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Abstract 

Background  The detection and management of intracranial aneurysms (IAs) are vital to prevent life-threaten-
ing complications like subarachnoid hemorrhage (SAH). Artificial Intelligence (AI) can analyze medical images, 
like CTA or MRA, spotting nuances possibly overlooked by humans. Early detection facilitates timely interventions 
and improved outcomes. Moreover, AI algorithms offer quantitative data on aneurysm attributes, aiding in long-term 
monitoring and assessing rupture risks.

Methods  We screened four databases (PubMed, Web of Science, IEEE and Scopus) for studies using artificial intel-
ligence algorithms to identify IA. Based on algorithmic methodologies, we categorized them into classification, 
segmentation, detection and combined, and then their merits and shortcomings are compared. Subsequently, we 
elucidate potential challenges that contemporary algorithms might encounter within real-world clinical diagnostic 
contexts. Then we outline prospective research trajectories and underscore key concerns in this evolving field.

Results  Forty-seven studies of IA recognition based on AI were included based on search and screening criteria. 
The retrospective results represent that current studies can identify IA in different modal images and predict their 
risk of rupture and blockage. In clinical diagnosis, AI can effectively improve the diagnostic accuracy of IA and reduce 
missed detection and false positives.

Conclusions  The AI algorithm can detect unobtrusive IA more accurately in communicating arteries and cavern-
ous sinus arteries to avoid further expansion. In addition, analyzing aneurysm rupture and blockage before and after 
surgery can help doctors plan treatment and reduce the uncertainties in the treatment process.
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Introduction
Intracranial aneurysms (IAs) are widely recognized as 
both common and potentially lethal conditions [1, 2]. 
Ruptured intracranial aneurysms are the primary cause 
of spontaneous subarachnoid hemorrhage, which can 
result in severe consequences such as cerebral vasos-
pasm, hydrocephalus and hyponatremia [3]. Therefore, 
early detection of intracranial aneurysms is particularly 
crucial. Medical imaging techniques play a significant 
role in the detection, risk assessment, treatment, and 
prognosis of intracranial aneurysms. Key imaging tech-
niques used include computed tomography angiography 
(CTA) [4, 5], magnetic resonance angiography (MRA) [6, 
7], digital subtraction angiography (DSA) [8, 9], and the 
examples are shown in Fig. 1.

CTA has high sensitivity and specificity in diagnosing 
intracranial aneurysms. However, due to the almost equal 
absorption effect of contrast agents and calcium on ion-
izing radiation, CTA is unsuitable for detecting small IAs 
near the skull [10]. MRA is a non-invasive examination 
that can accurately measure the size of aneurysms and 
their positional relationship with the parent artery. How-
ever, MRA has drawbacks, such as long imaging time and 
low resolution [11]. DSA has the advantages of high spa-
tial resolution and has long been used as the gold stand-
ard for diagnosing intracranial aneurysms, but invasive 
procedures increase the risk of complications [12]. Con-
sequently, the application of these imaging techniques 
generally depends on diverse circumstances and require-
ments of patients. Traditionally, these medical images are 
analyzed and interpreted by experienced radiologists, 
whose expertise is essential for accurate diagnosis [13]. 
Nevertheless, manually analyzing medical images can be 
a laborious process, prone to inaccuracies, and may vary 
depending on the observer.

Considering the exceptional efficacy of artificial intel-
ligence (AI) in image-related tasks, methods utilizing tra-
ditional machine learning (ML) and deep learning (DL) 

have recently emerged for the recognition of intracranial 
aneurysms [14]. Artificial intelligence can provide precise 
analysis of the morphology, size, and location of intracra-
nial aneurysms, offering clinicians more comprehensive 
information to better formulate diagnosis and treatment 
plans. Currently, AI-based classification, detection, seg-
mentation, and composite models for intracranial aneu-
rysms have been developed, aiding in the assessment of 
rupture risk and prognostic prediction for intracranial 
aneurysms [15, 16]. In general, AI models trained on 
extensively annotated data can effectively and automati-
cally localize suspected IA regions within images, thereby 
enhancing diagnostic efficiency and accuracy.

To date, little meta-analysis focuses specifically on 
the performance of image-based AI in the diagnosis of 
intracranial aneurysms. Our study aims to conduct a 
comprehensive review of AI-based IA recognition meth-
ods, and systematically evaluate their performance across 
various IA recognition tasks in medical imaging, provid-
ing a thorough overview of the current state of the field.

Methods
Search strategy
A systematic literature review of PubMed, Web of Sci-
ence, IEEE and the Scopus Library was manually con-
ducted from their establishment date until March 2024 
to identify relevant reports. The databases were searched 
using the terms[(intracranial aneurysm classification), 
(intracranial aneurysm segmentation), (intracranial 
aneurysm detection) and (intracranial aneurysm recog-
nition)]. The search strategies incorporated the Medical 
Subject Headings terms and keywords. References lists of 
the relevant articles were also screened.

Study selection
All collected studies were screened for eligibility by two 
independent reviewers. This review focuses on regional 
detection and localization recognition of IA. We have 

Fig. 1  Clinical Imaging Examples of IAs. a CTA Example; b MRA Example; c DSA Example
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filtered out studies that do not align with the topic of this 
article, including aneurysm surgery and morphological 
analysis. Furthermore, we divide our research work into 
three types based on algorithmic forms: image segmenta-
tion, classification, and detection. Therefore, we screened 
the preliminary search results based on the following cri-
teria: (1) original articles published until March 2024; (2) 
provide only English; (3) the research content includes 
aneurysm detection and recognition, and the method 
categories can be summarized into one of three types of 
algorithms; (4) only human subjects are involved. Any 
differences between the authors reviewers were resolved 
through consensus in the presence of a third reviewer.

Study selection
The first stage of the screening method involves evalu-
ating the titles and abstracts of the identified papers, 
removing those unrelated to the research topic, and 
then eliminating duplicate papers. Subsequently, full 
texts of relevant articles are retrieved for final evalu-
ation, followed by an assessment based on eligibility 
criteria. The remaining articles are then thoroughly 

reviewed to extract the required data. This screen-
ing process was conducted by two researchers (Z.Z 
and Y.J). In cases of disagreement, they consulted with 
a third researcher (H.Y) to discuss article selection, 
remove irrelevant/unqualified papers, and extract data. 
The collected articles were utilized to extract the fol-
lowing variables: first author, year of publication, study 
type, sampling method, annotation method, sample 
size, accuracy, sensitivity, and specificity.

Result
Study results
In the first stage of the search process, a total of 5168 
papers were identified; 3772 were eliminated due to 
irrelevance. After removing duplicate entries, 1396 
remained. Papers that did not meet eligibility criteria or 
align with the current research objectives were disqual-
ified in the subsequent stage. Following the application 
of eligibility criteria, 80 articles were excluded. Finally, 
47 articles were retained for analysis. The article selec-
tion process is described in detail as shown in Fig. 2.

Fig. 2  The flow of searching and selecting articles
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Methodologies overview
Classification-based structure: As shown in Table  1, 
based on classification models, the recognition of IAs 
aims to determine whether IAs exist in the image or to 
assess the status of IAs (such as potential blockage or 
rupture), mainly divided into two categories:

(1) Based on morphological features [17–21]: by 
extracting morphological features of intracranial aneu-
rysm images, such as size, shape and edges, and then 
using traditional machine learning methods or rule-
based methods for classification. This method relies on 
manually designed feature extraction and classification 
algorithms, requires high demands on the morpho-
logical features of intracranial aneurysms, and may not 
capture subtle variations in the images.

(2) Based on imaging features [22–24, 4, 9, 25–35]: 
using deep learning techniques, such as convolutional 
neural networks (CNNs), to learn feature representa-
tions from intracranial aneurysm images and apply 
them to classification tasks. This method does not 
require manual feature extraction but learns feature 
representations from raw image data through end-to-
end learning, which can better capture the complex 

features of intracranial aneurysms and improve classi-
fication performance.

Overall, classification methods based on morphological 
features rely heavily on the accuracy of upstream feature 
extraction, and the model’s performance is sensitive to 
changes in imaging quality and feature extraction thresh-
olds. Samples with significant imaging differences often 
fail to exhibit robust inference performance. In con-
trast, classification methods based on imaging features 
can achieve end-to-end recognition of IA, and through 
training on large-scale datasets, they can robustly adapt 
to imaging variations. However, the automatically 
extracted image features lack a certain level of clinical 
interpretability.

Detection-based structure: As shown in Table 2 [36–
39], object detection aims to identify the categories and 
bounding boxes of specific objects in images [40]. In the 
task of IA recognition, the purpose is to mark the area 
where IAs are located by bounding boxes, allowing doc-
tors to quickly locate potential IA regions in the image. 
Specifically, the processing pipeline of object detection 
models includes feature extraction, region regression, 
and category prediction. In the feature extraction stage, 

Table 1  A summary of intracranial aneurysm recognition using image classification methodology

MLP Multilayer Perceptron, SIF Spatial Information Fusion, SR Sparse Representation, PCC Point Cloud Classification, CNN Convolutional Neural Network, AUC​ Area 
Under Curve

Author/Year Model Imaging Total/Intervention Training/Test Accuracy % Sensitivity % Specificity %
Sample size Sample size

Paliwal et al. 2018 [17] MLP DSA 80/84 64/20 90.0 - -

Park et al. 2019 [22] 3D CNN CTA​ 726/282 611/115 89.3 83.1 96.0

Ueda et al. 2019 [23] 3D CNN MRA 750/828 682/67 90.0 87.0 95.0

Joo et al. 2019 [24] 3D CNN MRA 574/614 468/106 - 85.7 98.0

Chen et al. 2020 [18] MLP CTA​ 915/915 807/108 80.0 81.6 73.5

Detmer et al. 2020 [19] MLP DSA 1264/1880 1061/203 78.6 48.4 89.5

Zeng et al. 2020 [25] SIF 2D CNN DSA 300/263 150/150 98.8 99.3 98.1

Bhurwani et al. 2020 [20] MLP DSA 190/126 135/55 77.9 92.0 57.0

Zhu et al. 2020 [21] MLP DSA 1897/2067 1656/411 82.4 51.5 92.9

Yang et al. 2021 [26] 2D CNN CTA​ 1068/1337 534/534 - 91.9 90.9

Joo et al. 2021 [27] 3D CNN MRA 800/603 468/322 - 91.1 93.9

Wei et al. 2022 [28] 3D CNN CTA​ 212/224 170/42 74.5 84.9 18.2

Li et al. 2023 [29] 3D CNN CTA​ 556/731 400/331 93.0 - -

Xie et al. 2023 [4] 3D CNN CTA​ 106/106 71/35 89.8 - -

Niemann et al. 2023 [30] Surface Meshes Model DSA 84/84 60/24 83.3 - -

Hu et al. 2023 [9] SR Method DSA 263/263 187/76 96.1 94.4 97.5

Wang et al. 2023 [31] 3D CNN DSA 110/114 75/35 - 82.9 -

Timmins et al. 2023 [32] Surface Meshes Model MRA CTA​ 235/235 93/142 - 52.0 -

20/20 0/20 48.3

Noto et al. 2023 [33] 3D CNN MRA 246/246 197/49 - 83.0 -

Peng et al. 2024 [34] 2D CNN CTA​ 101/101 87/14 - AUC=93.2

Cao et al. 2024 [35] 3D PCC Model DSA 623/623 464/159 82.0 72.0 86.0
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the model extracts feature representations from the 
image, typically using CNNs to capture image features. 
Next, in the region regression stage, these features are 
utilized to predict the position and size of the bounding 
boxes, accurately locating the target objects. Finally, in 
the category prediction stage, these features are used to 
determine the category of each object within the bound-
ing box, thereby completing the object detection task.

Compared to classification models, object detection 
not only provides more detailed information but also 
offers spatial location and category of objects. However, 
traditional object detection methods cannot segment the 
specific boundaries of IAs. It requires incorporating a 
segmentation module at the end of the model to segment 
the foreground mask of each object within the bounding 
box, known as instance segmentation. However, similar 
to segmentation methods, its prediction results also suf-
fer from false positives/false negatives, necessitating fur-
ther calibration by doctors to obtain the final diagnosis.

Segmentation-based structure: As shown in 
Table  3, [41–52], the goal of semantic segmenta-
tion is to classify each pixel in the image into a spe-
cific category to achieve pixel-level classification [53]. 

Segmentation-based IA recognition aims to accurately 
segment the specific boundaries of IAs in images. 
A common semantic segmentation model adopts a 
U-shaped architecture [54], which includes both an 
encoder and a decoder. Specifically, the encoder is 
responsible for extracting high-level semantic informa-
tion from input images, typically composed of convolu-
tional layers and pooling layers. This process gradually 
reduces the image size while increasing the depth of 
feature maps. In contrast, the decoder is tasked with 
mapping the features extracted by the encoder back 
to the original image size and generating pixel-level 
prediction results. Typically, the decoder consists of 
transposed convolutional layers and upsampling layers, 
which gradually restore the image size while preserving 
semantic information.

Additionally, segmentation methods offer greater inter-
pretability compared to classification methods as they 
can clearly delineate the boundaries of IAs. However, 
since semantic segmentation identifies regions belonging 
to IAs as the same category when faced with the situa-
tion of multiple aneurysms adhering together, they will 
be recognized as a unified whole, making it unable to 

Table 2  A summary of intracranial aneurysm recognition using object detection methodology

LSTM Long Short-term Memory Network, MIoU Mean Intersection over Union

Author/Model Model Imaging Total/Intervention Training/Test Sensitivity % Specificity % MIoU %
Sample size Sample size

Dai et al. 2019 [36] Faster -RCNN CTA​ 311/344 208/103 94.3 - 55.0

Liao et al. 2019 [37] 2D LSTM DSA 500/500 400/100 88.0 83.0 -

Duan et al. 2019 [38] Two-stage 2D CNN DSA 261/261 241/40 93.5 96.0 91.0

Assis et al. 2023 [39] Pose Estimation Model MRA 132/132 106/26 82.9 - -

Table 3  A summary of intracranial aneurysm recognition using semantic segmentation methodology

PCS Point Cloud Segmentation, SCTR​ Staged Cluster Transformers, PA Pixel Accuracy, MIoU Mean Intersection over Union

Author/Model Model Imaging Total/Intervention Training/Test PA % Dice % IoU %
Sample size Sample size

Podgorsak et al. 2023 [41] 2D UNet DSA 350/313 250/100 - 90.3 82.3

Jin et al. 2020 [42] 2D UNet DSA 395/977 249/146 - 53.3 -

Yuan et al. 2022 [43] 3D UNet MRA 93/113 70/23 - 74.6 -

Liu et al. 2022 [44] 3D PCS Model MRA 116/116 93/23 - 95.5 91.5

Liu et al. 2023 [45] 3D PCS Model MRA 116/116 93/23 95.2 95.5 91.4

Claux et al. 2023 [46] 3D UNet MRA 49/63 24/25 - 78.0 -

Ham et al. 2023 [47] 3D UNet MRA 135/135 120/15 77.2 22.6 -

Mu et al. 2023 [48] 3D UNet DSA 23/23 15/8 - 86.8 -

Zhang et al. 2023 [49] 3D UNet DSA 300/300 240/60 - 91.1 85.9

Abdullah et al. 2023 [50] 2D UNet DSA 409/436 327/82 99.9 - 96.8

Guo et al. 2024 [51] SCTR Model MRA 113/125 90/23 - 55.9 -

Estrella-Ibarra et al. 2024 [52] 3D PCS Model MRA 116/116 93/23 - - 89.8
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accurately distinguish the specific boundaries of different 
IA instances.

Hybrid-based structure: As shown in Table 4, [16, 5, 
55–62] The hybrid-based IA recognition model adopts 
a two-step approach to accurately identify and classify 
intracranial aneurysms. Firstly, a segmentation model is 

utilized to delineate the specific boundaries of IAs. This 
segmentation process enables precise localization of 
the aneurysm regions within the image. Subsequently, 
the segmented regions are input into a classification 
model, which determines the category of each IA, such 
as the risk of rupture or obstruction. By combining 

Table 4  A summary of intracranial aneurysm recognition using hybrid structure methodology

CNN Convolutional Neural Network, PCC Point Cloud Classification, PCS Point Cloud Segmentation

Author/Model Model Imaging Total/Intervention Training/Test Performance (%)
Sample size Sample size

Shi et al. 2020 [16] 3D UNet + 3D CNN CTA​ 1077/838 927/150 Classification
Acc: 86.0    Sen: 97.3    Spe:74.7

Segmentation
Dice: 75.0

You et al. 2022 [5] 3D UNet + 3D UNet CTA​ 2272/2938 1606/352 Classification
Recall: 96.4

Segmentation
Dice: 78.3

Wu et al. 2022 [55] 3D UNet + 3D CNN CTA​ 1508/1710 1205/303 Classification
Sen: 76.0    Spe:80.0

Segmentation
Dice: 85.4

Yang et al. 2020 [56] 3D PCS + PCC Model MRA 2025/215 1620/405 Classification
F1-Score: 89.2

116/116 93/23 Segmentation
Dice: 87.9    MIoU: 80.1

Timmins et al. 2021 [57] 2D UNet + 2D CNN MRA 254/282 113/141 Classification
Sen: 70.0

Segmentation
Dice: 63.0

Shao et al. 2022 [58] 3D PCS + PCC Model MRA 2025/215 1620/405 Classification
Acc: 86.6    F1-Score: 82.9

116/116 93/23 Segmentation
MIoU: 48.6

Ou et al. 2022 [59] 3D UNet + 3D CNN DSA 131/157 109/22 Classification
Acc: 94.4    Sen: 85.8

Segmentation
Dice: 83.6    MIoU: 73.8

Irfan et al. 2023 [60] 2D UNet + 2D CNN DSA 408/369 267/141 Classification
Acc: 79.2    F1-Score: 71.4

Segmentation
PA: 92.7    Dice: 74.0    MIoU: 78.0

Nageler et al. 2023 [61] 3D UNet + 3D CNN CTA​ 121/121 100/21 Classification
Acc: 85.0

Segmentation
Dice: 94.4

Cao et al. 2024 [62] 3D PCS + PCC Model MRA 2025/215 1620/405 Classification
F1-Score: 94.4

116/116 93/23 Segmentation
Dice: 91.4    MIoU: 86.0
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segmentation and classification techniques, hybrid-
based models leverage the strengths of both approaches, 
allowing for comprehensive analysis and accurate diag-
nosis of IAs. This hybrid approach yields more detailed 
recognition results incrementally, but it also faces chal-
lenges similar to other domains’ hybrid models, such as 
high computational complexity and issues with error 
propagation.

Evaluation of IA recognition based on classification
A total of 21 studies implemented IA recognition 
based on classification models [4, 9, 17–35], as shown 
in Table  1. Combined with Tables  2, 3, and 4, it can be 
seen that classification is currently the predominant 
method for IA recognition. Classification studies report 
average accuracy, sensitivity, and specificity as outcome 
measures, with the patient cohort size ranging from 20 
to 1897. Five studies [17–21] utilized pattern classifica-
tion based on morphological features, focusing mainly on 
identifying aneurysm states such as rupture and obstruc-
tion risk prediction. These studies are primarily applied 
in postoperative follow-up, where aneurysm appearance 
parameters and patient clinical features are extracted to 
form feature vectors, which are then inputted into mul-
tilayer perceptron (MLP) to predict the aneurysm’s trend 
in status. The test group’s average accuracy ranges from 
77.9% to 90.0%. Specifically, this morphology-based clas-
sification pattern can effectively infer the aneurysm’s 
status in postoperative follow-up diagnosis, providing 
valuable auxiliary diagnostic reference results.

In addition, 16 studies [22–29, 4, 30, 9, 31–35] utilized 
a pattern classification based on image features, aiming 
to extract deep semantic features from images using deep 
learning models and utilize these features for automatic 
classification and recognition of IAs. The test group’s 
average accuracy ranged from 74.5% to 98.8%, with aver-
age sensitivity ranging from 48.3% to 99.3% and aver-
age specificity ranging from 18.2% to 98.1%. Overall, DL 
models showed relatively consistent performance in IA 
image classification tasks in terms of accuracy, but there 
were significant differences in specificity and sensitivity 
performance, mainly influenced by factors such as train-
ing data size, imaging sampling, and the proportion of 
positive samples.

Evaluation of IA recognition based on object detection
Four studies [36–39] conducted IA recognition based on 
object detection, as shown in Table 2. Detection studies 
reported average sensitivity, specificity, and Mean Inter-
section over Union (MIoU) as outcome measures, with 
the patient cohort size ranging from 132 to 500. These 
detection models first locate and label the IA regions in 
the images, and then further classify and identify each 

region. The test group’s average sensitivity ranged from 
82.9% to 94.3%, average specificity ranged from 83.0% to 
96.0%, and MIoU ranged from 55.0% to 91.0%. However, 
compared to classification-based models, object detec-
tion models require more computational resources and 
time to process each image, thus may have some limita-
tions in practical applications. Additionally, while the 
bounding boxes outputted by object detection models 
can locate the position and rough boundaries of IAs, they 
cannot be further utilized for calculating clinical param-
eters such as aneurysm area, maximum diameter ratio 
and roundness, unlike the boundary masks outputted by 
segmentation models. In real clinical diagnosis, object 
detection-based methods can assist doctors in locating 
suspected IA regions in images, but subsequent quan-
tification and analysis of clinical parameters still rely on 
manual annotation by doctors and semi-automatic meas-
urement tools. Therefore, it may be necessary to adapt it 
to the actual needs of clinical diagnosis by extending it 
into a model structure for instance segmentation.

Evaluation of IA recognition based on semantic 
segmentation
Twelve studies [41–52] conducted IA recognition based 
on semantic segmentation, as shown in Table  3. The 
detection studies reported average Pixel Accuracy (PA), 
Dice coefficient, and MIoU as outcome measures, with 
the patient group size ranging from 23 to 409. These 
segmentation models first extracted high-level seman-
tic information from input images through an encoder. 
Then, through a decoder, they mapped the features 
extracted by the encoder back to the original image 
size, generating pixel-level prediction results. The test 
group’s average PA ranged from 77.2% to 99.9%, aver-
age Dice ranged from 22.6% to 95.5%, and MIoU ranged 
from 82.3% to 96.8%. From Table  3, it can be observed 
that while the models performed well in PA, the perfor-
mance of Dice was relatively lower. This could be due to 
the overall low area of IAs in the images, allowing the 
model to achieve high PA even if it predicts all regions 
as negative areas. Conversely, Dice and MIoU simultane-
ously evaluate the overlap of foreground and background 
regions, thus better reflecting the model’s accuracy and 
coverage in IA boundary segmentation.

Furthermore, most segmentation models adopted the 
UNet [54] design structure, incorporating skip connec-
tions between the encoder and decoder. This helps the 
model capture different levels of feature information 
more effectively and alleviates the issue of information 
loss. Skip connections allow the decoder to utilize lower-
level feature information from the encoder, thereby bet-
ter recovering image details and boundary information. 
The adoption of this structure contributes to improving 
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the accuracy and robustness of the model in IA bound-
ary delineation. Additionally, Guo et  al. [51] introduced 
an encoder based on the Transformer structure, utiliz-
ing its self-attention mechanism to enhance the model’s 
ability to model global and local features, further improv-
ing performance. Overall, semantic segmentation-based 
models have made significant progress in IA recognition, 
providing important diagnostic information to clinicians 
through pixel-level prediction, and accurately delineating 
IA boundaries.

Evaluation of IA recognition based on hybrid model
Ten studies [16, 5, 55–62] employed hybrid models for 
IA recognition, as shown in Table  4. It is evident that 
these 10 studies all adopted a two-stage hybrid structure 
based on segmentation and classification. Consequently, 
the hybrid studies reported measurements for both seg-
mentation and classification, including average accuracy, 
average specificity, and average sensitivity for classifica-
tion, and Dice coefficient, MIoU, and F1-Score for seg-
mentation. The patient cohort sizes ranged from 116 to 
2272. The test groups showed average accuracy rang-
ing from 79.2% to 94.4%, average sensitivity from 52.0% 
to 97.3%, average Dice coefficient from 74.0% to 94.4%, 
MIoU from 48.6% to 86.0%, and average F1-Score from 
71.4% to 94.4%.

Moreover, a significant contribution introduced a 3D 
point cloud segmentation and classification dataset for 
IAs named IntrA dataset [56]. This dataset reconstructed 
2D MRA scan images into 3D point cloud data format 
and meticulously annotated healthy vascular segments 
and aneurysmal segments. This innovative approach 
brought the IA recognition task into the realm of 3D 
point clouds, offering a fresh perspective for recognition. 
Subsequently, studies [44, 45, 52, 56, 58, 62] conducted 
model structure innovations and performance evalua-
tions on this dataset, driving further advancements in 
IA recognition technology. It can be observed that while 
models based on hybrid structures may entail higher 
complexity, the two-stage models can balance both the 
accuracy and completeness of output results.

Discussion
Potential technical challenges and prospects
Our research indicates that AI is highly effective in the 
evaluation of IA, enabling the efficient analysis of exten-
sive imaging datasets and fostering standardized assess-
ments that reduce diagnostic discrepancies among 
clinicians. However, challenges persist, such as varying 
training sample sizes in different studies and the high 
computational demands of complex models. To achieve 
better clinical applications, further research could be 
conducted in the following aspects:

(1)	 Reducing the latency of AI systems: Fully func-
tional AI systems are often built on composite mod-
els, leading to delays in system recognitions, which 
are not conducive to real-time applications such as 
surgical treatments. Therefore, reducing the latency 
of AI system inference to meet clinical diagnostic 
needs is necessary. This could involve optimizing 
model structures to reduce computational com-
plexity or introducing efficient inference algorithms 
to improve system response time.

(2)	 Increasing the interpretability of reasoning: Cur-
rent AI algorithms can detect subtle intracranial 
aneurysms in both arterial and venous sinuses, 
but lack interpretability in assessing postoperative 
recurrence risks or occlusion probabilities [63]. 
Comprehensive postoperative evaluations require 
consideration of patients’ medical histories and 
health records in addition to their imaging data. 
Therefore, AI models for postoperative assessment 
may need to incorporate patients’ electronic health 
records (EHR) and image features to provide inter-
pretability for the reliability of diagnostic results 
while outputting auxiliary diagnostic outcomes.

(3)	 Coordinating the diagnosis of multiple neuro-
logical disorders: In neurological disorders, IAs 
may coexist with other conditions such as athero-
sclerosis and thrombosis. In real clinical diagnostic 
scenarios, there is a greater need to consider multi-
task, multi-modal situations. Therefore, compre-
hensive diagnosis of neurological disorders requires 
joint analysis of patients’ multi-modal images. 
Additionally, it may be necessary to establish links 
between different lesions through knowledge graph 
construction [64]. Consequently, designing artifi-
cial intelligence systems that cover a wide range of 
lesions with high sensitivity still faces many techni-
cal challenges and requires clinical validation.

(4)	 Introducing large-language pretraining models: 
Influenced by the research trend of large-language 
models (LLM) [65], how to improve the recognition 
accuracy of specific tasks with the help of the prior 
weights of LLM is one of the current research hot-
spots. Due to the high cost of clinical data acquisi-
tion in IA, de novo training models tend to be less 
effective with limited datasets. Therefore, it is an 
idea worth exploring in the future to achieve accu-
rate recognition within the model by leveraging the 
prior knowledge of the large model, even when con-
fronted with limited IA data.

(5)	 Promoting open data sharing: Currently, most 
studies rely on proprietary datasets, leading to 
inconsistencies in algorithm design and compari-
son. Additionally, there are few open-source data-
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sets for IAs recognition, while high-quality public 
datasets are crucial as they enhance the credibility 
and replicability of research findings. For instance, 
the TCGA dataset [66] is utilized in pathological 
image analysis, and the CheXpert dataset [67] in 
lung X-ray studies. Moreover, integrating multiple 
datasets from various sources can facilitate cross-
domain or multitask learning research, thereby 
enriching the scope and applicability of work in this 
field. Therefore, it is vital to expand the availability 
of open datasets for IA recognition and to establish 
clear performance evaluation criteria, which are key 
focuses for future research in this area.

Strengths
With the increasing popularity of AI and computer vision 
methods in medical image analysis and the auxiliary 
diagnosis of IAs, more and more studies have discussed 
the feasibility of automatic IA recognition. However, we 
have yet to find any reviews that provide a detailed meth-
odological division and performance evaluation for IA 
recognition based on AI models.

In this comprehensive review, we systematically catego-
rize existing studies on IAs recognition facilitated by AI, 
dividing them into four methodological groups: classifi-
cation, detection, segmentation, and hybrid approaches. 
This structured classification aids readers and research-
ers in discerning the methodological distinctions across 
studies. Our review draws from an extensive selection of 
studies found in leading scientific databases encompass-
ing both the technical and healthcare fields. To mitigate 
selection bias, we implemented a robust study selection 
process managed independently by two reviewers and 
verified by a third reviewer. We thoroughly assess the 
results and identify potential technical challenges faced 
by AI models in IA recognition tasks. To the best of our 
knowledge, this is the first review that not only methodo-
logically categorizes but also evaluates the performance 
of AI models specifically for IA recognition tasks. It inte-
grates the latest trends in AI and medical image analy-
sis, shedding light on technological advancements in the 
field. Our review summarizes the potential applications 
of AI in the medical imaging evaluation of intracranial 
aneurysms, highlighting its valuable role in assisting cli-
nicians with diagnosis and treatment. Furthermore, this 
review offers researchers and readers insights into the 
challenges and prospects of developing advanced meth-
ods for IA analysis.

Limitations
The articles selected for this review exhibit varied 
characteristics such as retrospective methodologies, 
constrained sample sizes, diverse artificial intelligence 

algorithms, assorted performance metrics, and dis-
tinct methods of outcome measurement. These factors 
complicate direct comparisons across different models. 
Furthermore, the limited sample sizes and the absence 
of standardized metrics have somewhat hindered the 
broader application and dissemination of these AI 
models in clinical settings. Despite exhaustive efforts 
to include research published up to March 2024, we 
acknowledge the possibility that certain emergent or 
evolving AI models might not have been captured in 
this review. Additionally, this analysis is limited to stud-
ies published in English, potentially omitting relevant 
research conducted in other languages.

Conclusion
This paper aims to conduct a systematic review to under-
stand the current research progress of applying artificial 
intelligence techniques in intracranial aneurysm recog-
nition. Current studies have achieved good results in IA 
recognition. But the field still needs more common test 
benchmarks and public datasets. In addition, the model 
structure designed by the corresponding research insti-
tute is still relatively limited and needs to be improved 
and enhanced in combination with actual clinical scenar-
ios. In summary, with further improvements, AI meth-
ods show favorable prospects in identifying intracranial 
aneurysms and predicting their potential for rupture and 
blockage.
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