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Abstract
Background Acute pancreatitis is one of the most common diseases requiring emergency surgery. Rapid and 
accurate recognition of acute pancreatitis can help improve clinical outcomes. This study aimed to develop a deep 
learning-powered diagnostic model for acute pancreatitis.

Materials and methods In this investigation, we enrolled a cohort of 190 patients with acute pancreatitis who were 
admitted to Sichuan Provincial People’s Hospital between January 2020 and December 2021. Abdominal computed 
tomography (CT) scans were obtained from both patients with acute pancreatitis and healthy individuals. Our 
model was constructed using two modules: (1) the acute pancreatitis classifier module; (2) the pancreatitis lesion 
segmentation module. Each model’s performance was assessed based on precision, recall rate, F1-score, Area Under 
the Curve (AUC), loss rate, frequency-weighted accuracy (fwavacc), and Mean Intersection over Union (MIOU).

Results Upon admission, significant variations were observed between patients with mild and severe acute 
pancreatitis in inflammatory indexes, liver, and kidney function indicators, as well as coagulation parameters. 
The acute pancreatitis classifier module exhibited commendable diagnostic efficacy, showing an impressive 
AUC of 0.993 (95%CI: 0.978–0.999) in the test set (comprising healthy examination patients vs. those with acute 
pancreatitis, P < 0.001) and an AUC of 0.850 (95%CI: 0.790–0.898) in the external validation set (healthy examination 
patients vs. patients with acute pancreatitis, P < 0.001). Furthermore, the acute pancreatitis lesion segmentation 
module demonstrated exceptional performance in the validation set. For pancreas segmentation, peripancreatic 
inflammatory exudation, peripancreatic effusion, and peripancreatic abscess necrosis, the MIOU values were 86.02 
(84.52, 87.20), 61.81 (56.25, 64.83), 57.73 (49.90, 68.23), and 66.36 (55.08, 72.12), respectively. These findings underscore 
the robustness and reliability of the developed models in accurately characterizing and assessing acute pancreatitis.

Conclusion The diagnostic model for acute pancreatitis, driven by deep learning, exhibits excellent efficacy in 
accurately evaluating the severity of the condition.

Trial Registration This is a retrospective study.
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Background
Acute pancreatitis is one the most common diseases in 
emergency departments and is characterized by local and 
systemic inflammation with different clinical courses [1, 
2]. The symptoms of acute pancreatitis are non-specific 
and may include abdominal pain, nausea, vomiting and 
fever. These symptoms can be difficult to distinguish 
from those of other gastrointestinal diseases, such as 
cholecystitis, acute gastroenteritis and acute appendi-
citis. Furthermore, acute pancreatitis may present with 
atypical symptoms, such as back pain, which can result 
in incorrect or delayed diagnosis. Although elevated 
serum amylase and lipase levels are characteristic of 
acute pancreatitis, these enzymes can also be elevated 
under other conditions, which can lead to false-positive 
results. In 2017, there were about 1.6 million new cases 
of acute pancreatitis worldwide, of which about 100,000 
resulted in death [3]. Acute pancreatitis is mostly self-
limited. However, around 20% of the patients develop 
acute severe pancreatitis and the death rate is about 30% 
[4]. Although several models have been developed to 
predict pancreatitis-related outcomes, their accuracy is 
unsatisfactory [5, 6]. At the present, there are many clini-
cal scoring systems for the early classification of acute 
pancreatitis severity, among which Acute Physiological 
and Chronic Health Score (APACHE) II and Acute Pan-
creatitis Severity Bed Side Index (BISAP) are widely used 
in clinical practice [7]. The BISAP score can be evaluated 
on the first day of admission, but the accuracy and sen-
sitivity of its prediction are not high [8]. In imaging, the 
assessment of acute pancreatitis relies on the Balthazar 
CT [9] rating and the Modified Computed Tomography 
Severity Index Score (MCTSI) [10]. However, in early 
stages of acute pancreatitis, morphological changes of 
the pancreas may not be apparent on CT or MRI images 
in some patients, especially pancreatic necrosis, which 
may lead to underestimation of the severity of the dis-
ease [11, 12]. The severity of symptoms and manifesta-
tions of acute pancreatitis varies from person to person, 
and it can result in complications, including the forma-
tion of pseudocysts and organ failure. The early recogni-
tion of these complications is of the utmost importance 
for the appropriate management of the condition and the 
improvement of patient outcome.

Recently, artificial intelligence (AI) is poised to revo-
lutionize the future development of medicine [13]. 
Through AI models, an accurate prediction of results can 
be achieved by learning complex relationships among the 
data presented [14]. With the advancement of computing 
technologies and the development of medical databases, 
machine learning has become an active area of medical 
research. Machine learning in medicine can generate 
more accurate diagnostic algorithms and individualized 
patient treatment plans [15, 16]. In recent years, AI has 

also been widely applied to acute pancreatitis diagnosis 
and treatment, especially in severity evaluation [17–19], 
complications [20–22], mortality [23, 24], recurrence [25, 
26], and surgery time prediction [27, 28] with various 
degrees of breakthroughs.

Traditional machine learning (ML) constructs mod-
els for diagnosis and predictions based on clinical and 
laboratory data of patients with acute pancreatitis. Deep 
learning (DL), as a primary research direction in the field 
of ML, has its unique advantages. DL can learn patterns 
and features within data, and the information obtained 
in the process of learning can be made highly interpre-
table for numerical, image and other data. The Convolu-
tional Neural Networks (CNN) is a class of feedforward 
neural networks that uses convolutional computation 
with a deep neural network structure and is one of the 
representative algorithms of DL [29]. Among the differ-
ent variants of CNN-based networks, U-Net has become 
one of the main choices, a network model proposed by 
Ronneberger et al. [30] in 2015, which consists of a sym-
metric encoder-decoder network with hopping connec-
tions for enhanced detail retention. The U-Net network 
was used for semantic segmentation of medical imaging 
data when it was proposed and was extended to seman-
tic segmentation of 3D video data [31] and generation 
of super-resolution images [32] in subsequent applied 
research. Numerous studies [33–40] have proposed novel 
model architectures based on the U-net model architec-
ture, which have demonstrated significant advancements 
in image segmentation performance and model param-
eter requirements. EasyDL is a DL platform developed 
by Baidu company that allows researchers to create and 
train models easily [41]. EasyDL’s underlying layers com-
bine AutoDL and AutoML technologies to automatically 
obtain optimal networks, which avoids tedious network 
selection and hyperparameter tuning for non-specialists 
in building DL models. Therefore, this study merges two 
autonomous modules to develop an ensemble learning 
model, which not only improves the performance of the 
model, but also enhances its interpretability. Previous 
research in the diagnosis and prediction of acute pancre-
atitis has only been conducted at the level of traditional 
ML [17–28]. The advantages of DL have not been effec-
tively utilized, and this study proposes to construct a 
unique diagnostic prediction model for acute pancreatitis 
through DL methods.

To that end, we broke into new territories in the fol-
lowing areas: (1) This is the first instance in which DL 
has been employed to construct a diagnostic model for 
acute pancreatitis. (2) We innovatively combined the 
acute pancreatitis classifier and lesion segmentation 
modules to construct a diagnostic model, which can 
not only quickly identify pancreatitis, but also identify 
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pancreatitis-associated foci and directly assess the sever-
ity of the disease.

This paper is structured as follows: Sect. 2 outlines the 
methodology employed in this study. This includes an 
overview of the inclusion and exclusion criteria, the data 
collection and processing process, and the model con-
struction. The model was made up of two modules: (1) 
the acute pancreatitis classifier module; (2) the pancre-
atitis lesion segmentation module. The statistical meth-
ods employed, and the evaluation methods used to assess 
the final model. Section 3 presents the results section of 
this study, including the statistical results of the patients’ 
baseline data and the results of the modelling. Section 4 
is devoted to the strengths of the model and some of the 
current limitations. It concludes with a discussion of 
future directions for improving the study.

Materials and methods
Patients
The protocol of this retrospective study was approved 
by the Medical Ethics Committee of Sichuan Provin-
cial People’s Hospital, with consent information waived 
(approval number: Ethical Review (Research) No. 99 of 
2022). The investigation involved patients admitted to the 
emergency medicine center of Sichuan Provincial Peo-
ple’s Hospital for acute pancreatitis from January 2020 to 
December 2021. Additionally, healthy control individuals 
from the Physical Examination Center of Sichuan Pro-
vincial People’s Hospital during the same period were 
included in the study. Inclusion and exclusion criteria are 
shown in Table 1.

Data collection
Clinical and laboratory data collection
Upon admission to the emergency department, compre-
hensive clinical and laboratory data were meticulously 
gathered. This encompassed demographic informa-
tion such as gender and age, along with pertinent medi-
cal histories including hypertension, diabetes, smoking 
habits, and alcohol consumption. The laboratory data-
set included a range of parameters: blood routine, 

inflammatory marker, liver and kidney function indica-
tors, serum amylase, lipase, blood lipids, and coagulation 
function.

Imaging data collection
For the purposes of DL in this study, abdominal CT 
images served as the primary dataset. A meticulous 
process was followed, where two independent radiolo-
gists screened the abdominal CT images of both patients 
and healthy control individuals. Subsequently, images 
depicting noticeable pancreatic swelling indicative of 
acute pancreatitis or those exhibiting a normal pancreas 
in physical examinations were selected. The final step 
involved a thorough review of the screened images by a 
senior radiologist, ensuring the precision and reliability 
of the dataset for subsequent analyses.

Development of classifier module for acute pancreatitis
In our research, we employed Baidu’s EasyDL platform 
(https://ai.baidu.com/easydl/) as the foundation for con-
structing a classifier module dedicated to acute pancre-
atitis. Adhering to EasyDL’s operational protocol, we 
uploaded CT images representing both acute pancre-
atitis and healthy pancreas, and these images were sub-
sequently trained using EasyDL’s optimal network. We 
observed and recorded the performance metrics of the 
module during training. To comprehensively assess the 
module’s robustness, an untrained dataset was used for 
external validation, providing valuable insights into its 
generalization capabilities beyond the training dataset.

Development of lesion segmentation module for acute 
pancreatitis
In this study, the delineation of pancreatic conditions, 
including normal pancreas, swollen pancreas, peripan-
creatic inflammatory exudate, peripancreatic effusion, 
and peripancreatic abscess necrosis, was anchored on 
the Balthazar CT rating. To execute this segmentation 
task, we used the open-source software Genie Annota-
tion Assistant. Two radiologists performed pixel-level 
segmentation of the lesions, and subsequently, a senior 
radiologist reviewed the segmented content.

The U-Net network [30], illustrated in Fig. 1, was cho-
sen as the foundational architecture for the segmenta-
tion module. This module exhibits a straightforward 
structure, with the left section devoted to feature extrac-
tion and the right part to up-sampling. Termed the 
Encoder-Decoder structure in the realm of research, the 
U-Net network maximizes the effectiveness of segmen-
tation data utilization by employing a data enhancement 
method, particularly advantageous when dealing with a 
limited number of segmented images.

For optimal module training, the dataset was intelli-
gently partitioned into a training set and a validation set 

Table 1 Inclusion and exclusion criteria
Inclusion criteria Exclusion criteria
1. Patients age ≥ 18 years 1. Patients age < 18 years
2. Admitted to Sichuan Emergency Center 
for treatment of acute pancreatitis

2. No abdominal CT 
examination during 
hospitalization

3. At least one abdominal CT examination 
during hospitalization

3. Previous history of 
gastrointestinal tumors

4. The resolution of CT images is 512*512 
pixels

4. Previous history of 
pancreatic surgery

5. Abdominal CT for health screening 
patients

5. Poor quality of CT 
image imaging

https://ai.baidu.com/easydl/
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through a computer-generated random division, main-
taining an 8:2 ratio. This strategic division ensures robust 
training and reliable validation, contributing to the over-
all efficacy of the segmentation module. The workflow of 
the methodology is shown in Fig. 2.

Statistical methods
For the analysis of small sample continuous data, the 
normality of the data distribution was assessed using the 
Shapiro-Wilk test. In instances where the data exhibited 
normal distribution, they were presented as mean ± stan-
dard deviation (± S), and inter-group comparisons were 
conducted using the independent sample t-test. Alter-
natively, for skewed data, representation was made using 
the median and quartile [M (P25, P75)], and inter-group 
comparisons were performed using the Mann-Whitney 
U test.

Dichotomous data underwent inter-group comparisons 
through Chi-square tests. The statistical analysis was 
executed using IBM SPSS Statistics 26.0 software (IBM, 
America).

Model evaluation
In the acute pancreatitis classifier module, the assess-
ment of module efficacy relied on the area under the 
Receiver Operating Characteristic (ROC) curve. The 
acute pancreatitis lesion segmentation module’s perfor-
mance was gauged by analyzing the accuracy, loss rate, 
frequency-weighted accuracy (fwavacc), and Mean Inter-
section over Union (MIOU) across both the training and 
validation sets.

Result
Demographic characteristics
A total of 190 patients with acute pancreatitis were 
included in this study, of which 121 (63.68%) were males 
and 69 (36.32%) were females. According to the sever-
ity of the disease, 100 cases (52.63%) were classified as 
mild acute pancreatitis and 90 cases (47.37%) as severe 
acute pancreatitis (moderate and severe acute pancreati-
tis are defined as severe acute pancreatitis in this study). 
The clinical and laboratory data of patients with pancre-
atitis were collected in accordance with the methodol-
ogy detailed in Table 2. The differences between the two 
groups in smoking, leukocytes, neutrophils, hematocrit 
(HCT), platelets (PLT), C-reactive protein (CRP), procal-
citonin (PCT), urea, creatinine (Cr), glucose (Glu), cal-
cium (Ca), albumin (ALB), aspartate transaminase (AST), 
lactate dehydrogenase (LDH), total bilirubin (TB), amy-
lase (AMY), lipase (LPS), total cholesterol (TC), LDL, 
PT, APTT, DD, and FDP were statistically significant 
(P < 0.05).

Imaging data
Image study was performed by two radiologists outlin-
ing the target area and one senior radiologist reviewing 
the result. A total of 945 segmented images of swollen 
pancreas, 592 segmented images of normal pancreas, 
475 segmented images of peripancreatic inflammatory 
exudate, 153 segmented images of peripancreatic effu-
sion, and 42 segmented images of peripancreatic abscess 
necrosis were obtained. Figure  3 shows the lesion seg-
mentation diagram.

Fig. 1 Structure of U-Net network

 



Page 5 of 19Zhang et al. BMC Medical Imaging          (2024) 24:154 

Classifier module for acute pancreatitis
The classifier module obtained by EasyDL was highly 
effective, with 99.1% precision rate, 100% recall rate and 
100% f1-score for predicting acute pancreatitis. Among 
352 random samples, 350 were correctly predicted by 
the module and 2 samples were incorrectly predicted 
(Table 3). The heat map is shown in Fig. 4. To verify the 
performance of the module, 186 untrained images were 
selected and inputted to EasyDL for validation. The 
ROC curves of the classifier module in the test set and 
external validation set are shown in Fig.  5 [AUC 0.993 
(95%CI: 0.978–0.999) in the test set for healthy patients 
vs. patients with acute pancreatitis, P < 0.001]; [AUC 
0.850 (95%CI: 0.790–0.898) in the external validation set 
for healthy patients vs. patients with acute pancreatitis), 
P < 0.001]. The AUC of the classifier module in the test set 
and external validation set are detailed in Table 4.

Lesion segmentation module for identifying acute 
pancreatitis
Pancreas segmentation module
The module was constructed to distinguish swollen and 
normal pancreas, using 675 segmentation images of 
swollen pancreas and 500 segmentation images of nor-
mal pancreas. The training parameters of this module 
were EPOCH-NUM = 300, BATCH-SIAZE = 16, train-
num = 10. The module performed very well in pancreatic 
segmentation, and in the validation set, the median and 
quartiles of accuracy, loss rate, fwavacc, and mean cross-
ratio were [99.54 (99.48, 99.59), 1.74 (1.36, 2.19), 99.14 
(99.02, 99.23), 86.02 (84.52, 87.20)]. The accuracy, loss 
rate, fwavacc, and mean crossover sum of the training 
and validation sets of the module are shown in Fig. 6. The 
segmentation effects are shown in Fig.  7. The results of 
each parameter of the segmentation module in the vali-
dation set are shown in Table 5.

Fig. 2 The workflow of the methodology
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Peripancreatic inflammatory exudate segmentation module
This module was constructed using 457 segmenta-
tion images of peripancreatic inflammatory exudate. 
The training parameters of this module were EPOCH-
NUM = 300, BATCH-SIAZE = 16, train-num = 10. The 
module performed well in segmentation of peripancre-
atic inflammatory exudate, and in the validation set, the 

median and quartiles of accuracy, loss rate, fwavacc, and 
mean cross-comparison ratio were [99.06 (98.89, 99.20), 
3.64 (2.85, 4.98), 98.29 (97.97, 98.57), and 61.81 (56.25, 
64.83)]. The accuracy, loss rate, fwavacc, and mean cross-
over sum of the training and validation sets of the module 
are shown in Fig. 8. The splitting effect is shown in Fig. 9.

Peripancreatic effusion segmentation module
The peripancreatic effusion module was constructed 
using 153 segmentation images of peripancreatic effu-
sion. The training parameters of this module were 
EPOCH-NUM = 400, BATCH-SIAZE = 16, train-
num = 10. The module performed well in segmentation of 
peripancreatic inflammatory exudate, and in the valida-
tion set, the median and quartiles of accuracy, loss rate, 
fwavacc, and mean cross-comparison ratio were [98.86 
(98.40, 99.05), 4.07 (3.12, 5.50), 97.79 (96.91, 98.16), 57.73 
(49.90, 68.23)]. The accuracy, loss rate, fwavacc, and 
mean crossover sum of the training and validation sets 
of the module are shown in Fig. 10. The splitting effect is 
shown in Fig. 11.

Peripancreatic abscess necrosis segmentation module
The peripancreatic abscess necrosis module was con-
structed using 42 segmentation maps of peripancreatic 
abscess necrosis. The training parameters of this module 
were EPOCH-NUM = 400, BATCH-SIAZE = 16, train-
num = 10. The module performed well in segmentation of 
peripancreatic abscess necrosis, and in the validation set, 
the median and quartiles of accuracy, loss rate, fwavacc, 
and mean cross-comparison ratio were [97.94 (97.64, 
98.26), 4.80 (4.29, 6.15), 96.36 (95.51, 96.98), 66.36 (55.08, 
72.12)]. The accuracy, loss rate, fwavacc, and mean cross-
over sum of the training and validation sets of the mod-
ule are shown in Fig. 12. The splitting effect is shown in 
Fig. 13.

Discussion
In this study, we constructed a deep learning-powered 
diagnostic model for acute pancreatitis, which was able 
to effectively recognize acute pancreatitis and assess its 
severity by segmenting out the relevant lesions. The acute 
pancreatitis classifier module of this model showed high 
accuracy for the diagnosis of acute pancreatitis. In the 
test set [AUC of 0.993 (95% CI: 0.978–0.999), sensitivity 
of 100.00% and specificity of 98.59% for healthy patients 
vs. patients with acute pancreatitis]. In the external vali-
dation set [AUC of 0.850 (95% CI: 0.790–0.898), sensitiv-
ity of 80.85% and specificity of 89.13% for healthy patients 
vs. patients with acute pancreatitis]. In the pancreatitis 
segmentation module of this model, its segmenting abil-
ity of acute pancreatitis related lesions was also good, 
MIOU on the validation set was as high as 86.02%. This 
indicates that our model can diagnose acute pancreatitis 

Table 2 Baseline information on admission of patients with 
acute pancreatitis
Projects Acute mild pancre-

atitis (n = 100)
Acute severe pan-
creatitis (n = 90)

P
Value

Age 46.68 ± 13.43 50.29 ± 16.85 0.107
Gender (M/F) 63/37 58/32 0.836
High blood 
pressure

18 21 0.363

Diabetes 21 14 0.334
Smoking 47 27 0.016
Drinking 41 28 0.157
WBC (109/L) 11.19 (8.35, 14.09) 13.04 (10.86, 17.36) 0.001
N (109/L) 8.90 (6.41, 12.24) 11.79 (9.17, 15.41) 0.000
M (109/L) 0.50 (0.30, 0.72) 0.56 (0.39, 0.77) 0.104
HB (g/L) 145.74 ± 21.74 150.82 ± 28.66 0.174
HCT (%) 42.15 (39.50, 46.58) 45.30 (38.93, 50.50) 0.048
PLT (109/L) 187.00 (132.00, 

239.75)
157.00 (124.75, 210.50) 0.042

CRP (mg/L) 21.72 (5.20, 95.14) 92.40 (10.45, 211.29) 0.000
PCT (ng/mL) 0.13 (0.05, 0.35) 0.81 (0.22, 3.04) 0.000
Urea (mmol/L) 4.14 (3.05, 5.29) 6.05 (3.96, 8.59) 0.000
Cr (umol/L) 56.90 (46.33, 64.98) 61.65 (52.28, 103.50) 0.001
GLU (mmol/L) 8.10 (5.98, 11.34) 9.02 (7.06, 13.39) 0.022
K+ (mmol/L) 3.93 (3.68, 4.14) 3.92 (3.66, 4.31) 0.521
Na+ (mmol/L) 137.80 (135.33, 

139.76)
137.70 (134.70, 140.20) 0.734

Ca2+ (mmol/L) 2.22 (2.08, 2.36) 2.10 (1.92, 2.28) 0.000
ALB (g/L) 40.14 ± 5.97 36.40 ± 6.13 0.000
AST (U/L) 38.00 (27.25, 61.25) 62.50 (40.50, 165.00) 0.000
ALT (U/L) 36.50 (21.25, 66.75) 39.00 (22.75, 132.25) 0.166
LDH (U/L) 225.50 (194.00, 

280.75)
420.00 (256.50, 551.00) 0.000

ALP (U/L) 89.00 (74.25, 120.50) 97.00 (73.50, 134.00) 0.232
TBIL (umol/L) 18.15 (13.93, 29.75) 26.20 (18.40, 47.83) 0.000
AMY (U/L) 197.50 (99.25, 

694.00)
728.50 (229.25, 
1455.50)

0.000

LPS (U/L) 318.25 (113.65, 
1529.88)

1016.20 (287.58, 
2667.88)

0.001

TC (mmol/L) 4.64 (3.72, 6.60) 4.12 (3.06, 5.40) 0.007
TG (mmol/L) 2.04 (1.06, 8.13) 1.79 (1.00, 4.05) 0.294
LDL (mmol/L) 2.01 (1.64, 2.79) 1.90 (1.33, 2.44) 0.029
HDL (mmol/L) 1.04 (0.82, 1.32) 1.07 (0.65, 1.33) 0.922
ApoA1/ApoB 1.30 (1.10, 1.80) 1.30 (1.00, 1.80) 0.398
PT (s) 11.65 (11.00, 12.50) 12.30 (11.55, 13.65) 0.000
APTT (s) 26.95 (25.83, 28.28) 27.90 (25.45, 30.85) 0.018
FIB (g/L) 3.72 (2.99, 5.28) 3.96 (3.00, 6.57) 0.199
D- Dimer (mg/L) 1.15 (0.43, 2.03) 3.25 (1.33, 6.41) 0.000
FDP (mg/L) 3.30 (2.50, 5.48) 7.70 (3.45, 15.60) 0.000
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quickly and accurately. As a result, it can have a positive 
impact on clinical practice. For example, the model can 
be deployed in more primary hospitals, which can assist 
emergency physicians to diagnose acute pancreatitis 
quickly and accurately, reducing the misdiagnosis rate 
while increasing the success rate of patient treatment.

The acute pancreatitis classifier module of this model 
achieved satisfactory results in terms of AUC-ROC, sen-
sitivity, and specificity in both the test set and the external 
validation set. The credibility of this module is increased 
by the heatmap. Traditional DL models are deficient in 
interpretability and many studies [42–44] treated DL 
models as black boxes. In our study we have applied 
heatmap based on Shapley value [45] to improve the 
interpretability. In the pancreatitis classifier module of, 

we know exactly which regions the model is transform-
ing with high weights to obtain the final discriminative 
results by the heatmap. From the correct classification 
Fig. 4(1a-1d) and Fig. 4(1e-1h) we can see that the module 
classifies the peripancreatic area as a high weight region. 
In addition, Fig.  4(1i-1l) shows the incorrectly classified 
images, and the module classified these two normal pan-
creatic images as pancreatitis images based on the peri-
pancreatic region. It is not difficult to see from the figure 
that the module incorrectly considers the residual stom-
ach as a high-weighted region. It is known that this is dif-
ficult even for a well-trained imaging physician.

EasyDL is a DL platform developed by Baidu that facili-
tates the entire process of model creation, data uploading, 
training the model, and model release. The underlying 
layer of EasyDL integrates AutoDL and AutoML tech-
nologies to automatically identify the optimal network. 
The platform eliminates the need for non-professionals 
to engage in tedious network selection and hyper-param-
eter tuning when constructing DL networks. Further-
more, EasyDL provides a heatmap, constructed using the 

Table 3 The training result of EasyDL
Label Name Number of 

test sets
Precision 
(%)

Recalling 
rate (%)

f1-
score 
(%)

Normal pancreas 142 100.0 99.0 99.0
Acute pancreatitis 210 99.1 100.0 100.0

Fig. 3 Lesion segmentation diagram. (a) original CT image of acute pancreatitis; (b) manual segmentation of swollen pancreas; (c) manual segmenta-
tion of peripancreatic inflammatory exudate; (d) manual segmentation of peripancreatic effusion; (e) manual segmentation of peripancreatic necrosis
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Fig. 5 The ROC curves of the classifier module in the test set and external validation set

 

Fig. 4 The heat map of the classifier module for acute pancreatitis
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Pixel-wise Shapley Value technique, which enables the 
user to identify the focus area. This is the primary rea-
son this platform was selected for the construction of 
the pancreatitis classifier module. However, as this plat-
form is a commercial platform, its most significant draw-
back is that it is not possible to ascertain which network 
it employs for training purposes or the training process 
itself.

In terms of segmentation method for acute pancre-
atitis lesions, we established our model by distinguish-
ing four pathological types such as swell pancreases, 
peripancreatic inflammatory exudate, peripancreatic 
effusion, and peripancreatic abscess necrosis. In gen-
eral, the model runs well (Table 5), but the performance 
on peripancreatic inflammatory exudate, peripancre-
atic effusion, and peripancreatic abscess necrosis are 
not satisfactory. The reasons for this were analyzed in 
conjunction with the results of the module segmenta-
tion. Peripancreatic inflammatory exudate and peri-
pancreatic effusion are randomly distributed around 

the pancreas. From the segmentation results of the two 
modules in the validation set, the segmentation module 
identifies not only our pre-segmented lesions, but also 
some small and scattered lesions, which is equivalent to 
increasing the denominator of the MIOU. On the other 
hand, although the manual segmentation of the lesion 
is done by an imaging physician, selection bias is inevi-
table. However, by looking at the segmentation results, 
we found that the constructed module can in fact cor-
rect the selection bias, which explains the low MIOU 
and good segmentation results. Therefore, for these two 
modules, we cannot evaluate the performance of the 
module simply based on the magnitude of the MIOU 
and should instead combine the segmentation effects to 
make a comprehensive analysis. This also confirms that 
the DL model, as mentioned in study by Meglič J et al. 
[46], is actually learning and not simply mimicking the 
training dataset. This is a significant breakthrough in 
the field of medical image segmentation. As for the seg-
mentation module of pancreatic abscess necrosis, the 
lack of sample size is the main reason for the low MIOU 
of the module, but the present results achieved by 42 
segmented images have already shown that the module 
itself is highly successful.

To our best knowledge, our model is the first one that 
can distinguish acute pancreatitis in CT images. In addi-
tion, our model provides a segmentation function that 
can distinguish acute pancreatitis lesions, which is also 
unprecedented. This intelligent diagnostic model can 
assist clinicians to quickly recognize and assess the sever-
ity of acute pancreatitis through the segmentation of 
related lesions in a clinical setting. In terms of processing 
image data, this research ensured the quality of the data-
set through manual segmentation by well-trained imag-
ing physicians.

Currently, DL techniques have been applied to medi-
cal image segmentation and have demonstrated expert 
performance. In Li’s study [47], a meta-learning approach 
based on frequency domain feature mixing was pro-
posed, which achieved a new level of generalization in 
MRI segmentation of nasopharyngeal carcinoma, with 
MIOU of 75.74%. The Swin MoCo network, a momen-
tum contrast learning network with a Swin Transformer 
backbone, proposed by Xu et al. [48], has been shown 
to improve parotid segmentation to 85.18% MIOU. In 
Wang’s study [49], the deep learning model based on the 
U-net network demonstrated efficacy in fully automated 
image segmentation of adenoid and airway of nasophar-
ynx in children, with MIOU values of 86.28% and 86.32%, 
respectively. Similar findings [50, 51] have been reported 
in other medical image segmentation models, more 
details can be found in Table  6. From the results pre-
sented in the table, it can be concluded that optimizing 

Table 4 AUC of classifier module in test set and external 
validation set
Projects Test set External vali-

dation set
Sample size 352 186
Normal pancreas 210(59.66%) 94(50.54%)
Acute pancreatitis 140(40.34%) 92(49.46%)
AUC 0.993 0.850
Standard Errors 0.00496 0.0261
95% Confidence interval 0.978 to 0.999 0.790 to 0.898
z statistic 99.348 13.395
Significance level P (Area = 0.5) < 0.0001 < 0.0001
Youden indx J 0.9859 0.6998
Sensitivity 100.00 80.85
Specificity 98.59 89.13

Table 5 The results of each parameter of the segmentation 
module in the validation set
Projects Accuracy(%) Loss(%) Fwavacc(%) MIOU(%)
pancreas 99.54(99.48, 

99.59)
1.74(1.36, 
2.19)

99.14(99.02, 
99.23)

86.02(84.52, 
87.20)

peripan-
creatic 
inflam-
matory 
exudate

99.06(98.89, 
99.20)

3.60(2.85, 
4.98)

98.29(97.97, 
98.57)

61.81(56.25, 
64.83)

peripan-
creatic 
effusion

98.86(98.40, 
99.05)

4.07(3.12, 
5.50)

97.79(96.91, 
98.16)

57.73(49.90, 
68.23)

peripan-
creatic 
abscess 
necrosis

97.94(97.64, 
98.26)

4.80(4.29, 
6.15)

96.36(95.51, 
96.98)

66.36(55.08, 
72.12)
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the model architecture is an urgent problem to be solved 
if the objective is to further improve the segmentation 
performance of the model.

Although the segmentation function of U-Net is pow-
erful, the acceptance domain of convolution operation 
in CNN is limited by the size of convolution kernel, 

resulting in a lack of long-distance dependence [52]. 
Therefore, CNN-based methods often have obvious limi-
tations when it comes to displaying remote relationships 
in modeling. This is also the reason U-Net cannot make 
further breakthroughs. Transformer [53] is a popular 
approach in natural language processing that has been 

Fig. 6 Accuracy, loss rate, fwavacc, and MIOU plots of the training and validation sets of the pancreas segmentation module
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shown to be effective in learning global contextual fea-
tures in computer vision and has demonstrated superior 
portability to downstream tasks under large-scale pre-
training. It has been successful in the field of machine 
translation and natural language processing [54]. There-
fore, it is proposed that TransUNet uses a CNN encoder 
to obtain local features, and then merges the Transformer 
into a hybrid encoder in the U-Net down-sampling path 
to obtain global contextual features [55]. The use of U-net 
alone to segment the pancreas is problematic when the 
basic textural features of the pancreas are not obvious 
compared to the surrounding peripheral organs. By com-
bining CNN, which is good at capturing local features, 
and Transformer, which is good at capturing surround-
ing features, we can obtain more accurate segmentation 
than any traditional methods. Although our method 
achieves some good results in the segmentation of acute 
pancreatitis lesions, the module still has much room for 
improvement, potentially by capturing the surrounding 
features through Transformer.

Among the models for DL, the application of appropri-
ate preprocessing approaches to the data or model can 
frequently enhance the learning results. Such examples 
include noise reduction, data balancing, data enhance-
ment, and model architecture optimization, among 
others. In medical imaging, noise may have multiple 

sources and may affect the ability of the model to learn 
meaningful features. The importance of noise reduc-
tion to improve segmentation accuracy was highlighted 
in a study [56]. We can explore similar techniques such 
as denoising self-encoders or wavelet-based methods 
to mitigate noise in CT images. Category imbalance is 
a prevalent issue in DL models, particularly in classifi-
cation models. When the number of samples of differ-
ent categories in a dataset varies greatly, the model may 
exhibit a tendency to predict most of the categories while 
ignoring a few, which may subsequently affect the overall 
performance of the model. Although our dataset does not 
exhibit significant imbalances, the techniques discussed 
in Singh’s Study [57] can be borrowed, albeit with differ-
ent application scenarios. For instance, oversampling a 
limited number of classes or the generation of synthetic 
data may be employed to achieve a more balanced distri-
bution of acute pancreatitis and healthy cases. The study 
by Vaisali Chandrasekar [58] emphasizes the significance 
of data enhancement in improving the generalization 
capacity of models. It is possible to apply a number of 
enhancement techniques to CT images, including rota-
tion, flipping and cropping, in order to artificially expand 
the dataset and expose the model to a greater variety of 
situations. Finally, optimization of the model architecture 
is often important as well. A study [36] demonstrated 

Fig. 7 Effect plots of the pancreas segmentation module
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Fig. 8 Accuracy, loss rate, fwavacc, and MIOU plots of the training and validation sets of the Peripancreatic inflammatory exudate segmentation module
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the effectiveness of an improved U-Net architecture for 
a segmentation task. Although our study employed the 
U-Net architecture, we may wish to consider integrating 
selected elements, such as dense connections or pyramid 
pooling modules, with the aim of enhancing our lesion 
segmentation model.

Although our model performs well on both the training 
and validation sets, it is prudent to exercise caution when 
employing AI to diagnose and treat diseases in clinical 
practice. One study [59] has demonstrated the potential 
risks associated with the use of Computer-aided Detec-
tion or Diagnostic (CAD) in clinical settings. However, 

we still encourage clinicians to consider it as a tool to 
assist in diagnosis.

This study has some limitations. Firstly, it is a single-
center study, which increases the risk of bias. Secondly, 
the data set included in this study met the model require-
ments, but not every patient with pancreatitis had local 
complications such as effusion or necrosis, so there was 
still a lack of sufficient data to construct a better seg-
mentation module for effusion and necrosis in acute 
pancreatitis.

Fig. 9 Effect plots of the Peripancreatic inflammatory exudate segmentation module

 



Page 14 of 19Zhang et al. BMC Medical Imaging          (2024) 24:154 

Fig. 10 Accuracy, loss rate, fwavacc, and MIOU plots of the training and validation sets of the peripancreatic effusion segmentation module
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Fig. 11 Effect plots of the peripancreatic effusion segmentation module

 

Table 6 Comparative results with related literature
Au-
thor, 
Year

Region of 
interest

Model Data sources Sample MIOU(%)

This 
work

pancreas U-net manual 
segmentation

1175 86.02

Yin Li, 
2024

nasopha-
ryngeal 
carcinoma

MF-Net manual 
segmentation

321 75.74

Zian 
Xu, 
2024

parotid 
gland

Swin 
MoCo 
with 
transfer

manual 
segmentation

148 85.18

Alek-
san-
dra 
Dzien-
isze-
wska, 
2024

Skin ResNet18 ISIC 2018 
dataset

- 88.0

Wang 
L, 
2023

adenoid of 
nasophar-
ynx

U-net manual 
segmentation

52 86.28

airway of 
nasophar-
ynx

86.32

Shao-
jun 
Zhu, 
2022

Pterygium Phase-
fusion 
PSPNet

manual 
segmentation

517 86.31

Double 
phase-
fusion 
PSPNet

86.57
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Fig. 12 Accuracy, loss rate, fwavacc, and MIOU plots of the training and validation sets of the peripancreatic abscess necrosis segmentation module
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Conclusion
This study presents an innovative approach to the con-
struction of an intelligent diagnostic model for acute 
pancreatitis, employing a DL algorithm. The model is 
designed to assist clinicians in rapidly and accurately 
identifying the presence of pancreatitis and segmenting 
lesions associated with acute pancreatitis. The model 
assists clinicians in assessing the severity of the disease 
in a more intuitive manner and in developing appropri-
ate treatment plans for patients. Furthermore, in future 
work, we will continue to optimize the network and 
incorporate patients’ laboratory data into the model 
based on the existing model to construct a more compre-
hensive diagnostic model.
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