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Abstract
Objective  Accurate delineation of the hippocampal region via magnetic resonance imaging (MRI) is crucial for the 
prevention and early diagnosis of neurosystemic diseases. Determining how to accurately and quickly delineate 
the hippocampus from MRI results has become a serious issue. In this study, a pixel-level semantic segmentation 
method using 3D-UNet is proposed to realize the automatic segmentation of the brain hippocampus from MRI 
results. Methods: Two hundred three-dimensional T1-weighted (3D-T1) nongadolinium contrast-enhanced magnetic 
resonance (MR) images were acquired at Hangzhou Cancer Hospital from June 2020 to December 2022. These 
samples were divided into two groups, containing 175 and 25 samples. In the first group, 145 cases were used to train 
the hippocampus segmentation model, and the remaining 30 cases were used to fine-tune the hyperparameters 
of the model. Images for twenty-five patients in the second group were used as the test set to evaluate the 
performance of the model. The training set of images was processed via rotation, scaling, grey value augmentation 
and transformation with a smooth dense deformation field for both image data and ground truth labels. A filling 
technique was introduced into the segmentation network to establish the hippocampus segmentation model. In 
addition, the performance of models established with the original network, such as VNet, SegResNet, UNetR and 
3D-UNet, was compared with that of models constructed by combining the filling technique with the original 
segmentation network. Results: The results showed that the performance of the segmentation model improved after 
the filling technique was introduced. Specifically, when the filling technique was introduced into VNet, SegResNet, 
3D-UNet and UNetR, the segmentation performance of the models trained with an input image size of 48 × 48 × 48 
improved. Among them, the 3D-UNet-based model with the filling technique achieved the best performance, with 
a Dice score (Dice score) of 0.7989 ± 0.0398 and a mean intersection over union (mIoU) of 0.6669 ± 0.0540, which were 
greater than those of the original 3D-UNet-based model. In addition, the oversegmentation ratio (OSR), average 
surface distance (ASD) and Hausdorff distance (HD) were 0.0666 ± 0.0351, 0.5733 ± 0.1018 and 5.1235 ± 1.4397, 

An improved 3D-UNet-based brain 
hippocampus segmentation model based 
on MR images
Qian Yang1†, Chengfeng Wang2†, Kaicheng Pan3, Bing Xia3*, Ruifei Xie3* and Jiankai Shi4*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-024-01346-w&domain=pdf&date_stamp=2024-7-4


Page 2 of 12Yang et al. BMC Medical Imaging          (2024) 24:166 

Introduction
Brain metastases are becoming an increasingly common 
complication of systemic cancers [1, 2]. Approximately 
20–40% of patients with extracranial tumours develop 
cerebral metastases during the course of the disease, 
often leading to a poor prognosis [3, 4]. Currently, radia-
tion therapy, including whole-brain radiation therapy 
(WBRT) and stereotactic radiosurgery (SRS), is still the 
primary treatment for both the prevention and treatment 
of intracranial metastases [5]. Unfortunately, patients 
with tumours undergoing radiation therapy often suf-
fer brain injuries caused by radiation. Clinical trials by 
WBRT RTOG 0212 [6] and RTOG 0214 [7] have dem-
onstrated that there is a significant decline in neuro-
cognitive or intellectual function after receiving WBRT. 
In addition, the greater the dose is, the more severe the 
decrease. A study by Eric L Chang et al. indicated that 
patients receiving a combination of SRS and WBRT have 
a significantly greater risk of cognitive impairment than 
those who are treated with SRS alone [8]. In recent years, 
increasing attention has been focused on neural stem 
cells, which are critical sites susceptible to radiation-
induced injuries [9]. Neural stem cells are located mainly 
in the brain hippocampus; these cells strongly prolifer-
ate and migrate and can serve as reserves, participating 
in the repair of cerebral lesions [9]. The subgranular zone 
of the hippocampus is a crucial neural centre for learn-
ing and memory [10]. Many clinical studies have dem-
onstrated that there is a significant association between 
the hippocampus and cognitive state [11]. When killing 
tumour cells, radiation therapy can also inadvertently 
affect surrounding healthy cells, leading to undesirable 
side effects [12]. Bilateral or unilateral radiation-induced 
injury to the hippocampus can influence the processes 
involved in learning and memory formation [13]. This 
can lead to cognitive functional disorders and can sig-
nificantly influence patients’ quality of life [14]. There-
fore, accurate delineation of the hippocampus region is 
crucial for decreasing the radiation dose and minimiz-
ing radioactive damage during radiotherapy [15, 16]. 
However, it is challenging to accurately delineate the 
hippocampus region in MR images due to the low signal-
to-noise ratio (SNR), the poor quality of MR images, and 
the small size of the hippocampus in MR images [17]. In 
addition, among all brain tissues, the hippocampus is the 

most susceptible to ageing as life spans increase. Recent 
studies have shown that a decrease in hippocampal func-
tion is primarily attributed to the death of brain neurons 
[18, 19]. Moreover, numerous studies have shown that 
abnormalities in the hippocampus are closely related to 
the pathogenesis of epilepsy, intellectual impairment, 
Alzheimer’s disease and other neurological pathologies 
[20–23]. Therefore, it is important to accurately recog-
nize the hippocampus region for the prevention and early 
diagnosis of neurosystemic diseases. As a result, develop-
ing faster and more precise hippocampus segmentation 
methods for MR images has become a critical challenge.

Pruessner et al. proposed a manual hippocampus seg-
mentation method, but it has limitations such as low 
efficiency, low accuracy and a high degree of subjectivity 
[24]. Strck et al. proposed a semiautomatic hippocampus 
segmentation method, which improved the efficiency of 
segmentation compared to manual methods. However, 
the accuracy of this segmentation method is still limited 
and cannot meet the demands of clinical application [25]. 
To achieve both high efficiency and high accuracy for 
hippocampus segmentation, several automatic segmen-
tation methods based on deformation models [26–28], 
mapping technology [29–32] and machine learning [33] 
have been proposed. These methods have made signifi-
cant advancements in hippocampus segmentation but 
still face challenges in accurately distinguishing the hip-
pocampus from other tissues with similar grey values in 
MR images.

With the rapid development and application of deep 
learning in the field of image processing, many segmen-
tation networks have been developed [34–36]. Ciresan 
et al. applied convolutional neural networks (CNNs) to 
segment the neuron cell membrane and achieved ideal 
segmentation results [37]. CNNs have been used for 
segmentation tasks in brain tumours [38], retina [34, 
39], interstitial and epithelial tissues [35], liver tumours 
[40], and lung parenchyma [41]. For the segmentation 
of the hippocampus, Chen et al. used U-Seg-Net to seg-
ment the hippocampus with 2D sections of MR images 
first, and then 3D segmentation results were obtained via 
reconstruction of 2D segmentation results [42]. Liu and 
Yan combined deep learning and the lattice Boltzmann 
model to segment the hippocampus on MR images [43]. 

respectively, which were better than those of the other models. In addition, when the size of the input image was set 
to 48 × 48 × 48, 64 × 64 × 64 and 96 × 96 × 96, the model performance gradually improved, and the Dice scores of the 
proposed model reached 0.7989 ± 0.0398, 0.8371 ± 0.0254 and 0.8674 ± 0.0257, respectively. In addition, the mIoUs 
reached 0.6669 ± 0.0540, 0.7207 ± 0.0370 and 0.7668 ± 0.0392, respectively. Conclusion: The proposed hippocampus 
segmentation model constructed by introducing the filling technique into a segmentation network performed better 
than models built solely on the original network and can improve the efficiency of diagnostic analysis.
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A U-Net architecture was proposed by Weng et al. and 
applied to image segmentation [44].

These region of interest (ROI) segmentation methods 
achieve high accuracy, but these models were trained 
with 2D slices of MR images, ignoring the correlations 
between slices in 3D images, which can yield discontinu-
ous and unsmooth results during segmentation [45]. To 
overcome this defect, Cieck et al. proposed a 3D-UNet 
segmentation method to detect the hippocampus with 
MRI [46]. This method is directly based on voxel-scale 
information and requires many parameters to be trained. 
In addition, the distribution of the target region is often 
discontinuous, leading to discontinuous segmentation 
or hollow segmentation, as shown in Fig.  1 (b) and (d), 
respectively.

Consequently, in this study, we introduce a filling 
technique into a 3D-UNet model to segment the hippo-
campus from MR images collected from patients who 

underwent 3D-T1 magnetic resonance imaging of the 
brain. The methodology of this study is illustrated in 
Fig. 2.

Data and methods
Datasets
Magnetic resonance images
In this study, we collected 200 three-dimensional 
T1-weighted (3D-T1) sequence MRI scans without 
gadolinium contrast enhancement. This image dataset 
was acquired from 200 patients who underwent 3D-T1 
sequence MRI scanning from June 2020 to December 
2022 at Hangzhou Cancer Hospital. These data were 
divided into three groups for model training, validation 
and testing, with images for 145, 30 and 25 patients, 
respectively. The images for the first group of 145 patients 
were used to train the hippocampus segmentation model. 
The images for the second group of 30 cases were used to 

Fig. 1  (a) and (c) Ground truth for two cases; (b) and (d) Cases of ‘discontinuous segmentation’ and ‘hollow segmentation’, respectively
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fine-tune the hyperparameters of the model. The images 
for the third group of 25 cases were used as the test set 
to evaluate the performance of the segmentation model. 
All patients were adults over 18 years of age, and MRI 
confirmed that the hippocampus was not affected by 
any disease. The hippocampus was delineated manually 
from MRI scans by three deputy chief physicians follow-
ing the RTOG 0933 hippocampal delineation guidelines 
[47, 48]. The 200 patients were numbered in sequence 
from 001 to 200. Images for patients who were numbered 
001 ∼ 070, 071 ∼ 140 and 141 ∼ 200 were manually seg-
mented by the first, second and third deputy chief physi-
cians, respectively.

Automatic hippocampus segmentation model
A filling technique was introduced to 3D-UNet to estab-
lish an automatic hippocampus segmentation model. The 
details are as follows.

3D-UNet model
3D-UNet is a deep convolution neural network com-
posed of an analysis path and a synthesis path, and each 
path has 4 resolution layers. The network structure of the 
3D-UNet model is shown in Fig. 3.

The input of the network was a 128*128*128 voxel tile 
of an image with 3 channels. In the analysis path, each 
layer consists of two 3 × 3 × 3 convolution layers that are 
activated by a rectified linear unit (ReLU); then, a 2 × 2 × 2 
max pooling operation with a step size of 2 is performed. 

In the synthesis path, each layer is composed of an upcon-
volution operation with a kernel size of 2 × 2 × 2 and a step 
size of 2; then, two 3 × 3 × 3 convolution layers activated 
by a ReLU function are used. In the analysis path, layers 
with matching resolutions are connected via a shortcut, 
which provides the essential features for reconstruction. 
In the final layer of the synthesis path, the number of out-
put channels is reduced to match the required number of 
output feature map channels using 1 × 1 × 1 convolution. 
This architecture design enables highly efficient segmen-
tation with relatively few annotated images by utilizing a 
weighted soft-max loss function. This approach has dem-
onstrated excellent performance in various biomedical 
segmentation applications.

Filling technique for the segmentation of the hippocampus
In this model, a sliding window with a size of 96 × 96 × 96 
was used to identify the hippocampus from 3D-T1 
sequence MR images. However, challenges were encoun-
tered due to the misrecognition of scattered voxels and 
the presence of continuous noise points in the image 
space. As a result, a maximum connected region algo-
rithm was introduced to mitigate the influence of noise 
points on the recognition results. Additionally, a discon-
tinuous distribution in the brain shell region often leads 
to the appearance of holes in the recognition outcomes. 
To address this issue, a filling technique was introduced 
to improve the performance of the segmentation model. 
Specifically, in each layer, for any two points P1 and P2, 

Fig. 2  The methodology of this study
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with coordinates of (x1, y1) and (x2, y2), respectively, if the 
points are within a certain threshold range, i.e., the coor-
dinates of points P1 and P2 satisfy formula (1), then a con-
nection path is present.

	 (x2 − x1 + y2 − y1 + 2) ≤ θ � (1)

θ is the threshold value. An illustration of the filling tech-
nique is shown in Fig. 4. When θ is set to 1, the yellow 
region and the red region are two independent regions. 
When θ is set to 3, the yellow region and the red region 
are connected, forming one region, thus eliminating the 
disconnection between the two regions.

Training
Image enhancement was performed based on scaling, 
rotation and grey value augmentation in this study. In 
addition, a smooth dense deformation field method was 
used for both ground truth labels and image data. Spe-
cifically, random vectors were sampled with an interval 
of 32 voxels in each direction from a normal distribu-
tion. Then, B-spline interpolation was used. Due to the 
small proportion of ROIs in brain MR images and the 
imbalance among pixel categories between ROIs and 
background areas, network training with any loss func-
tion alone cannot achieve ideal results. As a result, a 
weighted cross-entropy loss function was used, in which 
the background weight was frequently decreased and 
the ROI weight was increased to overcome the imbal-
ance between the pixel area of ROIs and the background 
region. The intensity of the input data was transformed to 
a range of [0, 500], which was found to provide the best 
contrast between the background and ROIs. Data aug-
mentation was carried out in real time, producing a vari-
ety of different images for training iterations.

Evaluation indices for the segmentation model
To evaluate segmentation model performance, the Dice 
score [49–53], intersection over union (IoU) [54], over-
segmentation ratio (OSR) [53], undersegmentation ratio 
(USR) [53], average surface distance (ASD) [49] and 
Hausdorff distance (HD) [49] were used in this paper, as 
shown in formulas (2) to (7), respectively.

Fig. 4  Illustration of the filling technique

 

Fig. 3  Structure of 3D-UNet
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The Dice score is one of the most commonly used met-
rics for assessing medical volume segmentation models 
[49–53]. The definition of the Dice score is shown in for-
mula (2).

	
Dice (GT, Pred) =

2areaGT ∩ areaPred

areaGT + areaPred
� (2)

where areaGT  is the pixel area of the hippocampus in 
ground truth images, as delineated manually by a deputy 
chief physician. areaPred  is the pixel area predicted with 
the segmentation model.

The intersection over union (IoU) is used to measure 
the accuracy of the segmentation model and quantify the 
degree of similarity between the annotated ground truth 
data and the region segmented with the model. The defi-
nition of the IoU is shown in formula (3).

	
IoU =

TP

TP + FP + FN
� (3)

In formula (3), TP is the pixel area of true positives, FP is 
the pixel area of false positives, and FN is the pixel area of 
false negatives.

The current medical image segmentation approaches 
have limitations in effectively solving the problems of 
oversegmentation and undersegmentation [50–53]. The 
metrics used to evaluate oversegmentation and under-
segmentation focus on the proportions of incorrectly 
segmented and unsegmented pixels, which can reflect 
the performance of the segmentation model in detail 
[53]. The oversegmentation ratio (OSR) and underseg-
mentation ratio (USR) are defined in formulas (4) and (5), 
respectively.

	
OSR =

FP

Rs + Ts
� (4)

	
USR =

FN

Rs + Ts
� (5)

In formulas (4) and (5), FP is the pixel area of false posi-
tives, and FN is the pixel area of false negatives. Rs refers 
to the reference area of the ground truth ROI, which is 
delineated manually by a deputy chief physician, and Ts 
refers to the pixel area of the hippocampus estimated 
with the segmentation model.

Spatial distance-based metrics such as average surface 
distance and Hausdorff distance are widely applied to 
assess the performance of segmentation models. In this 
study, the average surface distance and Hausdorff dis-
tance were used to evaluate the performance of the seg-
mentation model. The definitions of the average surface 

distance and Hausdorff distance are shown in formulas 
(6) and (7), respectively.

	

ASD (A, B) =
1

S (A) + S (B)


∑

SA
∈S(A)

d (sA, S (B)) +
∑

SB
∈S(B)

d (sB, S (A))




� (6)

In formula (6), S(A) and S(B) are the sets of surface voxels 
of A and B, respectively. d (sA, S(B)) indicates the short-
est distance from an arbitrary voxel sA to S(B). d (sB, S(A)) 
indicates the shortest distance from an arbitrary voxel sB 
to S(A).

	 H (A, B) = max (h (A, B) , h (B, A))� (7)

where h(A,B) and h(B,A) are the one-way Hausdorff dis-
tances between (A, B) and (B, A), respectively, as shown 
in Eqs. (8) and (9).

	
h (A, B) = max

a ∈A

(
min
b∈B

‖a − b‖
}

� (8)

	
h (B, A) = max

b∈B

(
min
a ∈A

‖b − a‖
}

� (9)

Results and analysis
Experimental environment
In this study, we carried out the experiments in a Win-
dows system environment. Table  1 shows the informa-
tion for the hardware environment. Table  2 shows the 
information regarding the model parameters.

Table 1  Experimental environment configuration
Name Configuration
GPU NVIDIA 2080 Ti
CPU I9 13,900 k
MONAI 0.8.1.
Memory 128G
Operating system Windows 11

Table 2  Experimental model parameters
Training parameters Values
Input image size 48*48*48
Batch size 8
Epochs 600
Optimizer Adam
Learning rate 0.001
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Comparison of the performance of hippocampus 
segmentation models established with different deep 
learning networks
In this paper, an improved hippocampal segmentation 
model was proposed by introducing a filling technique 
to 3D-UNet. Figure 5 shows that the trend curves of the 
average loss and mean Dice coefficient of validation vary 
with the number of epochs. As illustrated in Fig.  5 (a) 
and (b), a continuous decrease in loss is observed around 
the 140th epoch. In addition, the loss reaches a minimum 
at this point. Moreover, the Dice coefficient gradually 
increases and reaches a peak around the same epoch.

To assess the effect of the filling technique, we com-
pared the performance of models established using 
the original networks VNet, SegResNet, UNetR and 
3D-UNet and models constructed by introducing the 
filling technique into different original networks in this 
paper. A comparison of the performance of the different 
models is shown in Table 3.

As shown in Table  3, the model established by intro-
ducing the filling technique into 3D-UNet performs 
better than the original 3D-UNet base model. The Dice 
coefficient is 0.7989, and the mIoU is 0.6669, which are 
higher than those of the original 3D-UNet-based seg-
mentation model. The P value of the Dice score was 
5.9605 × 10− 8 < 0.001 according to the Wilcoxon signed-
rank test, indicating a significant improvement after 
introducing the filling technique into the 3D-UNet-based 
model. In addition, the OSR, ASD and HD were 0.0666, 
0.5733 and 5.1235, respectively, which are lower than 
those of the original 3D-UNet-based model. Further-
more, for other segmentation networks, such as VNet, 
SegResNet, and UNetR, we found that the performance 
of the models improved when the filling technique was 
added to the base models. Specifically, the Dice score 
and the mIoU improved compared to those of the origi-
nal network-based models. Other metrics, such as OSR, 
ASD and HD, also displayed reductions. The findings 
demonstrate that the proposed method improved the 

Table 3  Comparison of segmentation performance for different models
Network model Dice score mIoU OSR USR ASD HD
VNet [55] 0.770 0.634 0.097 0.197 1.901 28.963
Filling technique + VNet 0.776 0.642 0.092 0.207 0.640 6.821
SegResNet [56] 0.761 0.618 0.076 0.248 3.112 75.963
Filling technique + SegResNet 0.771 0.630 0.068 0.259 0.600 7.806
UNetR 0.800 0.668 0.104 0.159 1.183 41.672
Filling technique + UNetR 0.802 0.670 0.102 0.160 0.654 5.157
3D-UNet [44] 0.5457 0.3794 0.3618 0.1281 63.3934 169.2131
Filling technique + 3D-UNet 0.7989 0.6669 0.0666 0.2218 0.5733 5.1235
Note Dice score is the Dice score similarity, mIoU is the mean intersection over union, OSR is the oversegmentation ratio, USR is the undersegmentation ratio, ASD is the 
average surface distance, and HD is the Hausdorff distance

Fig. 5  Epoch average loss (a) and mean Dice score (b) of validation

 



Page 8 of 12Yang et al. BMC Medical Imaging          (2024) 24:166 

performance of the hippocampus segmentation model 
and reduced the occurrence of false and missed detec-
tions. The model established with the proposed method 
can improve the precision of hippocampus segmentation 
based on MR images.

In addition, we further analyzed the performance of the 
models trained with images of different sizes. The results 
are shown in Table 4; Fig. 6.

Table 4; Fig. 6 show that as the size of the input image 
was gradually increased from 48 × 48 × 48 to 64 × 64 × 64 
and 96 × 96 × 96, the performance of the segmenta-
tion model improved. When the size of training images 
was set to 48 × 48 × 48, 64 × 64 × 64 and 96 × 96 × 96, 
the Dice scores of the 3D-UNet-based models were 
0.5457 ± 0.0828, 0.7271 ± 0.0510 and 0.8674 ± 0.0257, 
respectively, displaying a gradually increasing trend. In 
addition, the mIoUs were 0.3794 ± 0.0774, 0.5736 ± 0.0615 
and 0.7668 ± 0.0392, respectively. Similarly, the Dice score 
and the mIoU of the proposed model gradually increased 
as the training image size was increased. Furthermore, 
when the image size was set to 48 × 48 × 48 or 64 × 64 × 64, 

the performance of the proposed model was better than 
that of the original segmentation network-based model.

Table  5 shows that when the size of the input image 
was increased to 96 × 96 × 96, the performance of the seg-
mentation model improved. For example, the Dice coef-
ficient of 3D-UNet-based model trained with images of 
size 96 × 96 × 96 is 0.864 ± 0.024, which is 7.5% greater 
than that of model trained with images of size 48 × 48 × 48 
for the same network. In addition, the mIoU was 
improved by 10.91%. For other network-based segmenta-
tion models, we also found that the model performance 
improved when the input image size was increased. A 
comparison of the original network-based models and 
models that combined filling and the original network-
based algorithms indicated that the performance lev-
els were comparable. The improvement in performance 
achieved with large numbers of training images was not 
as obvious as the improvement in performance achieved 
with small numbers of training images. The possible rea-
son is that the large input size mitigates discontinuous 
segmentation.

Table 4  Comparison of performance for models established with the 3D-UNet network and the proposed model trained with images 
of different sizes
size Model Dice score mIOU OSR USR ASD HD
48 Original 0.5457 ± 0.0828 0.3794 ± 0.0774 0.3618 ± 0.0984 0.1281 ± 0.0580 64.3934 ± 13.7736 169.2131 ± 19.7572

Proposed 0.7989 ± 0.0398 0.6669 ± 0.0540 0.0666 ± 0.0351 0.2218 ± 0.0849 0.5733 ± 0.1018 5.1235 ± 1.4397
64 Original 0.7271 ± 0.0510 0.5736 ± 0.0615 0.2023 ± 0.0637 0.1116 ± 0.0378 36.9662 ± 7.9704 176.8759 ± 13.2424

Proposed 0.8371 ± 0.0254 0.7207 ± 0.0370 0.082 ± 0.0372 0.1392 ± 0.0447 0.5319 ± 0.1151 4.3937 ± 1.4050
96 Original 0.8674 ± 0.0257 0.7668 ± 0.0392 0.0621 ± 0.0274 0.1241 ± 0.0445 0.4125 ± 0.0752 3.9032 ± 1.3248

Proposed 0.8674 ± 0.0257 0.7668 ± 0.0392 0.0621 ± 0.0274 0.1241 ± 0.0446 0.4124 ± 0.0750 3.9665 ± 1.3177

Table 5  Comparison of the performances of models established with the original segmentation network and with the fusion of the 
filling technique and the original segmentation network for images of size 96 × 96 × 96
Model Dice score mIOU OSR USR ASD HD
3D-UNet 0.8674 ± 0.0257 0.7668 ± 0.0392 0.0621 ± 0.0274 0.1241 ± 0.0445 0.4125 ± 0.0752 3.9032 ± 1.3248
Filling technique + 3D-UNet 0.8674 ± 0.0257 0.7668 ± 0.0392 0.0621 ± 0.0274 0.1241 ± 0.0446 0.4124 ± 0.0750 3.9665 ± 1.3177
VNet96 0.867 ± 0.026 0.765 ± 0.039 0.061 ± 0.026 0.127 ± 0.043 0.408 ± 0.069 3.803 ± 1.068
Filling technique + VNet96 0.867 ± 0.026 0.765 ± 0.039 0.061 ± 0.026 0.127 ± 0.043 0.408 ± 0.069 3.866 ± 1.065
UNetR 0.860 ± 0.023 0.755 ± 0.034 0.076 ± 0.026 0.112 ± 0.038 0.589 ± 0.202 59.437 ± 40.484
Filling technique + UNetR 0.861 ± 0.023 0.756 ± 0.035 0.075 ± 0.026 0.113 ± 0.038 0.459 ± 0.069 3.834 ± 0.709
SegResNet 0.865 ± 0.025 0.763 ± 0.038 0.069 ± 0.030 0.116 ± 0.040 0.427 ± 0.085 7.297 ± 16.789
Filling technique + SegResNet 0.865 ± 0.025 0.763 ± 0.038 0.069 ± 0.030 0.116 ± 0.040 0.423 ± 0.080 3.935 ± 0.870

Fig. 6  Performance of the 3D-UNet-based model and the proposed model trained with images of different sizes
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Fig. 7  (a) is the ground truth. (b), (c), (d) and (e) show the results of hippocampus segmentation with models established based on VNet, UNetR, 
SegResNet and 3D-UNet, respectively. (f) Results of hippocampus segmentation with the model established by introducing the filling technique into 
3D-UNet
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Figure 7 (a) shows the ground truth for one MR image. 
Figure 7 (b) to (f ) show the results of hippocampus seg-
mentation with models established based on VNet, 
UNet, SegResNet, and 3D-UNet and by introducing the 
filling technique into 3D-UNet with an image size of 
48 × 48 × 48.

The performance of different models was assessed, and 
incorrect segmentation results were obtained with the 
original network-based segmentation models. By intro-
ducing the filling technique into 3D-UNet to establish 
the segmentation model, the accuracy of segmentation 
was improved, and details were enhanced and effectively 
extracted.

Discussion
Brain metastasis is a common complication of systemic 
cancer. Brain radiotherapy is the primary method used to 
prevent and treat intracranial metastatic tumours. How-
ever, radiotherapy can cause damage to the hippocampus, 
leading to cognitive impairment, which severely affects 
patients’ quality of life. Therefore, accurate segmentation 
of the hippocampus from MR images is essential for min-
imizing radiation damage. With the rapid development 
and application of deep learning in the field of image pro-
cessing, convolutional neural network-based segmenta-
tion algorithms, such as UNet and 3D-UNet, have been 
developed for hippocampus segmentation based on MR 
images. One limitation of the 3D-UNet-based model 
is the discontinuous distribution of the target region in 
the segmentation results, leading to poor recognition 
outcomes. Thus, there is a need to improve the accuracy 
of hippocampus segmentation models. In this study, we 
propose an improved model by introducing a filling tech-
nique to 3D-UNet for hippocampus segmentation based 
on high-precision MR images. Four deep learning-based 
models built on the basis of VNet, SegResNet, UNetR 
and 3D-UNet were constructed to facilitate analysis and 
comparison with our improved segmentation model. 
This work has several unique characteristics.

First, a filling technique is introduced into 3D-UNet. 
The results show that the performance of the model 
established by introducing the filling technique into 
3D-UNet is improved. Notably, there was an increase 
of 3.22% for the Dice score and 4.47% for the mIoU. The 
OSR and ASD of the improved model were also better 
than those of the original network-based model.

Second, in the field of hippocampal segmentation, 
some improved models have been reported. For exam-
ple, Tang et al. designed a multichannel, landmark large-
deformation diffeomorphic mapping method to segment 
the hippocampus, which yielded a Dice score of 0.76 [57]. 
Hänsch et al. proposed a CNN-based hippocampal seg-
mentation method that achieved a median Dice score 
of 0.76 [58]. Somasundaram and Genish proposed an 

atlas-based approach to segment the hippocampus from 
MRI results, and it achieved a Dice score of 0.82 [59]. 
Lin et al. proposed a 3D multiscale multiattention UNet 
for hippocampal segmentation, and it achieved a Dice 
coefficient of 0.827 [60]. Although different test datasets 
were applied in these studies, the Dice score in this study 
was found to be competitive with those of the reported 
models.

Third, when the filling technique was used for other 
segmentation networks, such as VNet, SegResNet, and 
UNetR, the performance of the models was all improved. 
The results indicate that introducing the filling technique 
into segmentation networks can improve the perfor-
mance of hippocampus segmentation models.

Finally, when the size of the input images was set 
to 96 × 96 × 96, the performance of the segmentation 
model improved. The Dice coefficient of the 3D-UNet-
based model trained with images of size 96 × 96 × 96 was 
0.864 ± 0.024, which was 7.5% greater than that of the 
model trained with images of size 48 × 48 × 48. In addi-
tion, the mIoU improved by 10.91%. This may be attrib-
uted to the fact that the large input size helped avoid 
discontinuous segmentation issues.

Conclusion
For patients with tumours, brain radiotherapy is often 
a necessary treatment. If the hippocampus is not ade-
quately protected during brain radiotherapy, the patient’s 
cognitive functions may be adversely affected. Therefore, 
when radiotherapy is conducted, it is crucial to precisely 
delineate the hippocampus to avoid irradiation, which 
could reduce the impact on the patient’s cognition. In 
this paper, a hippocampus segmentation algorithm based 
on a deep learning network and MR images was studied. 
The current segmentation networks are limited by low 
accuracy and lengthy processing times. To address these 
issues, we collected MR images from patients who had 
undergone brain 3D-T1 magnetic resonance scans. Then, 
we performed segmentation experiments with the seg-
mentation network. A filling technique was introduced 
into the original segmentation network to establish a hip-
pocampal segmentation model. MR images were used 
to validate the accuracy of our automated hippocampal 
segmentation model. The experimental results demon-
strated that our method can effectively segment the hip-
pocampus and improve the Dice score, making it highly 
valuable for hippocampal segmentation tasks. However, 
due to the limitations of the dataset, further studies based 
on additional brain MRI data are needed.
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