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Continuum topological derivative - a novel ==

application tool for denoising CT and MRI
medical images
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Abstract

Background CT and MRI modalities are important diagnostics tools for exploring the anatomical and tissue proper-
ties, respectively of the human beings. Several advancements like HRCT, FLAIR and Propeller have advantages in diag-
nosing the diseases very accurately, but still have enough space for improvements due to the presence of inherent
and instrument noises. In the case of CT and MRI, the quantum mottle and the Gaussian and Rayleigh noises, respec-
tively are still present in their advanced modalities of imaging. This paper addresses the denoising problem with con-
tinuum topological derivative technique and proved its trustworthiness based on the comparative study with other
traditional filtration methods such as spatial, adaptive, frequency and transformation techniques using measures

like visual inspection and performance metrics.

Methods This research study focuses on identifying a novel method for denoising by testing different filters on HRCT
(High-Resolution Computed Tomography) and MR (Magnetic Resonance) images. The images were acquired

from the Image Art Radiological Scan Centre using the SOMATOM CT and SIGNA Explorer (operating at 1.5 Tesla)
machines. To compare the performance of the proposed CTD (Continuum Topological Derivative) method, various
filters were tested on both HRCT and MR images. The filters tested for comparison were Gaussian (2D convolution
operator), Wiener (deconvolution operator), Laplacian and Laplacian diagonal (2nd order partial differential operator),
Average, Minimum, and Median (ordinary spatial operators), PMAD (Anisotropic diffusion operator), Kuan (statisti-

cal operator), Frost (exponential convolution operator), and HAAR Wavelet (time-frequency operator). The purpose
of the study was to evaluate the effectiveness of the CTD method in removing noise compared to the other filters.
The performance metrics were analyzed to assess the diligence of noise removal achieved by the CTD method. The
primary outcome of the study was the removal of quantum mottle noise in HRCT images, while the secondary out-
come focused on removing Gaussian (foreground) and Rayleigh (background) noise in MR images. The study aimed
to observe the dynamics of noise removal by examining the values of the performance metrics.

In summary, this study aimed to assess the denoising ability of various filters in HRCT and MR images, with the CTD
method being the proposed approach. The study evaluated the performance of each filter using specific metrics
and compared the results to determine the effectiveness of the CTD method in removing noise from the images.

Results Based on the calculated performance metric values, it has been observed that the CTD method successfully
removed quantum mottle noise in HRCT images and Gaussian as well as Rayleigh noise in MRI. This can be evidenced
by the PSNR (Peak Signal-to-Noise Ratio) metric, which consistently exhibited values ranging from 50 to 65 for all
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to obtain finer details for diagnostic purposes.

Gaussian noise

the tested images. Additionally, the CTD method demonstrated remarkably low residual values, typically on the order
of e, which is a distinctive characteristic across all the images. Furthermore, the performance metrics of the CTD
method consistently outperformed those of the other tested methods. Consequently, the results of this study have
significant implications for the quality, structural similarity, and contrast of HRCT and MR images, enabling clinicians

Conclusion Continuum topological derivative algorithm is found to be constructive in removing prominent noises
in both CT and MRIimages and can serve as a potential tool for recognition of anatomical details in case of diseased
and normal ones. The results obtained from this research work are highly inspiring and offer great promise in obtain-
ing accurate diagnostic information for critical cases such as Thoracic Cavity Carina, Brain SPI Globe Lens 4th Ventricle,
Brain-Middle Cerebral Artery, Brain-Middle Cerebral Artery and neoplastic lesions. These findings lay the foundation
for implementing the proposed CTD technique in routine clinical diagnosis.

Keywords Denoising, Continuum topological derivative, HRCT images, MRl images, Quantum mottle, Rayleigh noise,

Introduction

Medical imaging technology have been grown rapidly
from the screen-film to the sophisticated medical images
arising from modern modalities wherein digital imag-
ing have been playing a predominant role, in particular
CT and MRI. Medical image analysis is aided by various
image processing tools like image enhancement, quan-
tification, visualization and computer aided detection
[1, 2]. Objective of image restoration is denoising of the
degraded medical image to remove the noise generated
from non-linearity of sensors, grains, defects in image
capturing, erroneous focus of image, distortion due to
relative motion of object during imaging, etc.

Imaging modalities

In this paper, two imaging modalities such as CT and
MRI and their denoising characteristics using CTD tech-
nique are presented.

Computer Tomography (CT)

Computer Tomography (CT) has been developed in
stages like planar, cross-section and 3-D reconstruction,
etc., and has attained the present stage of High Resolu-
tion Computed Tomography (HRCT) [3-7]. In HRCT,
minimum field of view and optimized resolution of
images are the main highlights of HRCT, which proved
its ability to give clear images to find lung fibrosis [8], and
bronchial tree lesion [9-11]. Further, the image recon-
struction algorithms employed in HRCT are capable of
extending high spatial-frequency resolution.

Since its introduction in 1972, computed tomography
(CT) has evolved significantly with advancements includ-
ing cardiac gating CT, spectral CT, multidetector CT
(MDCT), energy-sensitive photon counting detector CT
(PCD-CT), phase contrast CT, spiral CT, sequential CT,
coronary CT, triple-phase CT, electron beam CT (EBCT),
helical CT, perfusion CT, and high-resolution CT

(HRCT), among others. The utilization of SOMATOM
HRCT in this study offers several advantages. It allows
for low contrast agent dosage, as X-ray tubes can gener-
ate high mA at low kV even with reduced contrast agent
usage. Additionally, it minimizes the use of rare earth
metals and incorporates a high number of detectors,
resulting in energy-efficient HRCT machines. This is par-
ticularly beneficial for thorax and cardiac procedures, as
it facilitates dynamic imaging with excellent temporal
resolution, fast scan results, accurate neuro perfusion
maps, and reduced metal and motion artifacts. HRCT
proves to be highly valuable in the diagnosis of lung dis-
orders and diseases within the thorax region due to its
exceptional accuracy.

Magnetic Resonance Imaging (MRI)

In Magnetic Resonance Imaging (MRI), radio wave is
applied on the human beings (excitation or protons)
under the influence of strong magnetic field (to align the
precision of the proton in a particular direction of the
applied magnetic field) and detecting the relaxation times
like T1 and T2 of the excited protons forms the basis
of the MRI. For image formation in MRI, Radon trans-
form or Fourier Transform was employed [12] to con-
vert the k-space proton relaxation time into pixels. The
MRI advanced modalities like Fluid Attenuated Inversion
Recovery (FLAIR), Diffusion Weighed Imaging (DWI),
and Periodically Rotated Overlapping Parallel Lines with
Enhanced Reconstruction (PROPELLER) have helped to
overcome the MRI sample k-space over a rotatory time
period.

In the case of MRI, the three principal nuclei utilized
to study metabolism, fluids, and cell membrane com-
position with pH levels are carbon (C-13), hydrogen,
and phosphorus (P31), respectively. For this research,
the SIGNA Explore MRI machine was employed, which
offers several advantages. It provides very silent scans (<3
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decibels), enables 3D volumetric brain imaging, allows
for free-breathing scans, facilitates low sedation scans,
distinguishes between calcifications and blood vessels
effectively, and provides good proton density sequences.
These features enhance the overall imaging experience
and contribute to obtaining high-quality results in terms
of noise reduction, precise volumetric imaging, and
accurate differentiation between different tissues and
structures.

Noises in CT and MR images

In this work, two different types of noises originating
from the CT and MRI are attempted using the proposed
CTD algorithm.

Quantum mottle in CT

Quantum mottle is one of the preliminary noises in CT
due to loss in photon reaching the detector, which causes
image density fluctuation, decreased spatial resolution
and poor contrast resolution. This loss in the number of
photons is governed by the Poisson distribution on a
pixel-to-pixel scale. If P7;g is the average number of pho-

tons per pixel then, the standard deviation can be defined

as Pgﬁ)g = P7;g . Now the observed quantum mottle
noise J%T can be equated as

SD
QY =\ Pane Py (1)

In the above Eq. (1), Qf,T is the distributive noise. For
quantum noise removal, Filtered Back Projection (FBP)
and sinogram affirmed iterative reconstruction (SAFIRE)
techniques were used for the estimation of quantum
noise in CT images [13-17]. Wavelet transform and its
different modes and types were experimented for remov-
ing the quantum mottle noise in CT [18-24]. Further,
spatio-temporal filtering [25], Bayes filter [26], multineu-
ral network filter [27], adaptive multineural network filter
[28], stochastic method [29], adaptive statistical iterative
reconstruction-V [30], iterative reconstruction algorithm
[31-36], deep learning reconstruction algorithm [37, 38],
Shearlet transform [39] and neural network [16] are some
of the other methods tried to reduce the quantum mottle
noise in CT images. The denoising process in the wave-
let method involves decomposition of levels, threshold-
ing, and scaling factors. Spatio-temporal filtering, on the
other hand, utilizes ordinary mathematical operations
followed by basic statistical operations. However, these
approaches often struggle to produce crucial diagnostic
information due to the averaging of image contents.

In contrast, the Bayes filter employs probability den-
sity functions for the filtering process, while neural,
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multineural, and adaptive multineural methods are based
on training datasets. Adaptive statistical iterative recon-
struction utilizes statistical and probability distribution
functions to perform the filtering operation. The Shearlet
transform, on the other hand, utilizes sparse representa-
tion to denoise quantum mottle noise.

While these methods often involve averaging existing
information through mathematical operations or require
time-consuming iterative algorithm testing, the proposed
CTD method takes a different approach. It applies a sim-
ple perturbation (cost-function) threshold to identify
noise information from useful pixel information. This
allows for accurate details by discarding the noise infor-
mation as desired. Moreover, the cost-function can be
adjusted to fine-tune the denoising process and obtain
precise results [40-51].

Gaussian and Rayleigh’s noises in MRI
In MRI, k-space variables are used to form the image
using Radon transformation. Noise in k — space is char-
acterised by independent and identically distributed ran-
dom variables called, Gaussian Random variables, which
are complex in nature. In MRI, feature extraction and
classification are affected by these noises and are addi-
tive in nature. Various researchers have tried to reduce
the noises in MRI using different filtering techniques
[52-55].
The Gaussian noise present in MRI image [56] can be
expressed as
Nyt = \/ DiNatks + Niigr ()
In the above Eq. (2), NS represents the Gauss-
ian noise of the MRI image, NE}U and N 15112?1 are inde-
pendent zero-means. Wavelet filters [57-61], histogram
equalization [62, 63], median filter [64—67] total varia-
tion method [55], adaptive wiener filter [68], multiscale
enhancement along with Susan edge detector [69], Bayes-
ian method [70], non-local means filter [71, 72], hybrid
adaptive algorithm [66], anisotropic diffusion filter [40,
41, 73], bilateral filter [74], convolution neural network
[75] and non-local averaging [42] are some of the tech-
niques employed for denoising the Gaussian noise in
MRI images. When it comes to Gaussian noise present in
MR images, different denoising methods exhibit varying
strengths. Histogram equalization primarily enhances
contrast information, while the total variation method,
multiscale enhancement, and bilateral filters excel in pre-
serving sharp edges. The Bayesian approach can remove
additive white noise in MRI, but its effectiveness may be
limited. Non-Local Means (NLM) and hybrid adaptive
algorithms are often successful in reducing random noise
in MRI. On the other hand, the anisotropic diffusion
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filter and non-local averaging methods can only moder-
ately reduce Gaussian noise in MR images. It is impor-
tant to note that no single method is capable of reducing
Gaussian noise to the desired level perfectly.

Therefore, the proposed CTD method was imple-
mented to address noise reduction in a constructive
manner, considering the limitations of other methods.
By employing a tailored approach, the CTD method aims
to effectively reduce noise while preserving important
image details [65, 76-81].

Rayleigh noise concentrates on the magnitude of the
image and lies in the background of the MRI image. This
background noise removal brings down the lossless com-
pression ratio, which improve the efficiency of image
transfer through internet for telemedicine purposes [43].
Rayleigh noise depends on the noise density in the image
pixels and is modelled on the Rayleigh curve represented
by
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In Eq. (3), N{fy <I§,,) gives the noise density, g represents
the grey level intensity, gy represents the minimum grey
level intensity and g represents the maximum grey level
intensity.

Haar wavelet [43], complex diffusion prior [44], par-
tial differential equation [45, 82, 83], Villullas-Martin’s
filter [46], anisotropic diffusion [47], adaptive filters
[48], discrete complex wavelet [49], Taylor-Krill Herd-
based Support Vector Machine [50], Bayes classifier
[51], conventional approach [84], maximum-likelihood
[85], orthogonal matching pursuit sparsity method [86],
genetic programming [87], Markov random fields based
maximum a posteriori method [88], non-linear regres-
sion models [89], sum of squares reconstruction [90],
Bayesian [91], variational model [92], non-local mean fil-
ter [72], multi-dilated block network [76] and Nakagami
distribution [77] were deployed to remove the Rayleigh
noise in MRI images. While these methods were able to
reduce Rayleigh noise to a moderate level, the Villullas-
Martin’s filter fell short in preserving contour details as
expected. The maximum-likelihood method focused
solely on removing thermal noise in MR, and the orthog-
onal matching pursuit sparsity method only provided a
solution for sparse representation.

In order to address the limitations and drawbacks of
these existing methods for removing Rayleigh noise in
MR, the proposed CTD method was implemented. The
CTD method aims to overcome these limitations by
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offering improved noise reduction while preserving con-
tour details to the desired level [93—-102].

Methodology
Denoising filters have wide applications in removing
the noises present in most of the imaging modalities.
They can be categorized as spatial [65, 78—81, 103—105],
adaptive [106, 107] and transformation [108] filters. Spa-
tial filters are classified into linear and non-linear types
concentrating on neighbourhood operations. Adaptive
filters operate on statistical measures like mean and vari-
ance, while the transformation filters depend on tech-
niques like Fourier, Curvelet, Contourlet and Wavelet
transforms. Filters along with their functions are sum-
marized in Table 1. These noise filters were tested for
noise removal in CT and MR images and their perfor-
mance are summarized in Table 1. These three different
categories of traditional filter have been chosen for this
work for estimating the performance of the proposed
CTD filter by comparing their denoising characteristics
using various performance measures. For comparing the
performance of the filters, eighteen performance met-
rics viz., Average Difference (AD), Mean Square Error
(MSE), Root Mean Square Error (RMSE), Maximum Dif-
ference (MD), Normalized Absolute Error (NAE) and
Normalized Mean Square Error (NMSE), Peak Signal to
Noise Ratio (PSNR), Structural Content (SC), Correlation
Coefficient (CC), Normalized Cross Correlation (NCC),
Image Quality Index (IQI) and Structural Similarity
Index Map (SSIM), Contrast to Noise Ratio (CNR), Noise
Index (NI), Average Signal to Noise Ratio (ASNR), Image
Variance (IV), Noise Standard Deviation (NSD), and
Equivalent Number of Looks (ENL) were selected and
their mathematical forms, definition and range of values
are summarized in Table 2 [109].

The proposed CTD filter and its mathematical defini-
tion are described in the following section.

Continuum Topological Derivative (CTD)

The Topological Derivative (TD) concept was originally
conceived from structural mechanics to solve shape opti-
mization and topology optimization problems. Later on,
it was utilized to solve image processing problems. In this
research work, Continuum Topological Derivative (CTD)
was proposed for solving discontinuities in the domain,
boundaries and improving the shape sensitivity of CT
and MR images [110].

Further, the CTD can be effective in solving the
changes occurred during processing of images. All these
features of the CTD impressed us to choose for denoising
the CT and MR images. The main advantage of CTD lies
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Table 1 List of de-noising filters used
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Name Type Mathematical function Resultant Image Noise Removal
Gaussian Frequency Cut off Smooth Average
Wiener Frequency Low pass Smooth Better
Laplacian Linear Derivative Edge detection Average
Laplacian Diagonal Linear Derivative Sharp Poor
Average Spatial (Low pass) Average Blurred Edges Average
Minimum Non-linear Minimum Smooth Poor
Median Non-linear Medium Smooth Good
PMAD Diffusion Derivative Smooth Average
Kuan Adaptive Statistical Smooth Good

Frost Adaptive Statistical Smooth Good
HAAR Wavelet Frequency Orthogonal Smooth Very Good
cTD Isotropic Conductivity Dif- Cost High quality & contrast Superlative

fusion

denoised image

that even after the object got distorted by an external fac-
tor, it is still possible to study the properties of the object
with respect to the original one [111]. This concept fur-
ther influences the proposed denoising studies carried
out in CT and MR images [112]. The topological deriva-
tive can be expressed as,

V() — Q)
10 @

where W(S2;) is the cost function of the perturbed
domain, W (€2) is the cost function of the original domain,
f(¢) is the monotone function, D7 (%) is the topological
derivative for a perturbation factor e. Further, TD with
advanced techniques like wavelet transform, Discrete Fil-
ter Bank (DFB), and Contourlet Transform (CLT) have
been experimented to solve the perturbed domain issues
of extracting contours, boundaries and edges in biomedi-
cal images [93]. The TD, CLT and interpolation methods
help to resolve the edges in the organs of the biomedical
images [94]. The CLT with Pyramidal Directional Filter
Bank (PDEFB) acts as a tool for flexibility of decomposition
at the sub-band level [95]. The TD can produce enhanced
efficiency in the segmentation of medical images with the
introduction of diffusion concept [96]. Moreover, the Top-
ological derivative could be applied for getting resolved
images in Electrical Impedance Tomography (EIT) [97].
The TD with functional analysis techniques can provide
emphasized results in delineation attributes of the medi-
cal images [98]. In the case of Continuum Topological
Derivative (CTD), the features like shape functional,
asymptotic expansion, sensitivity, and boundary and
edge functional play a pivotal role in CTD while arriving

Dr@) = lim,

at denoising results of CT and MRI medical images. The
fundamental expression for CTD is given by,

W[Q,] — [Q] = £.DE (%) (5)

The Eq. (5) lays the foundation stone for CTD
expressed in terms of cost function of original and per-
turbed domains along with monotonic function. Treating
the state equation as the domain, which represents a spe-
cific region in the human body or an specific organ in the
human body, the shape of it will be represented as W[<2],
where W is the state function and the Q is the domain that
is characteristic of the state equation. Here, W[2] handles
the original domain in an undisturbed state. Introduction
of a perturbation into this domain will induce topologi-
cal variation in the state of the domain. In such a case,
W[Q] is defined by the approximate solution. Obtain-
ing approximate solution to linear system in the case of
sparse system provides a perceptual way to solve prob-
lems [99]. Further, approximate solutions are of great use
when handling noisy data [100]. As a result, the approxi-
mate solutions for the sparse systems which handle rank
of the matrix provide a neat frame work for tomographic
study on a quantum scale [101].

Shape sensitivity, parameterized domain, edge detec-
tion technique, elliptical boundary variational problems,
adjoint method, mapping procedure, constraints on the
domain, and gradient method aids in boundary studies
along with numerical results are some of the vital applica-
tions of CTD [102, 113-115]. Study of elliptical boundary
problems is important in finding the fundamental solu-
tions, positive solutions and non-linear boundary value
problem [116-122]. Treating mesh as equivalent to the
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Table 2 Performance metrics of the denoising filters

Metrics  Mathematical Expression Definition Range
AD G &R . F o Mean difference between the original AD is minimum for high quality denoised
AD = on /:Z]jg [In€i.J) = 10 (0.0)] and the denoised image images and vice versa
AD =0 to 255
MSE L oa - fo 2 Average difference between the original MSE is minimum for high quality denoised
MSE = mn Z > (/m(/rj) - /m(lrf)) and the denoised image images and vice versa
==t MSE =0 to 255
RMSE m n 2 Square root of the difference RMSE is minimum for high quality denoised
RMSE = # > (/m(/',j) - /,Fn(i,j)) between the square of noised image and the fil-  images and vice versa
i=1j=1 tered image divided by the size of the original
image
PSNR " - 1)2 Quantitative measurement of distortion PSNR is maximum for high quality denoised
PSNR = 101l0g; TMSE of the signal and a qualitative measurement images and vice versa
o for comparison of noise
=10log;g ——
910 MSE
MD MD = max (|/m (,)) — /fn(/‘/j)D Maximum error between the original image MD is minimum for high quality denoised
and filtered image images and vice versa
NAE i 2”: G~ 6] | Numerical variance of the filtered image w.rt NAE is minimum for high quality denoised
NAE = == " the original image images and vice versa
- m n
L2 lm]] NAE=0~1
==
NMSE GRS N_iF ]2 Measurement of the variation of MSE NMSE is minimum for high quality denoised
23 =1 )] X i
i=1j=1
NMSE = == — images and vice versa
> [Im(/J)]
i=1j=1
SC i z”: (D) Quialitative representation in terms of the cor- C=1=
= relation function and quantitative measurement (i, ) = /5, (i.j)
i z": [E, 0T for comparison of similarity between the original
i=1j=1 image and filtered image
m n - . . o e . ~
CcC ; g [[/m(u) m(l/)}[ ij)— (,/)H !nter rglat\onshlp between orlg\ngl and denoised CC = =2 9 1 1:>
C = i=1j=1 image in terms of edge preservation
= oo m IR () = I G.))
\/; % [m(@-TnGp)] \/2 % [Tt Im
i=1j= i=1j=
m n ) o - 1
NCC ; ; T G- i) E;tst%\lfehzz?sge;ofS|m|lar|ty between original NCC = —1 ~ 1
NCC = = 9
Z; Z; [Im(ip)]
=)=
1Ql 4o ¢ Il Deformation in terms of loss of correlation, mean /Q/ = —1 ~ 1
(o)1 el — : ) ) ) .
T 2F distortion and variance distortion
(62/,”#»02/; ) (/m+/m )
m
SSIM (27 T o )(20/ F +CZ) Evaluates the degradation of the image and is SSIM = O ~1
SSIM = (/7 e )( 5 1’”2 e ) considered as comparison metric for structure, SSIM = :>
T\ m T e contrast as well as luminance between the original  m (i.)) = I,(7.j)
image and the filtered image
CNR ",m ,7;1‘ Quialitative metric for identifying differences CNR is maximum for high quality denoised
CNR = ———— between two ROI images and vice versa
Jor,+o}
NI N = % An inherent property of imaging instrument NI'is minimum for high quality denoised
T and measurement of noise removal images and vice versa
ASNR ASNR — 7, Ratio of the mean value of the standard devia- ASNR is maximum for high quality denoised
- ﬁ tion and variation of noise to the mean value images and vice versa
\% ;o o Quantitative metric for the description of factors IV is minimum for high quality denoised images
= mn > [ . — /m(/r])] present in noise and is independent of intensity  and vice versa
i=1j=1
NSD m n 2 Quantitative metric that describes noise reduc- ~ NSD is minimum for high quality denoised
NSD = % E Z [/,En i) — I (/,j)] tion in images and narrates the constituents images and vice versa
i=1j=1 of noise present in the image
ENL (I (,/)) Quantitative metric for the estimation of noise ENL is maximum for high quality denoised
ENL= NSD? present in images and a pivotal tool used images and vice versa

for the statistical modelling of images
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arrangement of pixels in the medical image, one can evalu-
ate the difference approximation for the elliptical boundary
value problems [123]. Also, the elliptical boundary problem
W [] is based on the solution of the state function ¥, i.e.,
the shape functional. With this background the CTD can
also be expressed as
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beam length, and 400 mm in beam width (or Window
Width). The images were acquired in 0° angle tilt or gan-
try tilt and 30.3 cm Display Field of View (DFOV). The
operating power inputs of HRCT are 120 kV and 178 mA.
The kernel used for soft tissue reconstruction is Br40f/3.
The resolution of the images acquired is 480 x 340 (width

Dy (56) = Asymptotic analysis of solutions to elliptic Boundary value problems in singularlyperturbed domain

+ Asymptotic analysis of Shape functional.

The CTD was used to solve the denoising problems in
CT and MR images and the algorithm for the same was
tested for different images in the clinical examples as
illustrated in the following sections.

Specification of tools

The proposed CTD and other tranditional denoising
algorithms were tested in various CT and MR images,
The image specification, hardware and the software
details are given below. The CT and MR images in the
Digital imaging and communication system (DICOM)
format, which enables user-friendly interaction between
Picture Archiving and Communication System (PACS)
and Radiology Information Systems (RIS), were acquired
from the scan facility available at Image Art, Vijaya
Health Centre, Vadapalani, Chennai. The HRCT images
were taken from SOMATOM dual-source CT, which is
the fastest CT scan machine in the present scenario. All
the HRCT scans were taken at 1.00 mm thick, 40 mm in

Gaussian
Fig. 1 Original and denoised Images of Carina

Laplacian

x height) with a bit depth of 32 bits. Brain HRCT images
are also collected from the same scan centre in spiral
(SPI) mode. The brain MR images were acquired from
the GE Healthcare SIGNA™ Explorer machine operating
at 1.5 Tesla magnetic fields. We have collected and tested
more than 300 HRCT and MR images for studying the
denoising effect of the proposed algorithm. Of which, the
results of five HRCT and MR images are given here for
comparison. The algorithms were tested on an HP laptop
with AMD Ryzen5 3500U processor, Radeon Vega mobile
Gfx graphics card, 8 GB RAM, and MATLAB 2018a on a
64-bit Windows 10 system.

Clinical examples

The proposed CTD and traditional filters were tested on
a HRCT image (Thoracic Cavity Carina, Head CT (Globe
Lens 4th Ventricle), and nine MR images (six Middle Cer-
ebral Artery territory of DWI, FLAIR T2, and PROP T2),
and three neoplastic lesions (two PROP and FLAIR T1).

Laplacian Sharp
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Fig. 2 Histogram plots of the quality metrics of Carina
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Quality metrics were computed using denoised and origi-
nal images to compare the efficiency of filters in handling
quantum mottle and Gaussian/Rayleigh noises in CT and
MR images respectively. A radiographic expert assessed
image quality through visual inspection. Clinical example
images, estimated quality metrics, and histogram plots
are presented in Figs. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, and histogram
plots in Figs. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 respectively.

Clinical example 1: HRCT thoracic cavity carina

The study focuses on the role of Carina in chest CT imaging
for detecting tracheobronchial carcinoid tumors [124]. Quan-
tum mottle noise in CT images often obscures the carina
morphology due to vascular matter in the lungs. The pro-
posed denoising technique (CTD) effectively addresses this
issue, producing clear and high-resolution images. Inferences
from HRCT carina filtered images, metrics, and histogram
plots (Fig. 1, Table 3 and Fig. 2) are summarized as follows:

a) CTD exhibited significantly lower values in AD,
MSE, RMSE, MD, NAE, and NMSE compared to
traditional filters, showcasing exceptional denoising
capability, particularly in reducing quantum mot-
tle noise. Radiographers noted the CTD denoised
image’s ability to delineate the carina point with
complete opacity on both sides, aiding surgeons and
anesthesiologists in accurate findings for post-pneu-
monectomy-like syndrome severity.

HAAR Wavelet Minimum

Gaussian
Fig. 3 Original and denoised Images of Globe Lens 4th Ventricle

Laplacian
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b) SC, CC, NCC, IQI and SSIM returned unity val-
ues for CTD, retaining all structural information in
carina HRCT, unlike other filters. The cartilaginous
ridge shape of the carina and the surrounding lungs
cavity were exceptionally retained in the denoised
CTD image.

c) PSNR recorded a 30% higher value for CTD, attest-
ing to its ability to produce a high-quality, quantum
mottle-free carina image. CNR, NI, ASNR, IV, NSD,
and ENL scores were notable for CTD, highlighting
its fine contrast, noise-free, and radiologically pre-
served carina image.

d) Ultimately, the CTD denoised image accurately
retained radiological features of the carina while
eliminating quantum mottle noise, as confirmed by
visual inspection from a radiological expert.

Clinical example 2: Ocular globe-lens 4th ventricle head CT
The cerebral ventricular system, a protective unit filled
with cerebrospinal fluid, indicates brain health. Deform-
ities in this system signal potential brain diseases [125].
The system comprises four ventricles, with the fourth
ventricle located between the cerebellum and pons/
medulla. In CT imaging, an irregularly shaped fourth
ventricle may indicate meningioma tumours [126,
127]. The ocular globe’s structure is crucial in cases like
orbital trauma and retinoblastoma [128, 129]. A CTD
denoised image impressed a radiographer, showcasing

Average

Laplacian Sharp
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HAAR Wavelet

Gaussian
Fig. 5 Original and denoised Images of MCA DWI (B 800) MRI

improved visualization of the pyramidal structure of
the fourth ventricle and enhanced details of the ocular
globe, including its fibrous, vascular, and neural lay-
ers. The radiologist anticipates accurate detection of
deformities and diseases by addressing hidden quan-
tum mottle noise. The study focuses on CT images of
the fourth ventricle, globe, and lens. Denoised images,
including CTD and traditional filters, are presented
in Fig. 3. The structurally preserved image will greatly
assist ophthalmic surgeons and neuro-physicians in
clinical treatment decisions, whether through surgery
or non-invasive methods.

Observations from brain HRCT Globe Lens 4th Ven-
tricle quality metrics and histogram plots (Table 4 and
Fig. 4):

a. CTD filter yielded minimum values in AD, MSE,
RMSE, MD, NAE, and NMSE, generating a high-
quality denoised image useful for precise location
identification and deformation needs in the globe,
lens, and 4th ventricle, due to the selection efficiency
of appropriate cost-function and subsequent compu-
tation of topological derivative.

b. Quality metrics SC, CC, NCC, IQI, and SSIM, indi-
cators of shape and structure similarity, reached unity
for CTD, highlighting its merit in retaining original

Laplacian
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Average

Laplacian Sharp

shape and preserving structural details of aperture
nature, unlike other traditional filters.

c. PSNR recorded a 50% higher value for CTD, demon-
strating superior denoising ability over other filters,
except Haar wavelet.

d. CNR, NI, ASNR, IV, NSD, and ENL values for CTD-
filtered image surpassed those of other filters, ensur-
ing fine contrast, noise-free, and radiologically pre-
served images for Globe-Lens 4th Ventricle.

Clinical example 3: MRI brain-middle cerebral artery
territory DWI (B 800)

The Middle Cerebral Artery (MCA), the largest termi-
nal branch of the internal carotid artery, supplies blood
to the brain, traversing through distinct segments (M1
to M4). CT images reveal MCA segment discontinu-
ity, while MR images disclose Circle of Willis anoma-
lies. Radiologically, Moyamoya syndrome, aneurysm
formation, intracranial hemorrhage, and vascular vari-
ations differentiate rare rete MCA anomalies. Gaussian
and Rayleigh noises in images may lead to misdiagno-
sis [130]. Besides, void signals in T2-MRI wittnessed in
twig like MCA (T-MCA) for diagnoising hemodynmic
delay, intracranial aneursym, internal carotid artery and
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trandsural anastomosis conditions in MCA is very diffi-
cult due to the presence of Gaussian and Raleigh’s noises
[131-137].

T-MCA anomalies are challenging due to void sig-
nals in T2-MRI, making Diffusion-weighted imaging
(DWI) and Fluid-attenuated inversion recovery (FLAIR)
essential. PROPELLER MRI reduces motion artifacts
[138-140]. Despite advanced MRI modes, Gaussian and
Rayleigh noises persist, necessitating denoising for accu-
rate MCA diagnosis.

For Brain-MCA territory DWI (B 800) MRI, CTD and
traditional filters were applied, displaying outputs in Fig. 5.
Quality metrics and histogram plots are in Table 5 and
Fig. 6. Radiologists noted CTD’s distinguishable features in
MCA territory, aiding easy detection of irregularities. Shape
derivatives from CTD support neurologists in clinically and
surgically assessing MCA abnormalities and severity.

Clinical example 4: MRI brain—middle cerebral artery
territory FLAIRT2

Similarly, the Brain-MCA territory FLAIR T2 MR ter-
ritory image underwent testing with both the proposed
and traditional algorithms, as illustrated in Fig. 7. A sum-
mary of the quality metrics computed for all denoising
algorithms is provided in Table 6, with their correspond-
ing histogram plots displayed in Fig. 8. These results con-
sistently demonstrate the effectiveness of the proposed
CTD techniques in denoising.

Page 24 of 45

Clinical example 5: MRI brain—middle cerebral artery
territory PROP T2

Similarly, the Brain-MCA territory PROP T2 MR ter-
ritory image underwent testing with various denoising
algorithms, and the outcomes are illustrated in Fig. 9.
Corresponding performance metrics and their histogram
plots are detailed in Table 7 and Fig. 10, respectively.
Altogether, following conclusions have been drawn for
all of MCA territory MR images i.e., DWI (B 800), FLAIR
T2 and PROP T2:

a. The CTD method, indicated by low scores in AD,
MSE, RMSE, MD, NAE, and NMSE, strategically
tuned the cost-function, effectively removing Gauss-
ian and Rayleigh noises from Brain MCA territory
DWT (B 800), FLAIR T2, and PROP T2 MR images.
This denoising capability of the proposed CTD
technique produces high-quality images crucial for
assessing subtle changes in the MCA territory, quan-
tifying injury severity accurately.

b. SC, CC, NCC, IQI, and SSIM, critical factors for simi-
larity indices, consistently reached unity for CTD,
indicating full retention of MCA territory after denois-
ing. Deviations from the original MCA territory serve
as strong indicators for acute stroke, accurately iden-
tified in CTD-filtered images, aiding physicians in
detecting metastatic brain conditions in MCA regions.

c. PSNR returned noteworthy values for CTD, justify-
ing its effectiveness in removing Gaussian and Ray-

HAAR Wavelet Minimum

Median

Wiener Average

Gaussian
Fig. 7 Original and Denoised images of MRI MCA FLAIR T2
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Fig.9 Original and denoised images of MRI MCA PROP T2

leigh noise in MCA territory DWI (B 800), FLAIR T2
and PROP T2 MR images.

d. CNR, NI, ASNR, IV, NSD, and ENL metrics recorded
noteworthy values for CTD, resulting in improved
contrast, noise-free, and distinctly preserved territo-
rial regions of MCA territory DWI (B 800), FLAIR
T2, and PROP T2 MR images.

In all clinical examples (1-5), the relative residual value
is extremely low, indicating that the CTD algorithm con-
verges with a minimum number of iterations, generat-
ing negligible errors, and ensuring very good quality in
denoised images. Further analysis of the CTD algorithm
for diseased regions of MCA territory will be presented
in clinical examples 6, 7, and 8 given below.

Clinical Examples 6, 7 and 8: Infarct and Demyelination
This section presents a detailed analysis of brain regions
using CTD and other denoising filters (Figs. 11, 13, and
15). Performance metrics from these filters are reported
in Tables 8, 9, and 10, with their distribution visualized
in histogram plots (Figs. 12, 14, and 16). The results offer
insights into the filters’ effectiveness in improving image
quality and detecting brain diseased region.
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Figure 11 presents MR images obtained through
DWTI, known for its ability to provide excellent lesion
contrast and differentiate strokes from conditions
mimicking strokes. DWI identifies diffusion restric-
tion, indicating acute infarct presence, and effectively
visualizes cerebral infarction volume. It consistently
delivers excellent results from early lesion stages to full
infarction, aiding prognosis in stroke patients’ follow-
up scans.

DWT also detects vasogenic edema and acute lesions
in chronic ischemic cases, offering insights into brain
physiology. Notably, the CTD-derived acute infarct
DWI image displayed exceptional quality, similar-
ity, and noise metrics (Table 8, Fig. 12), emphasiz-
ing enhanced contrast and diffusion aspects. Thus,
neuro physicians and radiologists can rely on CTD-
enhanced images for accurate stroke detection and
brain damage assessment.

The denoised images illustrate MR images obtained
using the DWI technique, with various applied filters
(Fig. 13). While DWT is commonly used for infarct cases,
it plays a crucial role in identifying Ischemic Demyeli-
nation cases, distinguishing between vascular ischemia
(restricted diffusion) and demyelination (facilitated dif-
fusion). This sequence proves advantageous in charac-
terizing tissue and histopathology in cases of ischemic
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demyelination disease. In this rare case, CTD dem-
onstrated its uniqueness through performance values
(Table 9) and histogram plots (Fig. 14). CTD-derived
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images excel in producing enhanced representations of
demyelination diseases, showing a high degree of struc-
tural similarity (unit values for SC, CC, NCC, IQI, and
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Fig. 11 Examination of Acute Infarct images obtained by application of various denoising filters

SSIM). This characteristic is critical when analyzing
images with restricted diffusion.

Figure 15 displays MR images obtained using the
DWTI technique, processed with various denoising fil-
ters. DWI identifies ischemic changes in brain tissue,
represented as hyperintensity in MR DWI images. Cer-
ebral Small Vessel Disease (SVD), characterized by nil
restricted diffusion, is an indicator for cerebral infarct.
The CTD cerebral infarct image in Fig. 15 stands out for
exceptional denoising quality, enhancing hyperinten-
sity regions significantly, as indicated by the outstand-
ing PSNR value. Minimal values in both quality and
noise metrics (Table 10) and corresponding histogram
plots (Fig. 16) affirm the effectiveness of this denoising
approach. Additionally, the hyperintensity signals in
this CTD image exhibit no noticeable distortion, under-
scoring the reliability and accuracy of the denoising
process employed in generating the enhanced image.

Inferences from filtered images, metrics, and his-
togram plots for infarct and Ischemic Demyelination
cases are outlined below:

Acute and Cerebral Infarct DWTI:
a AD, MSE, RMSE, MD, NAE, and NMSE demon-

strate remarkably low values compared to other
filters, indicating effective denoising of Gauss-

ian and Rayleigh noises. The CTD technique
enhances hyperintense areas, delivering high-
quality images for accurate brain infarct identifi-
cation, showcasing superior denoising capabili-
ties.

SC, CC, NCC, and SSIM vyield unity for CTD,
with IQI slightly below unity, a unique charac-
teristic. Other filters show metric values either
lower or higher than unity, indicating that CTD
retains similarity in infarct brain MRI images
with high accuracy after denoising.

The PSNR value for CTD surpasses other filters,
showcasing its effectiveness in removing both
foreground and background noise from diseased
brain images.

CNR, NI, ASNR, IV, NSD, and ENL metrics
exhibit favorable values for CTD, ensuring
enhanced contrast, noise-free results, and well-
preserved radiological features in brain infarct
MRI images.

Ischemic Demyelination Disease:

a AD, MSE, RMSE, MD, NAE, and NMSE show

notably low values compared to other filters,
indicating effective denoising of Gaussian and
Rayleigh noises in the brain affected by Ischemic
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Demyelination Disease. The CTD-derived MRI
image differentiates hypo and hyper intense areas
excellently, providing crucial information about
demyelination and ischemic changes in the dis-
eased brain.

b SC, CC, NCC, IQI, and SSIM all achieve unity
for the CTD filter, while other filters show val-
ues greater than or less than unity. The CTD
denoised image returns a highly structured image
with zero error, enabling easy observation of sub-
tle shifts in ischemic demyelination within the
brain tissue.

¢ The PSNR returns an excellent value for the CTD
filter, affirming its ability to address both fore-
ground and background noise in diseased brain
tissues effectively.

d The CNR, NI, ASNR, IV, NSD, and ENL metrics
demonstrate outstanding values for the CTD-
derived image, leading to improved contrast and
radiologically preserved features in MR images of
diseased brain tissues.

In conclusion, the CTD-filtered ischemic demyelina-
tion Brain MR image yields exceptional results, shedding
further light on pathogenesis and enabling further evalu-
ation of white matter lesions. This is evident through
visual inspection and the estimated performance metrics.

Laplacian
Fig. 13 Denoised images of the brain MRI of Ischemic Demyelination disease for various filters and the proposed CTD filter
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Clinical Examples 9, 10 and 11: Neoplastic lesions
To comprehensively evaluate the efficacy of CTD and
denoising filters, our study expands to encompass cases
of cerebral neoplasms. The brain exhibits various neo-
plastic lesions, including gliomas, glioblastoma, choroid
plexus tumors, anaplastic astrocytoma, fibrillary astrocy-
toma, meningioma, cerebellar medulloblastoma, oligo-
dendroglioma, craniopharyngioma, pituitary adenomas,
brain metastases, and CNS lymphomas [141]. Accu-
rate detection and differentiation of neoplastic lesions,
crucial in neuroscience research, also include Neurofi-
bromatosis type 1 [142] and multiple ring-enhancing
lesions [143]. Dynamic contrast-enhanced MRI effec-
tively distinguishes neoplastic lesions [144]. Gliomas,
predominantly found in the central nervous system, often
necessitate biopsy for verification, with altered metabolic
activity and SSADH expression significantly influencing
their growth [145, 146]. Note that gliomas are considered
malignant [147].

4th ventricular tumors, strongly associated with spine
metastases (SM), play a vital role in cerebral neoplasm
identification [148]. Leptomeningeal disease (LMD)
is common in cerebellar medulloblastomas, a specific
neoplasm [149]. Rare cerebral neoplasms like Rosette-
forming glioneuronal tumors (RGNT) occur in the 4th
ventricle [150]. Treatment options for RGNT include
gamma knife radiosurgery [151], azacytidine [152, 153],
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Original Image CTD Derived

staged open cranial surgery [154], and tumor resection
[155, 156], effectively managing and treating cerebral
neoplasms.

Glioma lesions pose challenges for clinical diagno-
sis and imaging interpretation due to their neoplastic
nature. This study highlights the use of MRI PROP mode
for identifying neoplastic glioma lesions, chosen for its
exceptional imaging capabilities crucial for tackling such
lesions. Distinguishing between neoplasms and other
conditions in MRI can be daunting, but PROP MRI, with
glioma lesions manifesting as abnormal or high-intensity
signals, aids in differentiation and contributes signifi-
cantly to histopathological studies.

The CTD-derived image (Fig. 17) proves highly ben-
eficial in glioma analysis, offering high denoising value
while genuinely preserving the original image signal
and enhancing its quality. Quality and similarity metrics
scores for the CTD image are impressive, as seen in met-
ric values (Table 11) and corresponding histogram plots
(Fig. 18). The nature and structural preservation in CTD
images remain consistently striking for all glioma grades.

The combination of MRI PROP mode and CTD-
derived images demonstrates a promising approach for
accurate glioma diagnosis, supporting improved patient
care and outcomes. CTD’s crystal-clear imaging and
denoising advantages provide valuable support to clini-
cians and radiologists in detecting and characterizing
glioma neoplastic lesions effectively.

Kuan
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Fig. 15 Denoised output images of cerebral infarct disease of different types of filters and the CTD filter

Once again, we've selected an MR PROPELLER image,
emphasizing PROP mode’s exceptional ability to dis-
play high-quality images crucial for neoplastic cases.
The focus is on creating a clear MRI environment for
comparing different neoplastic lesion cases, particu-
larly challenging cases like 4th ventricular tumors. These
intraventricular tumors, situated within the ventricular
cavity, pose a difficulty in accurate detection.

This study presents two distinct neoplastic tumor cases
in PROP mode (Figs. 17 and 19). Applying the CTD algo-
rithm to these already clear images returns unparalleled
results, showcasing its exceptional performance across
various diseased cases. Despite a slight decrease in PSNR
compared to glioma lesions, this is valuable as radiologi-
cal signatures can be weak for 4th ventricular neoplastic
tumors.

Comparatively, quality and similarity metrics in CTD
images closely align with glioma neoplastic lesions, evi-
dent in quality metric values (Table 12) and histogram
plots (Fig. 20). Like in other cases, the CTD image pre-
serves structural similarity, consistently producing
enhanced radiological images.

In summary, the combination of MR PROPELLER
and the CTD algorithm proves a powerful and reli-
able approach for neoplastic lesion imaging. Providing
high-quality and detailed images, this combination aids
radiologists in effectively detecting and analyzing neo-
plastic lesions, especially challenging 4th ventricular
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Fig. 17 Denoised images of glioma neoplastic lesion as observed in the upper left corner

tumors within the ventricular cavity. The CTD algo-
rithm’s exceptional performance solidifies its position
as a valuable tool for enhancing radiological images
across various diseased conditions.

In this study, FLAIR MRI is chosen for its ability to
delineate gliomas, offering excellent multiplanar struc-
tural information and enhanced tissue characterization.
A comparison between FLAIR and PROP mode reveals
distinct strengths in detecting neoplastic lesions.
FLAIR MRI excels in providing valuable structural
information for gliomas, contributing to their diagnosis
and prognosis.

Practical analysis highlights clear differences in
CTD-derived images from PROP (Fig. 17) and FLAIR
(Fig. 21) sequences for gliomas. Notably, PROP displays
higher signal intensity features, while FLAIR exhib-
its diminished features. Despite variations, the CTD-
derived FLAIR image demonstrates commendable
denoising, ensuring a distortion-free image, supported
by the PSNR value.

Structural similarity (Table 13) and noise metrics his-
togram plots (Fig. 22), yield good values, though not as
high as PROP, affirming radiologically well-preserved
and error-free characteristics in the CTD FLAIR image.
Both FLAIR and PROP MRI sequences prove valu-
able for glioma detection, with the CTD FLAIR image

remaining a robust resource for accurate evaluation
and analysis despite slight metric differences between
the two sequences.

Based on the analysis of neoplastic lesion cases, the
following conclusions were drawn:

a. The CTD algorithm effectively removed Gaussian
and Rayleigh noises, resulting in superior denoised
images crucial for identifying cerebral edema in neo-
plastic brain lesions.

b. Metrics such as SC, CC, NCC, and SSIM consistently
showed a unity value for the CTD filter, maintain-
ing striking similarity in neoplastic brain MR images.
Even with greater denoising accuracy, the CTD image
retained similarity, especially in cases involving blood
vessel infiltration, compression, or vasospasm associ-
ated with cerebral neoplasms.

c. The PSNR value for the CTD filter exceeded expecta-
tions, confirming its remarkable noise removal capa-
bility in neoplastic brain MR images.

d. Metrics like CNR, NI, ASNR, IV, NSD, and ENL
demonstrated commendable values for the CTD
image, resulting in exceptional neoplastic brain MR
images with enhanced contrast and well-preserved
radiological features. This contributes to improved
clinical diagnosis in various areas.
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Original Image CTD Derived

HAAR Wavelet Minimum

Gaussian

Laplacian
Fig. 19 Denoised images of 4th ventricle tumour, a rare case of neoplastic lesion

e. Overall, the CTD filtered neoplastic brain MRI pro-
vided noise-free images with maintained structural
similarity, as confirmed through visual inspection
and estimated performance metrics.

Results

The proposed CTD filter and other filters were assessed
on various CT and MR images, and key inferences were
drawn:

a. Gaussian filter, while moderate in denoising, lacks
efficient edge and contour preservation.

b. Wiener denoising filter, despite suppressing fre-
quency components, falls short in efficient edge and
contour filtering.

c. Laplacian filter, a derivative-based method, excels in
preserving edge and contour details but results in
loss of tissue-based information.

d. Laplacian Sharp filter, another derivative-based
method, preserves edge and contour details but lacks
expected reliability in contrast details.

e. Average filter, a denoising technique, yields poor
results while preserving edges and contours.

k.
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Laplacian Sharp

Minimum filter, a poor denoising filter, struggles to
preserve edges and contours.

Median filter, an average denoising filter, moderately
preserves edges and contours.

. PMAD, a diffusion-based filter, performs moder-

ately but shows poor denoising at edges and contours
without loss in details.

Kuan filter, a statistical-based technique, achieves
modest performance in denoising and contrast
enhancement.

Frost filter, an exponential-based method, performs
at a medium level in improving denoising and con-
trast.

Haar, a wavelet-based filter, offers optimum perfor-
mance in denoising, edge and contour preservation,
and contrast enhancement.

The proposed CTD filter is validated as the best
choice for denoising, showcasing commendable per-
formance in denoising, structural preservation of
edges and contours, and contrast enhancement. Fur-
ther, the visual inspection and estimated performance
metrics affirm the denoising abilities of the proposed
CTD filter substantiated by quality improvements
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Fig. 21 Denoised images of glioma lesion seen in middle left region of brain

across all CT and MR test images (clinical examples
1-11) in this research study.

Discussion

Biomedical imaging modalities like CT and MRI are
prone to noise and artifacts, which impacting image
quality. Our research focused on the CTD technique,
addressing quantum mottle noise in CT and Gauss-
ian/Rayleigh noises in MR images. CTD excelled by
achieving infinitesimal residual values with fewer itera-
tions and shape functionality, outperforming tradi-
tional filters. Comparative studies, case analyses, visual
inspections, and metrics affirmed CTD’s superiority,
making it a valuable tool for future medical imaging
assessments.

Furthermore, the CTD algorithm proved to be a
robust computational technique for addressing critical
visual aspects, such as similarity checks, contrast issues,
and delineation of boundaries in both normal and path-
ological CT and MR images. Although the noise metrics
scored similarly with respect to other filters, the CTD
technique consistently achieved better values, thus
demonstrating its overall superiority. Altogether CTD
provided a clear picture of ridge shape, articulate globe
lens with excellent clarity, distinct contrast of MCA
territory, access the damage caused in MCA territory

under various diseased conditions, improved resolution
over hypo and hyper intense regions in all the cases of
HRCT, CT and MR images including the diseased ones.
The algorithm proved robust, addressing visual aspects
and providing clarity in both normal and pathological
images. CTD consistently surpassed other techniques
in noise metrics, offering enhanced resolution in HRCT,
CT, and MR images. Despite its longer execution time
(5-7 min), CTD’s clinical validity and lack of major
drawbacks reinforce its potential for high-quality image
delivery.

Conclusion

CT and MRI are standard imaging modalities but strug-
gle with inherent noises, like quantum mottle in CT and
Rayleigh, Rician, and Gaussian noises in MRI, impact-
ing diagnostic clarity. Existing techniques fall short
in fully addressing these issues. This research intro-
duces the CTD framework, effectively mitigating noise
problems in both CT and MRI. The outcomes of this
research are profoundly encouraging and hold signifi-
cant potential for acquiring precise diagnostic insights,
especially in critical cases like Thoracic Cavity Carina,
Head CT Globe Lens 4th Ventricle, Brain-Middle Cer-
ebral Artery Territory, and neoplastic lesions. These
discoveries establish the groundwork for integrating the
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proposed CTD technique into standard clinical diag-
nostic practices.

Comparative studies, clinical examples, visual
inspections, and performance metrics confirm CTD’s
superiority over traditional filters. CTD holds prom-
ise for Computer-Aided Diagnosis (CAD) post field
trials. The results inspire confidence in accurate diag-
nostics for critical cases, setting the stage for routine
clinical use. However, CTD’s complex nature hinders
real-time implementation, prompting future explora-
tion of hardware deployment in FPGA/Raspberry Pi/
Arduino for thorough testing and validation in real-
world scenarios.
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cT Computer Tomography

HRCT High Resolution Computed Tomography
MRI Magnetic Resonance Imaging

T1,T2 Relaxation times

FLAIR Fluid Attenuated Inversion Recovery
DWI Diffusion Weighed Imaging

PROPELLER  Periodically Rotated Overlapping Parallel Lines with Enhanced
Reconstruction

FBP Filtered Back Projection

SAFIRE Sinogram Affirmed Iterative Reconstruction

AD Average Difference

MSE Mean Square Error
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MD Maximum Difference

NAE Normalized Absolute Error

NMSE Normalized Mean Square Error

PSNR Peak Signal to Noise Ratio

SC Structural Content

cC Correlation Coefficient

NCC Normalized Cross Correlation

Ql Image Quality Index

SSIM Structural Similarity Index Map
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NI Noise Index

ASNR Average Signal to Noise Ratio

v Image Variance

NSD Noise Standard Deviation

ENL Equivalent Number of Looks

D Topological Derivative

cTD Continuum Topological Derivative

DFB Discrete Filter Bank

CLT Contourlet Transform

PDFB Pyramidal Directional Filter Bank

EIT Electrical Impedance Tomography

DICOM Digital imaging and communication system

PACS Picture Archiving and Communication System

RIS Radiology Information Systems

DFOV Display Field of View

SPI Spiral mode

MCA Middle Cerebral Artery

T-MCA Twig like MCA
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SM Spine Metastases

LMD Leptomeningeal Disease

RGNT Rosette-forming glioneuronal Tumor

TIA Transient Ischemic Attack

CADASIL Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy

SVD Small Vessel Disease

Page 40 of 45

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/512880-024-01341-1.

Supplementary Material 1.
Supplementary Material 2.
Supplementary Material 3.
Supplementary Material 4.
Supplementary Material 5.
Supplementary Material 6.
Supplementary Material 7.
Supplementary Material 8.
Supplementary Material 9.
Supplementary Material 10.
Supplementary Material 11.
Supplementary Material 12.

Supplementary Material 13.

Supplementary Material 14.

Acknowledgements

My sincere thanks to Central Instrumentation and Service Lab (CISL), Guindy
campus, University of Madras for providing all kind of support regarding this
research work

Authors’ contributions

Conceptualization, methodology, and Correction of the full manuscript were
done by DN. Algorithm Development, Data Collection, testing and validation
were carried by MV. Visual inspection and Diagnostic details were provided by
SJ. All authors read and approved the final manuscript.

Funding
No funding.

Availability of data and materials

The medical image data required for this research work on CT and MRI images
was generously provided by Image Art, Vijaya Health Centre, located in Vada-
palani, Chennai. We express our gratitude for their invaluable contribution.
Itis important to note that patient data will only be shared on an individual
request basis, after ensuring compliance with the ethical conditions set by the
data provider. The datasets utilized in this research article, along with the sup-
plementary files, are included and made available for reference.

Declarations

Ethics approval and consent to participate

All clinical example were carried out by following the relevant guidelines. No
treatment was practised, no data were gathered for management of patients,
and no diagnostic information was taken from patients while developing

the algorithm. None of the medical image data were passed on to surgeon
or to any radiologist for surgery or diagnosis of diseases when testing the
algorithms. Since the algorithm developed and tested in this research article
does not involve medical image data directly from patients in any form, there
is no need for consent form. The medical image datasets used in this research
article were provided to us from an already available CT and MRI database in
PACS, Image Art, Vijaya Health Centre, Vadapalani, Chennai, which is a cloud-
based system.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.


https://doi.org/10.1186/s12880-024-01341-1
https://doi.org/10.1186/s12880-024-01341-1

Muthukrishnan et al. BMC Medical Imaging

(2024) 24:182

Author details

!Central Instrumentation & Service Laboratory, Guindy Campus, University

of Madras, Chennai, India. “Image Art, Vijaya Health Centre, Vadapalani, Chen-
nai, India.

Received: 28 February 2023 Accepted: 18 June 2024
Published online: 24 July 2024

References

1.

Doi K. Diagnostic imaging over the last 50 years: research and develop-
ment in medical imaging science and technology. Phys Med Biol.
2006;51(13):R5. https://doi.org/10.1088/0031-9155/51/13/R02.

Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen HO.
Medical image analysis. IEEE Pulse. 2011,2(6):60-70. https://doi.org/10.
1109/MPUL.2011.942929.

Ota H, Takase K, Igarashi K, Chiba Y, Haga K; Saito H, Takahashi S. MDCT
compared with digital subtraction angiography for assessment of lower
extremity arterial occlusive disease: importance of reviewing cross-
sectional images. Am J Roentgenol. 2004;182(1):201-9. https://doi.org/
10.2214/ajr.182.1.1820201.

Loevner LA, Sonners Al, Schulman BJ, Slawek K, Weber RS, Rosenthal
DI, Moonis G, Chalian AA. Reinterpretation of cross-sectional images in
patients with head and neck cancer in the setting of a multidisciplinary
cancer center. Am J Neuroradiol. 2002;23(10):1622-6 PMID: 12427610.
Lee S, Fichtinger G, Chirikjian GS. Numerical algorithms for spatial
registration of line fiducials from cross-sectional images. Med Phys.
2002;29(8):1881-91. https://doi.org/10.1118/1.1493777.

Dong Z, Wu X, Ma Z. Research on 3D model reconstruction based on

a sequence of cross-sectional images. Mach Vis Appl. 2021;32(4):1-6.
https://doi.org/10.1007/500138-021-01220-7.

Stark H, Woods J, Paul |, Hingorani R. Direct Fourier reconstruction

in computer tomography. IEEE Trans Acoust Speech Signal Process.
1981;29(2):237-45. https://doi.org/10.1109/TASSP.1981.1163528.

Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, Raghu
G, King TE Jr, Bradford WZ, Schwartz DA, Webb WR. High-resolution
computed tomography in idiopathic pulmonary fibrosis: diagnosis and
prognosis. Am J Respir Crit Care Med. 2005;172(4):488-93. https://doi.
0rg/10.1164/rccm.200412-17560C.

Grenier P, Cordeau MP, Beigelman C. High-resolution computed tomog-
raphy of the airways. J Thorac Imaging. 1993;8(3):213-29. https://doi.
0rg/10.1097/00005382-199322000-00006.

Mayo JR. High resolution computed tomography, technical aspects.
Radiol Clin North Am. 1991;29(5):1043-9 PMID: 1871254,

Balmer BD, Blithgen C, Bassler B, Martini K, Huber FA, Ruby L, Schénen-
berger A, Frauenfelder T. Influence of CT image matrix size and kernel
type on the assessment of HRCT in patients with SSC-ILD. Diagnostics.
2022;12(7):1662. https://doi.org/10.3390/diagnostics12071662.

Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI.
|EEE Signal Process Mag. 2008;25(2):72-82. https://doi.org/10.1109/MSP.
2007.914728.

Solomon J, Samei E. Quantum noise properties of CT images with ana-
tomical textured backgrounds across reconstruction algorithms: FBP and
SAFIRE. Med Phys. 2014;41(9):091908. https://doi.org/10.1118/1.4893497.
Li X, Samei E. Comparison of patient size-based methods for estimating
quantum noise in CT images of the lung. Med Phys. 2009;36(2):541-6.
https://doi.org/10.1118/1.3058482.

Latifi K, Huang TC, Feygelman V, Budzevich MM, Moros EG, Dilling TJ,
Stevens CW, van Elmpt W, Dekker A, Zhang GG. Effects of quantum
noise in 4D-CT on deformable image registration and derived ventila-
tion data. Phys Med Biol. 2013;58(21):7661. https://doi.org/10.1088/
0031-9155/58/21/7661.

Park K, Lee HS, Lee J. Hybrid filter based on neural networks for remov-
ing quantum noise in low-dose medical X-ray CT images. Int J Fuzzy
Logic and Intell Syst. 2015;15(2):102-10. https://doi.org/10.5391/1JFIS.
2015.15.2.102.

Zhang A, Jiang H, Ma L, Liu Y, Yang XA. Shearlet-based algorithm for
quantum noise removal in low-dose CT images. In: Medical Imaging
2016: Image Processing (Vol. 9784). SPIE; 2016. p. 972-978. https://doi.
org/10.1117/12.2216562.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34

35.

Page 41 of 45

Yang YQ, Nakamori N, Yoshida Y. Improvement of CT image degraded
by quantum mottle using singularity detection. IEICE Trans Inf Syst.
2003;86(1):123-30.

Wang L, Lu J, LiY, Yahagi T, Okamoto T. Noise removal for medical X-ray
images in wavelet domain. Electr Eng Jpn. 2008;163(3):37-46. https://
doi.org/10.1002/e€j.20486.

Gomi T, Nakajima M, Umeda T. Wavelet denoising for quantum noise
removal in chest digital tomosynthesis. Int J Comput Assist Radiol Surg.
2015;10(1):75-86. https://doi.org/10.1007/511548-014-1003-2.

Shih CT, Chang SJ, Liu YL, Wu J. Noise reduction of low-dose computed
tomography using the multi-resolution total variation minimization
algorithm. In: Medical Imaging 2013: Physics of Medical Imaging (Vol.
8668). SPIE. 2013. p. 680-688. https://doi.org/10.1117/12.2007543.

Yang YQ, Nakamori N, Yoshida Y, Tsunoo T, Endo M, Sato K. Denoising
of cone beam CT image using wavelet transform. In: Medical Imaging
2002: Image Processing (Vol. 4684). 2002. p. 1077-1084. https://doi.org/
10.1117/12.467064.

Chen B, Ning R. Cone-beam volume CT breast imaging: wavelet
analysis-based multi-resolution reconstruction and de-noising tech-
nique. In: Medical Imaging 2002: Physics of Medical Imaging (Vol. 4682).
SPIE. 2002. p. 236-244, (Vol. 4682, p. 236-244). https://doi.org/10.1117/
12.465564.

Park JD, HuhY, Jin SO, Jeon SC. Noise reduction of medical X-ray image
using wavelet threshold in cone-beam CT. J Inst Electr Eng Korea SC.
2007;44(6):42-8.

Chan CL, Sullivan BJ, Sahakian AV, Katsaggelos AK, Frohlich T, Byrom

E. Spatiotemporal filtering of digital angiographic image sequences
corrupted by quantum mottle. In: Biomedical Image Processing Il 1991
(Vol. 1450). SPIE; 1991. p. 208-217. https://doi.org/10.1117/12.44297.
Ohta M, lkuta A, Mitani Y, Kodera Y, Ogawa M, Fujita M, Wada T. A new
restoration method for medical X-ray images with optical blurs and
quantum mottles. IEICE Trans (1976-1990). 1990;73(5):670-8.

LiY,Lu J, Wang L, Yahagi T, Okamoto T. Removing noise from radiologi-
cal image using multineural network filter. In: 2005 IEEE International
Conference on Industrial Technology 2005. p. 1365-1370. https://doi.
org/10.1109/ICIT.2005.1600848.

LiY,LuJ,Wang L, Li S, Fan 'Y, Yahagi T. Removing noise from medical
CRimage using multineural network filter based on noise intensity
distribution. In: Third International Conference on Natural Computation
(ICNC 2007) (Vol. 3). 2007. p. 343-347. https://doi.org/10.1109/ICNC.
2007.605.

lkuta A, Ohta M, Kodera Y, Fujita M, Wada T. An improved stochastic
restoration method using digital filter for medical X-ray images con-
taminated by quantum mottles. Med Imaging Tech. 1995;13(1):85-98.
Park C, Choo KS, Jung Y, Jeong HS, Hwang JY, Yun MS. CT iterative

vs deep learning reconstruction: comparison of noise and sharp-

ness. Eur Radiol. 2021;31(5):3156-64. https://doi.org/10.1007/
500330-020-07358-8.

Park C, Choo KS, Kim JH, Nam KJ, Lee JW, Kim JY. Image quality and
radiation dose in CT venography using model-based iterative recon-
struction at 80 kVp versus adaptive statistical iterative reconstruction-V
at 70 kVp. Korean J Radiol. 2019;20(7):1167-75. https://doi.org/10.3348/
kjr2018.0897.

Kalisz K, Buethe J, Saboo SS, Abbara S, Halliburton S, Rajiah P. Artifacts
at cardiac CT: physics and solutions. Radiographics. 2016;36(7):2064-83.
https://doi.org/10.1148/rg.2016160079.

Song JS, Lee JM, Sohn JY, Yoon JH, Han JK, Choi BI. Hybrid iterative
reconstruction technique for liver CT scans for image noise reduction
and image quality improvement: evaluation of the optimal iterative
reconstruction strengths. Radiol Med (Torino). 2015;120(3):259-67.
https://doi.org/10.1007/511547-014-0441-9.

Muhammad NA, Karim MK, Harun HH, Rahman MA, Azlan RN, Sumardi
NF. The impact of tube current and iterative reconstruction algorithm
on dose and image quality of infant CT head examination. Radiat

Phys Chem. 2022:110272.https://doi.org/10.1016/jradphyschem.2022.
110272.

Lee Y], Hwang JY, Ryu H, Kim TU, Kim YW, Park JH, Choo KS, Nam KJ, Roh
J.Image quality and diagnostic accuracy of reduced-dose computed
tomography enterography with model-based iterative reconstruction
in pediatric Crohn'’s disease patients. Sci Rep. 2022;12(1):1. https://doi.
0rg/10.1038/541598-022-06246-z.


https://doi.org/10.1088/0031-9155/51/13/R02
https://doi.org/10.1109/MPUL.2011.942929
https://doi.org/10.1109/MPUL.2011.942929
https://doi.org/10.2214/ajr.182.1.1820201
https://doi.org/10.2214/ajr.182.1.1820201
https://doi.org/10.1118/1.1493777
https://doi.org/10.1007/s00138-021-01220-7
https://doi.org/10.1109/TASSP.1981.1163528
https://doi.org/10.1164/rccm.200412-1756OC
https://doi.org/10.1164/rccm.200412-1756OC
https://doi.org/10.1097/00005382-199322000-00006
https://doi.org/10.1097/00005382-199322000-00006
https://doi.org/10.3390/diagnostics12071662
https://doi.org/10.1109/MSP.2007.914728
https://doi.org/10.1109/MSP.2007.914728
https://doi.org/10.1118/1.4893497
https://doi.org/10.1118/1.3058482
https://doi.org/10.1088/0031-9155/58/21/7661
https://doi.org/10.1088/0031-9155/58/21/7661
https://doi.org/10.5391/IJFIS.2015.15.2.102
https://doi.org/10.5391/IJFIS.2015.15.2.102
https://doi.org/10.1117/12.2216562
https://doi.org/10.1117/12.2216562
https://doi.org/10.1002/eej.20486
https://doi.org/10.1002/eej.20486
https://doi.org/10.1007/s11548-014-1003-2
https://doi.org/10.1117/12.2007543
https://doi.org/10.1117/12.467064
https://doi.org/10.1117/12.467064
https://doi.org/10.1117/12.465564
https://doi.org/10.1117/12.465564
https://doi.org/10.1117/12.44297
https://doi.org/10.1109/ICIT.2005.1600848
https://doi.org/10.1109/ICIT.2005.1600848
https://doi.org/10.1109/ICNC.2007.605
https://doi.org/10.1109/ICNC.2007.605
https://doi.org/10.1007/s00330-020-07358-8
https://doi.org/10.1007/s00330-020-07358-8
https://doi.org/10.3348/kjr.2018.0897
https://doi.org/10.3348/kjr.2018.0897
https://doi.org/10.1148/rg.2016160079
https://doi.org/10.1007/s11547-014-0441-9
https://doi.org/10.1016/j.radphyschem.2022.110272
https://doi.org/10.1016/j.radphyschem.2022.110272
https://doi.org/10.1038/s41598-022-06246-z
https://doi.org/10.1038/s41598-022-06246-z

Muthukrishnan et al. BMC Medical Imaging

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

(2024) 24:182

Chhetri S, Pendem S, Bharath JL. Low kilovoltage and low contrast
volume neck CT protocol using iterative reconstruction techniques:

a comparison with standard dose protocol. Radiat Phys Chem.
2022;193:109935. https://doi.org/10.1016/j.radphyschem.2021.109935.
Son'W, Kim M, Hwang JY, Kim YW, Park C, Choo KS, Kim TU, Jang JY.
Comparison of a deep learning-based reconstruction algorithm with
filtered back projection and iterative reconstruction algorithms for
pediatric abdominopelvic CT. Korean J Radiol. 2022;23(7):752. https://
doi.org/10.3348/kjr.2021.0466.

Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improv-
ing image quality and reducing radiation dose for pediatric CT by using
deep learning reconstruction. Radiology. 2021;298(1):180-8. https://doi.
0rg/10.1148/radiol.2020202317.

Zhang A, Jiang H, Ma L, Liu Y, Yang X. A Shearlet-based algorithm for
quantum noise removal in low-dose CT images. In: Medical Imaging
2016: Image Processing (Vol. 9784). SPIE. 2016. p. 972-978. https://doi.
org/10.1117/12.2216562.

Liu F, Chen G, Feng J, Yap PT, Shen D. Gaussianization of diffusion MRI
magnitude data using spatially adaptive phase correction. Proc Int Soc
Magnet Resonn Med. 2019;27:4609. https://doi.org/10.13140/RG.2.2.
34492.51846.

Dar SU, Oztiirk S, Korkmaz Y, Elmas G, Ozbey M, Glingér A, Cukur T.
Adaptive diffusion priors for accelerated MRI reconstruction. arXiv
preprint arXiv:2207.05876. 2022. https://doi.org/10.48550/arXiv.2207.
05876.

Srivastava A, Bhateja V, Tiwari H, and Satapathy SC. Restoration algorithm
for Gaussian corrupted MRI using non-local averaging. In: Information
Systems Design and Intelligent Applications. New Delhi: Springer. 2015.
p. 831-840. https://doi.org/10.1007/978-81-322-2247-7_84.

Wu ZQ, Ware JA, Jiang J. Wavelet-based Rayleigh background removal
in MRI. Electron Lett. 2003;39(7):1. https://doi.org/10.1049/el:20030396.
Yadav RB, Srivastava S, Srivastava R. Identification and removal of dif-
ferent noise patterns by measuring SNR value in magnetic resonance
images. In: 2016 Ninth International Conference on Contemporary
Computing (IC3). IEEE; 2016. p. 1-5. https://doi.org/10.1109/1C3.2016.
7880212.

Lysaker M, Lundervold A, Tai XC. Noise removal using fourth-order
partial differential equation with applications to medical magnetic
resonance images in space and time. IEEE Trans Image Process.
2003;12(12):1579-90. https://doi.org/10.1109/TIP2003.819229.
Martin-Fernandez M, Villullas S. The EM method in a probabilis-

tic wavelet-based MRI denoising. Comput Math Methods Med.
2015;2015:182659. https://doi.org/10.1155/2015/182659.

Pal C, Das P, Chakrabarti A, Ghosh R. Rician noise removal in magnitude
MRI'images using efficient anisotropic diffusion filtering. Int J Imaging
Syst Technol. 2017;27(3):248-64. https://doi.org/10.1002/ima.22230.
Aarya |, Jiang D, Gale T. Adaptive SNR filtering technique for Rician noise
denoising in MRI. In: The 6th 2013 Biomedical Engineering International
Conference. IEEE; 2013. p. 1-5. https://doi.org/10.1109/BMEiCon.2013.
6687669.

Rabbani H. Statistical modeling of low SNR magnetic resonance images
in wavelet domain using Laplacian prior and two-sided Rayleigh noise
for visual quality improvement. In: 2008 International Conference on
Information Technology and Applications in Biomedicine. IEEE; 2008. p.
116-119. https://doi.org/10.1109/ITAB.2008.4570560.

Narasimha C, Rao AN. An effective tumor detection approach using
denoised MRI based on fuzzy bayesian segmentation approach.

Int J Speech Technol. 2021;24(2):259-80. https://doi.org/10.1007/
$10772-020-09782-z.

Fahmy AS. Background noise removal in cardiac magnetic resonance
images using Bayes classifier. In: 2008 30th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society. IEEE;
2008. p. 3393-3396. https://doi.org/10.1109/IEMBS.2008.4649934.
Smith TB. MRl artifacts and correction strategies. Imaging Med.
2010;2(4):445. https://doi.org/10.2217/iim.10.33.

Wadghiri YZ, Johnson G, Turnbull DH. Sensitivity and performance

time in MRI dephasing artifact reduction methods. Magn Reson Med.
2001;45(3):470-6. https://doi.org/10.1002/1522-2594.

Koay CG, Ozarslan E, Basser PJ. A signal transformational framework

for breaking the noise floor and its applications in MRI. J Magn Reson.
2009;197(2):108-19. https://doi.org/10.1016/j,jmr.2008.11.015.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Page 42 of 45

Zhu, Shen W, Cheng F, Jin C, Cao G. Removal of high density Gaussian
noise in compressed sensing MRI reconstruction through modified
total variation image denoising method. Heliyon. 2020;6(3):e03680.
https://doi.org/10.1016/j.heliyon.2020.e03680.

Virtue P, Lustig M. The empirical effect of Gaussian noise in undersam-
pled MRI reconstruction. Tomography. 2017;3(4):211-21. https://doi.
0rg/10.18383/j.tom.2017.00019.

Nowak RD. Wavelet-based Rician noise removal for magnetic resonance
imaging. IEEE Trans Image Process. 1999;8(10):1408-19. https://doi.org/
10.1109/83.791966.

Elaiyaraja G, Kumaratharan N, Chandra Sekhar Rao T. Fast and efficient
filter using wavelet threshold for removal of Gaussian noise from
MRI/CT scanned medical images/color video sequence. IETE J Res.
2022;68(1):10-22. https://doi.org/10.1080/03772063.2019.1579679.
Gregg RL, Nowak RD. Noise removal methods for high resolution MRI.
In: 1997 IEEE Nuclear Science Symposium Conference Record (Vol. 2).
IEEE; 1997. p. 1117-1121. https://doi.org/10.1109/NSSMIC.1997.670504.
Pizurica A, Wink AM, Vansteenkiste E, Philips W, Roerdink BJ. A review of
wavelet denoising in MRI and ultrasound brain imaging. Curr Med Imag-
ing. 2006;2(2):247-60. https://doi.org/10.2174/157340506776930665.
Amiri Golilarz N, Gao H, Kumar R, Ali L, Fu'Y, Li C. Adaptive wavelet
based MRI brain image de-noising. Front Neurosci. 2020;14:728. https.//
doi.org/10.3389/fnins.2020.00728.

Deepa B, Sumithra MG. Comparative analysis of noise removal tech-
niques in MRI brain images. In: 2015 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC). IEEE;
2015. p. 1-4. https://doi.org/10.1109/ICCIC.2015.7435737.

Reddy KS, Jaya T. De-noising and enhancement of MRI medical images
using Gaussian filter and histogram equalization. Mater Today. 2021.
https://doi.org/10.1016/j.matpr.2021.03.144.

Kumar N, Nachamai M. Noise removal and filtering techniques used in
medical images. Orient J Comp Sci Technol. 2017;10(1):103-13. http://
www.computerscijournal.org/pdf/vol10no1/0JCST_Vol10_N1_p_103-
113.pdf.

Isa IS, Sulaiman SN, Mustapha M, Darus S. Evaluating denoising
performances of fundamental filters for T2-weighted MRI images. Proc
Comput Sci. 2015;60:760-8. https://doi.org/10.1016/j.procs.2015.08.231.
Rai HM, Chatterjee K. Hybrid adaptive algorithm based on wavelet
transform and independent component analysis for denoising of MRI
images. Measurement. 2019;144:72-82. https://doi.org/10.1016/j.measu
rement.2019.05.028.

Chalghoumi S, and Smiti A., Median filter for denoising MRI: Literature
review. In: 2022 International Conference on Decision Aid Sciences and
Applications (DASA). IEEE; 2022. p. 1603-1606. https://doi.org/10.1109/
DASA54658.2022.9764981.

Ali HM. MRI medical image denoising by fundamental filters. High-
Resolut Neuroimaging Basic Phys Princ Clin Appl. 2018;14:111-24.
https://doi.org/10.5772/intechopen.72427.

Yan X, Zhou MX, Xu L, Liu W, Yang G. Noise removal of MRI data with
edge enhancing. In: 5th International Conference on Bioinformatics
and Biomedical Engineering. IEEE; 2011. p. 1-4. https://doi.org/10.1109/
icbbe.2011.5780196.

Sahu'S, Singh HV, Kumar B, Singh AK. A Bayesian multiresolution
approach for noise removal in medical magnetic resonance images. J
Intell Syst. 2020;29(1):189-201. https://doi.org/10.1515/jisys-2017-0402.
Manjon JV, Carbonell-Caballero J, Lull JJ, Garcia-Marti G, Marti-Bonmati
L, Robles M. MRI denoising using non-local means. Med Image Anal.
2008;12(4):514-23. https://doi.org/10.1016/j.media.2008.02.004.
Sahu'S, Anand A, Singh AK, Agrawal AK, Singh MP. MRI de-noising
using improved unbiased NLM filter. J Ambient Intell Human Comput.
2022:1-2. https://doi.org/10.1007/512652-021-03681-0.

Krissian K, Aja-Fernandez S. Noise-driven anisotropic diffusion filtering
of MRI. I[EEE Trans Image Process. 2009;18(10):2265-74. https://doi.org/
10.1109/TIP2009.2025553.

Anand CS, Sahambi JS. MRI denoising using bilateral filter in redundant
wavelet domain. In: TENCON 2008, 2008 IEEE Region 10 Conference.
IEEE; 2008. p. 1-6. https://doi.org/10.1109/TENCON.2008.4766742.
Swetha MD, and Aditya CR. Sparse feature aware noise removal
technique for brain multiple sclerosis lesions using magnetic resonance
imaging. 2022;13(6):527-33. https://doi.org/10.14569/IJACSA.2022.
0130664


https://doi.org/10.1016/j.radphyschem.2021.109935
https://doi.org/10.3348/kjr.2021.0466
https://doi.org/10.3348/kjr.2021.0466
https://doi.org/10.1148/radiol.2020202317
https://doi.org/10.1148/radiol.2020202317
https://doi.org/10.1117/12.2216562
https://doi.org/10.1117/12.2216562
https://doi.org/10.13140/RG.2.2.34492.51846
https://doi.org/10.13140/RG.2.2.34492.51846
https://doi.org/10.48550/arXiv.2207.05876
https://doi.org/10.48550/arXiv.2207.05876
https://doi.org/10.1007/978-81-322-2247-7_84
https://doi.org/10.1049/el:20030396
https://doi.org/10.1109/IC3.2016.7880212
https://doi.org/10.1109/IC3.2016.7880212
https://doi.org/10.1109/TIP.2003.819229
https://doi.org/10.1155/2015/182659
https://doi.org/10.1002/ima.22230
https://doi.org/10.1109/BMEiCon.2013.6687669
https://doi.org/10.1109/BMEiCon.2013.6687669
https://doi.org/10.1109/ITAB.2008.4570560
https://doi.org/10.1007/s10772-020-09782-z
https://doi.org/10.1007/s10772-020-09782-z
https://doi.org/10.1109/IEMBS.2008.4649934
https://doi.org/10.2217/iim.10.33
https://doi.org/10.1002/1522-2594
https://doi.org/10.1016/j.jmr.2008.11.015
https://doi.org/10.1016/j.heliyon.2020.e03680
https://doi.org/10.18383/j.tom.2017.00019
https://doi.org/10.18383/j.tom.2017.00019
https://doi.org/10.1109/83.791966
https://doi.org/10.1109/83.791966
https://doi.org/10.1080/03772063.2019.1579679
https://doi.org/10.1109/NSSMIC.1997.670504
https://doi.org/10.2174/157340506776930665
https://doi.org/10.3389/fnins.2020.00728
https://doi.org/10.3389/fnins.2020.00728
https://doi.org/10.1109/ICCIC.2015.7435737
https://doi.org/10.1016/j.matpr.2021.03.144
http://www.computerscijournal.org/pdf/vol10no1/OJCST_Vol10_N1_p_103-113.pdf
http://www.computerscijournal.org/pdf/vol10no1/OJCST_Vol10_N1_p_103-113.pdf
http://www.computerscijournal.org/pdf/vol10no1/OJCST_Vol10_N1_p_103-113.pdf
https://doi.org/10.1016/j.procs.2015.08.231
https://doi.org/10.1016/j.measurement.2019.05.028
https://doi.org/10.1016/j.measurement.2019.05.028
https://doi.org/10.1109/DASA54658.2022.9764981
https://doi.org/10.1109/DASA54658.2022.9764981
https://doi.org/10.5772/intechopen.72427
https://doi.org/10.1109/icbbe.2011.5780196
https://doi.org/10.1109/icbbe.2011.5780196
https://doi.org/10.1515/jisys-2017-0402
https://doi.org/10.1016/j.media.2008.02.004
https://doi.org/10.1007/s12652-021-03681-0
https://doi.org/10.1109/TIP.2009.2025553
https://doi.org/10.1109/TIP.2009.2025553
https://doi.org/10.1109/TENCON.2008.4766742
https://doi.org/10.14569/IJACSA.2022.0130664
https://doi.org/10.14569/IJACSA.2022.0130664

Muthukrishnan et al. BMC Medical Imaging

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

(2024) 24:182

Zhang G, Huang C, Jiang J, Xu W, Chen J, Xu X. Denoising of brain mag-
netic resonance images using a MDB network. Multimedia Tools Applic.
2022:1-3. https://doi.org/10.1007/511042-021-11521-8.

Alpar O, Dolezal R, Ryska P, Krejcar O. Nakagami-Fuzzy imaging
framework for precise lesion segmentation in MRI. Pattern Recogn.
2022;128:108675. https://doi.org/10.1016/}.patcog.2022.108675.
Cong-Hua X, Jin-Yi C, Wen-Bin X. Medical image denoising by gener-
alised Gaussian mixture modelling with edge information. IET Image
Proc. 2014;8(8):464-76. https://doi.org/10.1049/iet-ipr.2013.0202.

Pham TD. Estimating parameters of optimal average and adaptive
wiener filters for image restoration with sequential Gaussian simulation.
IEEE Signal Process Lett. 2015;22(11):1950-4. https://doi.org/10.1109/
LSP2015.2448732.

Paris S, Hasinoff SW, Kautz J. Local laplacian filters: edge-aware image
processing with a laplacian pyramid, ACM Trans. Graph. 2011,30(4):68.
https://doi.org/10.1145/1964921.1964963.

Du J, Li W, Xiao B. Anatomical-functional image fusion by information
of interest in local Laplacian filtering domain. IEEE Trans Image Process.
2017;26(12):5855-66. https://doi.org/10.1109/TIP2017.2745202.

Yadav RB, Srivastava S, Srivastava R. A partial differential equation-based
general framework adapted to Rayleigh’s, Rician's and Gaussian’s dis-
tributed noise for restoration and enhancement of magnetic resonance
image. J Med Phys. 2016;41(4):254. https://doi.org/10.4103/0971-6203.
195190.

Yadav RB. Design and implementation of filters for Restoration and
Enhancement of Magnetic resonance images. 2017.

Morajab S, Mahdavi M. A non-local conventional approach for noise
removal in 3D MRI. arXiv preprint arXiv:1608.06558. 2016. https://doi.
0rg/10.48550/arXiv.1608.06558.

Soto ME, Pezoa JE, Torres SN. Thermal noise estimation and removal

in MRI: a noise cancellation approach. In: Iberoamerican Congress on
Pattern Recognition. Berlin, Heidelberg: Springer; 2011. p. 47-54. https://
doi.org/10.1007/978-3-642-25085-9_5.

Khalilzadeh MM, Fatemizadeh E, Behnam H. Adaptive sparse represen-
tation for MRI noise removal. Biomed Eng. 2012;24(05):383-94. https://
doi.org/10.4015/51016237212500342.

Khan SU, Ullah N, Ahmed |, Chai WY, Khan A. MRl images enhance-
ment using genetic programming based hybrid noise removal filter
approach. Curr Med Imaging. 2018;14(6):867-73. https://doi.org/10.
2174/1573405613666170619093021.

Baselice F, Ferraioli G, Pascazio V. A 3D MRI denoising algorithm based
on Bayesian theory. Biomed Eng Online. 2017;16(1):1-9. https://doi.org/
10.1186/512938-017-0319-x.

Lui JK, Laprad AS, Parameswaran H, Sun YP, Albert MS, Lutchen KR. Sta-
tistically robust and semiautomatic quantification of ventilation from
static hyperpolarized 3He MRI: application to asthma. InD28. Imaging
obstructive lung diseases I. American Thoracic Society; 2009. p. A5580.
https://doi.org/10.1164/ajrccm-conference.2009.179.1_MeetingAbs
tracts.A5580.

Dietrich O, Raya JG, Reeder SB, Ingrisch M, Reiser MF, Schoenberg SO.
Influence of multichannel combination, parallel imaging and other
reconstruction techniques on MRI noise characteristics. Magn Reson
Imaging. 2008,;26(6):754-62. https://doi.org/10.1016/j.mri.2008.02.001.
Sanches JM, Nascimento JC, Marques JS. An unified framework

for Bayesian denoising for several medical and biological imaging
modalities. In: 2007 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE; 2007. p. 6267-6270.
https://doi.org/10.1109/IEMBS.2007.4353788.

Upadhyay P, Upadhyay SK, Shukla KK. Magnetic resonance images
denoising using a wavelet solution to laplace equation associated with
a new variational model. Appl Math Comput. 2021;400:126083. https://
doi.org/10.1016/j.amc.2021.126083.

Viswanath M, Seetharaman R, Nedumaran D. Adaptive mechanism for
recognition of diseases in medical images. In: 2018 Tenth IEEE Interna-
tional Conference on Advanced Computing (ICoAC). 2018. p. 349-354.
https://doi.org/10.1109/ICoAC44903.2018.8939059.

Viswanath M, Seetharaman R, Nedumaran D. Edge Detection in Medical
Images-Smoothening Techniques. In: 2018 IEEE International Confer-
ence on Networking, Embedded and Wireless Systems (ICNEWS). 2018.
p. 1-6. https://doi.org/10.1109/ICNEWS.2018.8903928.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

Page 43 of 45

Viswanath M, Seetharaman R, Nedumaran D. Medical Imaging-Bound-
ary Solutions. In: 2019 Third IEEE International Conference on Inventive
Systems and Control (ICISC). 2019. p. 605-608. https://doi.org/10.1109/
ICISC44355.2019.9036469.

Viswanath M, Seetharaman R, Nedumaran D. Diffusion operandi gradi-
ent solutions. Caribbean J Sci. 2019;53(02):2505-11 http://caribjsci.
com/gallery/is2.191.pdf.

Viswanath M, Seetharaman R, Nedumaran D. Electrical Impedance
Tomography-Differential Solutions. In: 2019 IEEE 5th Global Electromag-
netic Compatibility Conference (GEMCCON). 2019. p. 1-5. https://doi.
org/10.1109/GEMCCON48223.2019.9132819.

Viswanath M, Seetharaman R, Nedumaran D. Medical portraiture—
derivative methods and distributional solutions. In: IEEE 2019 11th
International Conference on Advanced Computing (ICoAC). 2019. p.
259-264. https://doi.org/10.1109/ICoAC48765.2019.246850.

Natarajan BK. Sparse approximate solutions to linear systems. SIAM J
Comput. 1995,24(2):227-34. https://doi.org/10.1137/500975397922404
06.

Wahba G. Practical approximate solutions to linear operator equations
when the data are noisy. SIAM J Numer Anal. 1977;14(4):651-67. https.//
doi.org/10.1137/0714044.

Hazan E. Sparse approximate solutions to semi-definite programs, Latin
American symposium on theoretical informatics. Berlin, Heidelberg:
Springer. 2008. p. 306-316. https://doi.org/10.1007/978-3-540-78773-0_
27.

Jing Z, Yanqing Z, Zhigang C, Jianhua L. Detecting boundary of salt
dome in seismic data with edge-detection technique. SEG Technical
Program Expanded Abstracts 2007. Society of Exploration Geophysi-
cists; 2007. p. 1392-1396. https://doi.org/10.1190/1.2792759.

Garg B. An adaptive minimum-maximum value-based weighted
median filter for removing high density salt and pepper noise in medi-
cal images. Int J Ad Hoc Ubiquitous Comput. 2020;35(2):84-95. https.//
doi.org/10.1504/1JAHUC.2020.109795.

llango G, Gowri BS. Neighbourhood median filters to remove speckle
noise from CT-images. Int J Appl Inform Syst. 2012;04(10):40-6. https://
doi.org/10.5120/ijais12-450829.

Abd Halim S, Wira NN, Hadi NA. Image denoising using modified diffu-
sion functions on nonlinear second-order hyperbolic model. In: Journal
of Physics: Conference Series (Vol. 1770, No. 1). IOP Publishing; 2021. p.
012043. https://doi.org/10.1088/1742-6596/1770/1/012043.
Rahimizadeh N, Hasanzadeh RP, Janabi-Sharifi F. An optimized non-local
LMMSE approach for speckle noise reduction of medical ultrasound
images. Multimedia Tools Applic. 2021;80(6):9231-53. https://doi.org/
10.1007/511042-020-10051-z.

Afshari P, Zakian C, Bachmann J, Ntziachristos V. Speckle reduction

in ultrasound endoscopy using refraction based elevational angu-

lar compounding. Sci Rep. 2021;11(1):1-8. https://doi.org/10.1038/
$41598-021-97717-2.

Khashman A, Dimililer K. Medical radiographs compression using
neural networks and haar wavelet. In: IEEE EUROCON 20009. IEEE; 2009.
p. 1448-1453. https://doi.org/10.1109/EURCON.2009.5167831.
Sivakumar R, Gayathri MK, Nedumaran D. Speckle filtering of ultrasound
B-Scan Images - a comparative study between spatial and diffusion
filters. In: 2010 IEEE Conference on Open Systems (ICOS 2010), 2010. p.
80-85, https://doi.org/10.1109/IC0OS.2010.5720068.

Giusti SM, Ferrer A, Oliver J. Topological sensitivity analysis in heteroge-
neous anisotropic elasticity problem - theoretical and computational
aspects. Comput Methods Appl Mech Eng. 2016;311:134-50. https://
doi.org/10.1016/j.cma.2016.08.004.

Novotny AA, Feijoo RA, Taroco E, Padra C. Topological sensitivity analysis
for three-dimensional linear elasticity problem. Comput Methods Appl
Mech Eng. 2007;196(41-44):4354-64. https://doi.org/10.1016/j.cma.
2007.05.006.

Viswanath M, Seetharaman R, Nedumaran D. Techniques for improve-
ment of Medical Images. In: 2017 IEEE International Conference on
Circuits and Systems (ICCS). 2017. p. 202-205. https://doi.org/10.1109/
ICCS1.2017.8325990.

Azegami H, Shimoda M, Katamine E, Wu ZC. A domain optimization
technique for elliptic boundary value problems. WIT Trans Built Environ.
1970;14. https://doi.org/10.2495/0P950071.


https://doi.org/10.1007/s11042-021-11521-8
https://doi.org/10.1016/j.patcog.2022.108675
https://doi.org/10.1049/iet-ipr.2013.0202
https://doi.org/10.1109/LSP.2015.2448732
https://doi.org/10.1109/LSP.2015.2448732
https://doi.org/10.1145/1964921.1964963
https://doi.org/10.1109/TIP.2017.2745202
https://doi.org/10.4103/0971-6203.195190
https://doi.org/10.4103/0971-6203.195190
https://doi.org/10.48550/arXiv.1608.06558
https://doi.org/10.48550/arXiv.1608.06558
https://doi.org/10.1007/978-3-642-25085-9_5
https://doi.org/10.1007/978-3-642-25085-9_5
https://doi.org/10.4015/S1016237212500342
https://doi.org/10.4015/S1016237212500342
https://doi.org/10.2174/1573405613666170619093021
https://doi.org/10.2174/1573405613666170619093021
https://doi.org/10.1186/s12938-017-0319-x
https://doi.org/10.1186/s12938-017-0319-x
https://doi.org/10.1164/ajrccm-conference.2009.179.1_MeetingAbstracts.A5580
https://doi.org/10.1164/ajrccm-conference.2009.179.1_MeetingAbstracts.A5580
https://doi.org/10.1016/j.mri.2008.02.001
https://doi.org/10.1109/IEMBS.2007.4353788
https://doi.org/10.1016/j.amc.2021.126083
https://doi.org/10.1016/j.amc.2021.126083
https://doi.org/10.1109/ICoAC44903.2018.8939059
https://doi.org/10.1109/ICNEWS.2018.8903928
https://doi.org/10.1109/ICISC44355.2019.9036469
https://doi.org/10.1109/ICISC44355.2019.9036469
http://caribjsci.com/gallery/is2.191.pdf
http://caribjsci.com/gallery/is2.191.pdf
https://doi.org/10.1109/GEMCCON48223.2019.9132819
https://doi.org/10.1109/GEMCCON48223.2019.9132819
https://doi.org/10.1109/ICoAC48765.2019.246850
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/0714044
https://doi.org/10.1137/0714044
https://doi.org/10.1007/978-3-540-78773-0_27
https://doi.org/10.1007/978-3-540-78773-0_27
https://doi.org/10.1190/1.2792759
https://doi.org/10.1504/IJAHUC.2020.109795
https://doi.org/10.1504/IJAHUC.2020.109795
https://doi.org/10.5120/ijais12-450829
https://doi.org/10.5120/ijais12-450829
https://doi.org/10.1088/1742-6596/1770/1/012043
https://doi.org/10.1007/s11042-020-10051-z
https://doi.org/10.1007/s11042-020-10051-z
https://doi.org/10.1038/s41598-021-97717-2
https://doi.org/10.1038/s41598-021-97717-2
https://doi.org/10.1109/EURCON.2009.5167831
https://doi.org/10.1109/ICOS.2010.5720068
https://doi.org/10.1016/j.cma.2016.08.004
https://doi.org/10.1016/j.cma.2016.08.004
https://doi.org/10.1016/j.cma.2007.05.006
https://doi.org/10.1016/j.cma.2007.05.006
https://doi.org/10.1109/ICCS1.2017.8325990
https://doi.org/10.1109/ICCS1.2017.8325990
https://doi.org/10.2495/OP950071

Muthukrishnan et al. BMC Medical Imaging

116.

118.

121.

123.

125.

126.

130.

132.

134.

(2024) 24:182

Tay WB, Tseng YH, Lin LY, Tseng WY. Towards patient-specific cardio-
vascular modeling system using the immersed boundary tech-

nique. Biomed Eng Online. 2011;10(1):1-7. https://doi.org/10.1186/
1475-925X-10-52.

Bendsge MP, Rodrigues HC. Integrated topology and boundary

shape optimization of 2-D solids. Comput Methods Appl Mech Eng.
1991,87(1):15-34. https://doi.org/10.1016/0045-7825(91)90144-U.
Bogomolny A. Fundamental solutions method for elliptic boundary
value problems. SIAM J Numer Anal. 1985;22(4):644-69. https://doi.org/
10.1137/0722040.

Mathon R, Johnston RL. The approximate solution of elliptic bound-
ary-value problems by fundamental solutions. SIAM J Numer Anal.
1977,14(4):638-50. https://doi.org/10.1137/0714043.

Amann H, Moser J. On the existence of positive solutions of nonlinear
elliptic boundary value problems. Indiana Univ Math J. 1971,21(2):125-
46 https://www.jstor.org/stable/24890168.

Gossez JP. Nonlinear elliptic boundary value problems for equations
with rapidly (or slowly) increasing coefficients. Trans Am Math Soc.
1974;190:163-205. https://doi.org/10.1090/50002-9947-1974-03428
54-2.

Browder FE. Estimates and existence theorems for elliptic boundary
value problems. Proc Natl Acad Sci. 1959;45(3):365-72. https://doi.org/
10.1073/pnas.45.3.365.

Singh R, Reddy KS, Mathur T. Tracheobronchial carcinoid tumour caus-
ing a complete collapse of the one and compensatory hypertrophy

of the other lung, resulting in a post-pneumonectomy-like syndrome.
BMJ Case Reports CP. 2022;15(5):e250070. https://doi.org/10.1136/
bcr-2022-250070.

Amann H, Hess PA. Multiplicity result for a class of elliptic boundary
value problems. Proc Royal Soc Edinburgh Section A Math. 1979;84(1-
2):145-51. https://doi.org/10.1017/50308210500017017.

Starius G. Composite mesh difference methods for elliptic boundary
value problems. Numer Math. 1977;28(2):243-58. https://doi.org/10.
1007/BF01394455.

Singh R, Reddy KS, Mathur T. Tracheobronchial carcinoid tumour caus-
ing a complete collapse of the one and compensatory hypertrophy

of the other lung resulting in a postpneumonectomy-like syndrome.
BMJ Case Rep CP. 2022;15(5):¢250070. https://doi.org/10.1136/
bcr-2022-250070.

Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen AM, Broderick LS. ASSERT:
A physician-in-the-loop content-based retrieval system for HRCT image
databases. Comput Vis Image Underst. 1999;75(1-2):111-32. https.//
doi.org/10.1006/cviu.1999.0768.

Ceylan S, libay K, Kuzeyli K, Kalelioglu M, Aktiirk F, Ozoran Y. Intraven-
tricular meningioma of the fourth ventricle. Clin Neurol Neurosurg.
1992;94(2):181-4. https://doi.org/10.1016/0303-8467(92)90080-M.
Criscuolo GR, Symon L. Intraventricular meningioma. Acta Neurochir.
1986;83(3):83-91. https://doi.org/10.1007/BF01402383.

Kirsch CF. Imaging of midfacial and orbital trauma. Atlas Emerg Imaging
Head-to-Toe. 2022:1-4. https://doi.org/10.1007/978-3-030-44092-3_7-1.
Sung EK, Nadgir RN, Fujita A, Siegel C, Ghafouri RH, Traband A, Sakai

O. Injuries of the globe: what can the radiologist offer? Radiographics.
2014;34(3):764-76. https://doi.org/10.1148/rg.343135120.

Akkan K, Ucar M, Kilic K, Celtikci E, llgit E, Onal B. Unfused or twig-like
middle cerebral artery. Eur J Radiol. 2015;84(10):2013-8. https://doi.org/
10.1016/j.6jrad.2015.06.012.

Liu HM, Lai DM, Tu YK, Wang YH. Aneurysms in twig-like middle cerebral
artery. Cerebrovasc Dis. 2005;20(1):1-5. https://doi.org/10.1159/00008
6119.

Goto Y, Nanto M, Oka H, Murakami N, Nakagawa T, Kimura S, Iwamoto
Y, Inoue Y, Matsumoto K, Miyamoto J, Hashimoto N. Radiological and
clinical features of twig-like middle cerebral artery in comparison with
moyamoya angiopathy: a multicenter retrospective study. J Neurosurg.
2022;1(aop):1-9. https://doi.org/10.3171/2022.2.JNS212338.

Lansberg MG, Albers GW, Beaulieu C, Marks MP. Comparison of diffu-
sion-weighted MRI and CT in acute stroke. Neurology. 2000;54(8):1557—
61. https://doi.org/10.1212/WNL.54.8.1557.

Hacke W, Warach S. Diffusion-weighted MRI as an evolving standard of
care in acute stroke. Neurology. 2000;54(8):1548-9. https://doi.org/10.
1212/WNL.54.8.1548.

135.

136.

137.

142.

147.

148.

149.

150.

151.

152.

Page 44 of 45

Ahn BJ, Kwon KY. Hemiballism after transient hemiparesis on the same
side: a red flag of middle cerebral artery disease? Acta Neurol Belgica.
2022:1-3. https://doi.org/10.1007/513760-022-01901-8.

Lee KY, Latour LL, Luby M, Hsia AW, Merino JG, Warach S. Distal hyperin-
tense vessels on FLAIR: an MRI marker for collateral circulation in acute
stroke? Neurology. 2009;72(13):1134-9. https://doi.org/10.1212/01.wnl.
0000345360.80382.69.

Zhang M, Shi Q, Yue Y, Zhang M, Zhao L, Yan C. Evaluation of T2-FLAIR
combined with ASL on the collateral circulation of acute ischemic stroke.
Neurol Sci. 2022:1-0. https://doi.org/10.1007/510072-022-06042-7.

Ahn SJ, Suh SH, Lee KY, Kim JH, Seo KD, Lee S. Hyperintense vessels

on T2-PROPELLER-FLAIR in patients with acute MCA stroke: predic-
tion of arterial stenosis and perfusion abnormality. Am J Neuroradiol.
2015;36(11):2042-7. https://doi.org/10.3174/ajnr.a4423.

Attenberger Ul, Runge VM, Stemmer A, Williams KD, Naul LG, Michaely
HJ, Schoenberg SO, Reiser MF, Wintersperger BJ. Diffusion weighted
imaging: a comprehensive evaluation of a fast spin echo DWI sequence
with BLADE (PROPELLER) k-space sampling at 3T, using a 32-channel
head coil in acute brain ischemia. Invest Radiol. 2009;44(10):656-61.
https://doi.org/10.1097/rli.0b013e3181af3f0e.

Korkalainen N, llvesmaki T, Parkkola R, Perhomaa M, Mékikallio K. Brain
volumes and white matter microstructure in 8-to 10-year-old children
born with fetal growth restriction. Pediatr Radiol. 2022:1-3. https://doi.
0rg/10.1007/500247-022-05372-0.

Omuro AM, Leite CC, Mokhtari K, Delattre JY. Pitfalls in the diagnosis of
brain tumours. Lancet Neurol. 2006;5(11):937-48. https://doi.org/10.
1016/51474-4422(06)70597-X.

Razek AA. MR imaging of neoplastic and non-neoplastic lesions of the
brain and spine in neurofibromatosis type I. Neurol Sci. 2018;39(5):821-
7. https//doi.org/10.1007/510072-018-3284-7.

Garg RK, Sinha MK. Multiple ring-enhancing lesions of the brain. J Post-
grad Med. 2010;56(4):307-16. https://doi.org/10.4103/0022-3859.70939.
Haris M, Gupta RK, Singh A, Husain N, Husain M, Pandey CM, Srivastava
C, Behari S, Rathore RK. Differentiation of infective from neoplastic
brain lesions by dynamic contrast-enhanced MRI. Neuroradiology.
2008;50:531-40. https://doi.org/10.1007/500234-008-0378-6.

Borba LA, Passos G, Oliveira I. Liquid biopsy and tumor DNA/RNA detec-
tion in the cerebrospinal fluid of patients diagnosed with central nerv-
ous system glioma-A review article. Surg Neurol Int. 2023;14(183):1-6.
https://doi.org/10.25259/SNI_52_2023.

Piperi C, Saurty-Seerunghen MS, Levidou G, Sepsa A, Trigka EA, Klonou
A, Markouli M, Strepkos D, Spyropoulou A, Kanakoglou DS, Lakiotaki

E. Glioma cells expressing high levels of ALDH5A1 exhibit enhanced
migration transcriptional signature in patient tumors. Neurotherapeu-
tics. 2023,20(3):881-95. https://doi.org/10.1007/513311-023-01354-8.
Piperi C, Markouli M, Gargalionis AN, Papavassiliou KA, Papavassiliou
AG. Deciphering glioma epitranscriptome: focus on RNA modifica-
tions. Oncogene. 2023;42(28):2197-206. https://doi.org/10.1038/
$41388-023-02746-y.

Rodrigues AJ, Medress ZA, Sayadi J, Bhambhvani H, Falkson SR, Jokhai R,
Han SS, Hong DS. Predictors of spine metastases at initial presentation of
pediatric brain tumor patients: a single-institution study. Child’s Nervous
Syst. 2023;39(3):603-8. https://doi.org/10.1007/500381-022-05702-5.
Cocito C, Martin B, Giantini-Larsen AM, Valcarce-Aspegren M, Souwei-
dane MM, Szalontay L, Dahmane N, Greenfield JP. Leptomeningeal
dissemination in pediatric brain tumors. Neoplasia. 2023;39:100898.
https://doi.org/10.1016/j.ne0.2023.100898.

Franzini A, Picozzi P, Lasio GB, Pessina F. Staged Gamma Knife radiosur-
gery for a rosette-forming glioneuronal tumor of the fourth ventricle:

a case report. Child’s Nerv Syst. 2023:1-4. https://doi.org/10.1007/
500381-023-06014-y.

Sultan H, Balafif F, Nazwar TA, Wardhana DW, Eri AM, Djaya S. Tumor
surgery management prevalence of computed tomography, magnetic
resonance imaging, and positron emission tomography in epend-
ymoma screening apparatus: a review, Teikyo. Med J. 2023;46(1):7891-8.
Prebet T, Sun Z, Ketterling RP, Zeidan A, Greenberg P, Herman J, Juckett
M, Smith MR, Malick L, Paietta E, Czader M. Azacitidine with or without
Entinostat for the treatment of therapy-related myeloid neoplasm:
further results of the E1905 North American Leukemia Intergroup study.
Br J Haematol. 2016;172(3):384-91. https://doi.org/10.1111/bjh.13832.


https://doi.org/10.1186/1475-925X-10-52
https://doi.org/10.1186/1475-925X-10-52
https://doi.org/10.1016/0045-7825(91)90144-U
https://doi.org/10.1137/0722040
https://doi.org/10.1137/0722040
https://doi.org/10.1137/0714043
https://www.jstor.org/stable/24890168
https://doi.org/10.1090/S0002-9947-1974-0342854-2
https://doi.org/10.1090/S0002-9947-1974-0342854-2
https://doi.org/10.1073/pnas.45.3.365
https://doi.org/10.1073/pnas.45.3.365
https://doi.org/10.1136/bcr-2022-250070
https://doi.org/10.1136/bcr-2022-250070
https://doi.org/10.1017/S0308210500017017
https://doi.org/10.1007/BF01394455
https://doi.org/10.1007/BF01394455
https://doi.org/10.1136/bcr-2022-250070
https://doi.org/10.1136/bcr-2022-250070
https://doi.org/10.1006/cviu.1999.0768
https://doi.org/10.1006/cviu.1999.0768
https://doi.org/10.1016/0303-8467(92)90080-M
https://doi.org/10.1007/BF01402383
https://doi.org/10.1007/978-3-030-44092-3_7-1
https://doi.org/10.1148/rg.343135120
https://doi.org/10.1016/j.ejrad.2015.06.012
https://doi.org/10.1016/j.ejrad.2015.06.012
https://doi.org/10.1159/000086119
https://doi.org/10.1159/000086119
https://doi.org/10.3171/2022.2.JNS212338
https://doi.org/10.1212/WNL.54.8.1557
https://doi.org/10.1212/WNL.54.8.1548
https://doi.org/10.1212/WNL.54.8.1548
https://doi.org/10.1007/s13760-022-01901-8
https://doi.org/10.1212/01.wnl.0000345360.80382.69
https://doi.org/10.1212/01.wnl.0000345360.80382.69
https://doi.org/10.1007/s10072-022-06042-7
https://doi.org/10.3174/ajnr.a4423
https://doi.org/10.1097/rli.0b013e3181af3f0e
https://doi.org/10.1007/s00247-022-05372-0
https://doi.org/10.1007/s00247-022-05372-0
https://doi.org/10.1016/s1474-4422(06)70597-x
https://doi.org/10.1016/s1474-4422(06)70597-x
https://doi.org/10.1007/s10072-018-3284-7
https://doi.org/10.4103/0022-3859.70939
https://doi.org/10.1007/s00234-008-0378-6
https://doi.org/10.25259/SNI_52_2023
https://doi.org/10.1007/s13311-023-01354-8
https://doi.org/10.1038/s41388-023-02746-y
https://doi.org/10.1038/s41388-023-02746-y
https://doi.org/10.1007/s00381-022-05702-5
https://doi.org/10.1016/j.neo.2023.100898
https://doi.org/10.1007/s00381-023-06014-y
https://doi.org/10.1007/s00381-023-06014-y
https://doi.org/10.1111/bjh.13832

Muthukrishnan et al. BMC Medical Imaging (2024) 24:182

153.

154.

155.

156.

Bui N, Kuo C, Brown NJ, Dzihic E, Gendreau J, Patel NA, Patel S, Koester
SW, Singh R, Abraham ME, Mammis A. Staged open cranial surgery for
primary intra-axial neoplasms: a systematic review. World Neurosurg.
2023;175:e167-73. https://doi.org/10.1016/jwneu.2023.03.046.
Furlanetti L, Ballestero MF, de Oliveira RS. Surgical anatomy of the
approaches to the brainstem surgical anatomy for Brainstem tumors
approaches, brain anatomy and neurosurgical approaches: a practical,
illustrated, easy-to-use guide. Cham: Springer International Publishing;
2023. 569-589. https://doi.org/10.1007/978-3-031-14820-0_30.

Maia RC, Junior HL, dos Santos Luciano MC, Fiorenza NG, Ferraz CP, de
Azevedo OG, Junior E, Araujo Filho S, Sobrinho O. A brain neoplasm
follow-up in a tertiary public hospital of northeast of Brazil: 2014-2016
data. 2023. p. 1-21. https://doi.org/10.21203/rs.3.rs-2773800/Vv1.

Di Cristofori A, Carone G, Rocca A, Rui CB, Trezza A, Carrabba G, Giussani
C. Fluorescence and intraoperative ultrasound as surgical adjuncts for
brain metastases resection: what do we know? A systematic review of
the literature. Cancers. 2023;15(7):3151. https://doi.org/10.1002/brb3.
3151,

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Page 45 of 45


https://doi.org/10.1016/j.wneu.2023.03.046
https://doi.org/10.1007/978-3-031-14820-0_30
https://doi.org/10.21203/rs.3.rs-2773800/v1
https://doi.org/10.1002/brb3.3151
https://doi.org/10.1002/brb3.3151

	Continuum topological derivative - a novel application tool for denoising CT and MRI medical images
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Imaging modalities
	Computer Tomography (CT)
	Magnetic Resonance Imaging (MRI)
	Noises in CT and MR images
	Quantum mottle in CT
	Gaussian and Rayleigh’s noises in MRI

	Methodology
	Continuum Topological Derivative (CTD)
	Specification of tools
	Clinical examples
	Clinical example 1: HRCT thoracic cavity carina
	Clinical example 2: Ocular globe-lens 4th ventricle head CT
	Clinical example 3: MRI brain-middle cerebral artery territory DWI (B 800)
	Clinical example 4: MRI brain—middle cerebral artery territory FLAIR T2
	Clinical example 5: MRI brain—middle cerebral artery territory PROP T2
	Clinical Examples 6, 7 and 8: Infarct and Demyelination
	Clinical Examples 9, 10 and 11: Neoplastic lesions

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


