 0.81 [36]. However, elastography is time-con-
suming and credibility assessment causes it to remain dif-
ficult to be widely available in the clinic; ultrasonography 
is not sufficiently performed in local hospitals. These are 
the clinical challenges that limit the realization of preci-
sion medicine.

Elastic imaging quantifies the hardness of tumors, 
while contrast-enhanced ultrasound quantifies the blood 
supply of tumors. A question arises whether image infor-
mation can be quantified on a large scale using methods 
similar to gene sequencing. In recent years, the applica-
tion of AI in medical imaging has impacted the field of 
visual imaging and is more likely to become the corner-
stone of precision medicine [40]. AI, as a high-through-
put information quantification technology that includes 
internal texture, edge, shape and other information, 
has been widely used in breast diseases. For example, 
radiomics machine learning models developed based on 
5234 ultrasound image features could predict multiple 
molecular expressions of Ki67, p16, and p53 [41]; Based 
on the deep learning model developed from 937 ultra-
sound images of breast cancer patients, through testing, 
the SEN of identifying lymph node metastasis of breast 
cancer reached 0.98 [42]. Compared to elastic imaging 
and contrast-enhanced ultrasound, AI contains a greater 
amount of information, but it may also contain a lot of 
redundant information. The application of AI in MM 
and IBC had only found a limited number of studies, 
such as, automatic classification of 512 breast malignant 
nodules and 255 breast inflammatory nodules based on Ta
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deep learning algorithms, which had a high coincidence 
rate with postoperative pathology and a low coincidence 
rate with inexperienced ultrasound physicians [37]. The 
radiomics features based on contrast-enhanced ultra-
sound and conventional ultrasound could effectively 
distinguished 129 breast inflammatory nodules and 125 
breast nausea nodules, with AUC and accuracy estimated 
at 0.80 and 0.76 in the validation cohort, respectively 
[38]. However, DLRN study combining radiomics and 
deep learning features, as a recent study hotspot, is still 
lacking in the identification applications of MM and IBC.

Therefore, the present study filled a gap in the appli-
cation of DLRN for MM and IBC identification. First, 
the quality was assessed based on the radiomics qual-
ity score method, and the quality score of this study was 
found to be 18/36, which was in the medium to high 
quality. Second, this study used supervised and unsu-
pervised machine learning forms, and supervised learn-
ing was used to compare three classifiers: LR, RF and 
SVM. Since the features were in high dimension and 
there were redundant or worthless features, a combina-
tion of statistical tests, correlation coefficients, and RFE 
were used to reduce the dimensionality and the results 
showed good results. Seventeen radiomics and 19 deep 
learning high-value features were selected for dimen-
sionality reduction and the risk of features was verified 
by one-way analysis. The RF classifier performed best in 
both the radiomics models and the deep learning models. 
However, Delong test showed that the RF-deep learning 

model outperformed the radiomics model only in the 
training cohort and was not statistically significant in the 
validation cohort. Further, DLRN was developed based 
on 5 radiomics and 10 deep learning features. Unfor-
tunately, Delong test found no performance difference 
between the DLRN and deep learning models. The most 
likely explanation for the Delong test results were the 
insufficient sample size and the impact of human inter-
vention during the derivation process of deep learning 
networks. In addition, the deep learning model exhib-
ited better AUC values than the radiomics model, which 
may be affected by overfitting questions in deep learning 
model data processing [43]. However, continuous NRI 
showed a 48% improvement (P = 0.009) for RF-DLRN in 
the training cohort and a 61% improvement (P = 0.03) in 
the validation cohort. The multi-metric assessment used 
in this study is more rigorous compared to other studies’ 
performance comparisons. In addition, DLRN had better 
calibrability and clinical benefit through calibration curve 
and decision curve analysis. From the above, it was clear 
that supervised machine learning methods had potential 
value in MM and IBC identification. Finally, by unsuper-
vised learning-K-mean clustering analysis, it was found 
that the deep learning features could classify patients into 
two clusters (A and B), with MM more concentrated in 
cluster A and IBC more concentrated in cluster B. The 
difference was statistically significant. That was, both 
MM and IBC had their own unique imaging phenotypes, 
validating the reliability of supervised learning.

Fig. 2  Performance of deep learning radiomics nomogram in the training cohort (A) and validation cohort (B). The RF-DLRN was shown to have better 
discriminatory performance, clinical benefit and calibrability
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This study also had limitations. Firstly, this study was 
based on single center data from grassroots hospitals, 
which lacked generalization ability and still required 
large sample multi center validation. Secondly, mul-
tiple ultrasound diagnostic instruments were used in 
this study, and differences in imaging protocols resulted 
in differences in the information carried by the images, 
which affected the credibility of the results. Third, PCC 
did not compare multiple threshold settings to deter-
mine the impact on model development. Finally, the 
potential value cannot be compared without comparison 
with transfer deep learning, mage fusion radiomics and 
pathomic [44, 45].

Conclusions
In summary, DLRNs developed based on radiomics and 
deep learning features of ultrasound images have poten-
tial clinical value in effectively differentiating MM and 
IBC, which can be provided as an auxiliary system for 
reference by inexperienced junior doctors for reducing 
the possibility of incorrect treatment and overtreatment. 
In addition, this study used supervised and unsupervised 
machine learning forms to mutually validate the value of 
imaging phenotypes in differentiating MM and IBC, indi-
cating that both have their own unique imaging pheno-
types, with a view to future validation and translation of 
clinical results.

Fig. 3  Deep learning phenotype to validate the image heterogeneity of mass mastitis and invasive breast cancer. K-means clustering analysis on 19 deep 
learning differential features, the clustering effect also was best when K = 2 in the training and validation cohorts, respectively. The distribution of MM and 
IBC in these two clusters was different (training cohort, P < 0.01; validation cohort, P < 0.01)
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