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Abstract
Background Pneumoconiosis has a significant impact on the quality of patient survival due to its difficult staging 
diagnosis and poor prognosis. This study aimed to develop a computer-aided diagnostic system for the screening 
and staging of pneumoconiosis based on a multi-stage joint deep learning approach using X-ray chest radiographs of 
pneumoconiosis patients.

Methods In this study, a total of 498 medical chest radiographs were obtained from the Department of Radiology 
of West China Fourth Hospital. The dataset was randomly divided into a training set and a test set at a ratio of 4:1. 
Following histogram equalization for image enhancement, the images were segmented using the U-Net model, and 
staging was predicted using a convolutional neural network classification model. We first used Efficient-Net for multi-
classification staging diagnosis, but the results showed that stage I/II of pneumoconiosis was difficult to diagnose. 
Therefore, based on clinical practice we continued to improve the model by using the Res-Net 34 Multi-stage joint 
method.

Results Of the 498 cases collected, the classification model using the Efficient-Net achieved an accuracy of 83% with 
a Quadratic Weighted Kappa (QWK) score of 0.889. The classification model using the multi-stage joint approach of 
Res-Net 34 achieved an accuracy of 89% with an area under the curve (AUC) of 0.98 and a high QWK score of 0.94.

Conclusions In this study, the diagnostic accuracy of pneumoconiosis staging was significantly improved by an 
innovative combined multi-stage approach, which provided a reference for clinical application and pneumoconiosis 
screening.
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Introduction
Pneumoconiosis is a category of occupational diseases 
with the widest impact and the most serious harm. It is 
a systemic disease caused by fibrosis of lung tissue due 
to long-term inhalation of productive dust in the pro-
duction environment. According to the Global Burden 
of Disease Study [1, 2], there are still much pneumoco-
niosis, numbering up to 527,500 cases, with more than 
60,000 new cases reported globally in 2017, and the mor-
tality rate of pneumoconiosis has stayed at an elevated 
level in recent years [1, 3]. The 2018 National Occupa-
tional Disease Report, released by the National Health 
Commission, indicated that the number of individuals 
diagnosed with occupational pneumoconiosis across the 
country from 2012 to 2018 reached 170,569, representing 
over 90% of all occupational diseases. The progression of 
pneumoconiosis is protracted and undetectable, and the 
established clinical treatments for pneumoconiosis are 
limited. The only life-saving treatment option for end-
stage pneumoconiosis is lung transplantation. There-
fore, regular screening of potential risk groups and early 
detection of the disease is crucial for the early interven-
tion of pneumoconiosis and the improvement of patients’ 
quality of life.

According to China’s current Diagnosis of Occupa-
tional Pneumoconiosis GBZ 70-2015 [4], the core of 
pneumoconiosis diagnosis is to correctly interpret the 
X-ray chest radiographs, and make use of the density of 
small opacities, the distribution of lung areas and other 
indexes to carry out an appropriate staging of pneumo-
coniosis patients. At present, the diagnosis and initial 
screening of pneumoconiosis is done by manual reading 
of chest radiographs, which is affected by various subjec-
tive or objective reasons such as doctors’ experience and 
level, resulting in misdiagnosis and omission of diagnosis 
from time to time [5]. The inferior quality of chest radio-
graphs, doctors’ inability to recognize the disease, and 
the different latent periods of pneumoconiosis have led 
to serious limitations in the early diagnosis of pneumo-
coniosis. Early detection of pneumoconiosis and its inter-
ventions still need an economical, timely, accurate, and 
efficient screening solution.

With the continuous deep research of artificial 
intelligence(AI), medical image-assisted diagnostic test-
ing technology has been gradually applied to medical 
clinics, to improve the diagnostic stability and accuracy 
of doctors, there is an urgent need for computer-assisted 
diagnosis technology Computer-aided diagnosis (CAD) 
and deep learning technology Deep Learning (DL) on 
chest radiographs to quickly and accurately CAD and 
DL are urgently needed for rapid and accurate screening 
of chest radiographs to assist in diagnosing pneumoco-
niosis. Since 2010, with the rise of CAD, several research-
ers have proposed several image analysis methods for 

diagnosing pneumoconiosis based on the texture features 
of chest radiographs [6–9] to help radiologists reduce 
their workloads and improve diagnostic efficiency. How-
ever, all these methods require a certain degree of sub-
jective “manual” work by physicians to accomplish tasks 
such as feature definition, which is challenging for the 
complex task of pneumoconiosis staging diagnosis. 
Deep learning techniques have had remarkable success 
in medical imaging tasks [10]. Several studies [11–13] 
have demonstrated the feasibility of using AI to diagnose 
lung abnormalities such as lung nodules, tuberculosis, 
cystic fibrosis, etc. Several studies have also conducted 
extensive research on the use of AI in pneumoconiosis 
diagnosis, including classification [7, 14, 15], detection 
[16], etc. However, due to the limited number of well-
labeled pneumoconiosis chest radiographs for training 
AI models, the complexity of pneumoconiosis disease 
itself, and the uneven distribution of staging, some stud-
ies only achieve binary classification [17] or single-stage 
multi-classification [18].For binary classification, it only 
provides simplistic outcomes, labeling images as either 
normal or abnormal, without the ability to discern the 
severity of the condition. This limitation heightens the 
risk of overlooking or misjudging the extent of the dis-
ease. For single-stage multi-classification, this method is 
susceptible to imbalance issues and lacks robustness in 
modeling.so there is a lack of AI-based diagnostic tools 
for pneumoconiosis staging.

To this end, this study leveraged a deep learning-based 
U-Net model to extract lung fields from pneumoconio-
sis chest radiographs and employs neural networks to 
learn image features, enabling precise classification of 
pneumoconiosis stages. By comparing the proposed 
multi-stage joint approach model with traditional single 
neural network models, this research aimed to advance 
the application of deep learning in pneumoconiosis diag-
nosis and screening, offering a more accurate and effi-
cient solution.

Materials and methods
After image augmentation of the datasets, we used the 
U-NET network for image segmentation. After dividing 
the data set into the training set, test set, and validation 
set, we trained the model using the neural network and 
optimized the model evaluation results to obtain the final 
model. The implementation details were described in 
the following sections. Figure 1 was the flowchart of the 
method in this study.

Ethics approval
The study was approved by the Medical Ethics Commit-
tee of West China Fourth Hospital, Sichuan University 
(Ethical approval number: HXSY-EC-2,023,042). The 
study was retrospective. The use of patient information 
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will not adversely affect them, so we waived informed 
consent, but data confidentiality was ensured. All 
methods strictly adhered to relevant guidelines and 
regulations.

Dataset
A dataset consisting of 498 medical chest radiographs 
and corresponding clinical cases was obtained from the 
Department of Radiology of West China Fourth Hospital. 
The dataset was randomly divided into training and test 
sets in a ratio of 4:1, as shown in Table  1. And accord-
ing to the five-fold cross-validation method, each time 
20% (i.e., 80 samples) of 398 training sets were randomly 
selected for validation, and the remaining 80% was used 
for training. Detailed data regarding specific stages of 
pneumoconiosis have been prepared and presented in 
the attached table.

The study’s inclusion criteria outlined three main 
requirements: (1) individuals with a history of dust 
exposure; (2) patients whose chest radiographs met or 
exceeded the acceptable quality criteria set out in the 
GBZ70-2015 guidelines for the diagnosis of occupa-
tional pneumoconiosis; and (3) positive cases who had 
been formally diagnosed with pneumoconiosis and who 
had obtained diagnostic certificates from qualified units. 
On the other hand, the exclusion criteria included sub-
jects with pre-existing pulmonary or pleural diseases that 
would interfere with the diagnosis or grading of pneumo-
coniosis. These may include but are not limited to, pneu-
mothorax, pleural effusion, or incomplete resection of 
lung tissue on one side.

Evaluation indicators
Based on the confusion matrix, the following indicators 
are commonly used in evaluation models.

Accuracy represents the ratio of the number of classi-
fications tested correctly to the total number of tests, cal-
culated as follows.

 
Acc =

TP + TN

TP + FP + FN + TN

Recall indicates the ratio of the number of true positive 
samples to the actual number of positive samples, calcu-
lated as follows.

 
Recall =

TP

TP + FN

Precision indicates the ratio of the number of true posi-
tive samples to the number of predicted positive samples, 
calculated as follows.

 
Precision =

TP

TP + FP

F1-score: In general, we cannot evaluate the classifica-
tion ability of the model by simply using recall and pre-
cision, and we need to combine recall and precision to 
consider the F1 value, which is the harmonic average of 
recall and precision. The larger the F1 value, the better 
the classification ability of the model. The formula is as 
follows.

 
F1 =

2× Recall × Precision
Recall + Precision

Receiver operating characteristic (ROC): The ROC 
curve evaluates classifier performance across vari-
ous thresholds and serves as a gauge for classification 

Table 1 Summary of data
Data Set Normal Stage I Stage II Stage III Total
Training Set 146 117 93 42 398
Test Set 47 30 15 8 100
Total 193 147 108 50 498

Fig. 1 Research Methodology Flowchart
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imbalance. It plots the false positive rate (FPR) on the 
horizontal axis and the true positive rate (TPR) on the 
vertical axis. TPR indicates the ratio of the number of 
true positive samples to the number of all positive sam-
ples, while FPR indicates the ratio of the number of false 
positive samples to the number of all negative samples.

Area Under Curve (AUC) value: The AUC curve 
serves as an indicator to assess classifier performance by 
illustrating its capability to accurately classify positive 
and negative samples across various thresholds. A higher 
AUC value, approaching 1, indicates superior classifier 
performance, while a value closer to 0.5 suggests the clas-
sifier’s performance is akin to random classification.

Quadratic weighted kappa (QWK): QWK is an indi-
cator used to measure the consistency of classifiers. It 
considers the consistency between the predicted results 
and the actual results, and weights the degree of error. 
The value range of QWK is usually from − 1 to 1, where 
1 represents complete consistency, 0 represents con-
sistency with random selection, and negative numbers 
indicate lower consistency between predicted and actual 
results than random selection. The formula is as follows.

 
κ = 1−

∑
i,j wi,jOi,j∑
i,j wi,jEi,j

QWK provides a more comprehensive measure of model 
accuracy relative to accuracy (Acc). For example, misclas-
sifying normal as pneumoconiosis I has the same effect 
on accuracy as misclassifying normal as pneumoconiosis 
III, but the latter is clearly the more serious error. QWK 
will produce a greater decrease in the latter, which makes 
evaluating the model more comprehensive.

Image preprocessing
Use histogram equalization to enhance the image. Since 
some of the tissue structure information in an X-ray 

chest film may not have significant contrast or have sub-
tle gray level differences from the surrounding area, to 
highlight the target area or object, we need to adjust the 
gray level of the image to emphasize the contrast differ-
ence between the target area or object and its surround-
ings. The histogram equalization algorithm [19] enhances 
the image contrast by redistributing the number of dif-
ferent pixel gray levels in the image so that the number 
of pixels in each gray level is equal. For medical images 
such as chest radiographs of pneumoconiosis, histogram 
equalization can enhance the clarity and differentiation 
of lesions and help doctors accurately diagnose and treat 
patients. The effect was shown in Fig. 2.

Image segmentation
Since the resolution of the chest X-ray of pneumoconio-
sis after image preprocessing is larger (2980 × 2980) and 
there are multiple types of targets in the X-ray, which 
will affect the training of the classification network, it is 
still not suitable for the direct use of the neural network 
that can accomplish the classification task. Therefore, it 
is necessary to use image segmentation to segment the 
chest X-ray image of a pneumoconiosis patient into mul-
tiple regions and train classification on each region. This 
can simultaneously increase the number of samples and 
reduce the computational complexity. According to the 
selected image segmentation method, we used the U-Net 
semantic segmentation method with better results. This 
model is based on convolutional neural networks and is 
widely used in the field of image segmentation.

U-net image segmentation
U-Net has an efficient architecture designed for biomedi-
cal image segmentation tasks, featuring a contracting 
path for capturing context and a symmetric expanding 
path for precise localization. This design enables effi-
cient use of limited training data and facilitates accurate 

Fig. 2 Histogram equalization before and after
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segmentation even with small datasets [20]. Additionally, 
skip connections between contracting and expanding 
paths aid in preserving spatial information [21].

We used image segmentation to exclude irrelevant 
parts of the chest radiographs and reduce the image reso-
lution, with a total of 1734 pairs of images and masking 
layers to train the U-Net model.

The mask layer obtained by U-Net was shown in Fig. 3, 
and most of them were complete, as shown in the left 
figure. But a few had small defects as shown in the right 
figure. So further image processing is required to remove 
the defects and get a complete mask layer [22].

Morphological manipulation of the mask layer
These small defects can be removed by performing 
“open-close” morphology operations on the above defec-
tive mask layers with appropriately sized convolutional 

kernels. The meanings of open, close, erode and dilate in 
OpenCV-Python are respectively:

a) Erode: convolution of the image by a certain size of 
convolution kernel, causing the white (transparent) 
parts to shrink.

b) Dilate: the image is convolved with a convolution 
kernel of a certain size and the white (transparent) 
part is dilated.

c) Open: erode before dilating.
d) Close: dilate before eroding.

The specific process is shown in Fig. 4:
Morphological operator size is determined by two 

parameters:

a) number of contours: normal pneumoconiosis 
pictures have only two contours, but for defective 

Fig. 4 Schematic diagram of mask layer processing

 

Fig. 3 A complete mask layer (left) and a defective mask layer (right)
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pneumoconiosis pictures there are usually more than 
two contours.

b) fragmentation factor: the ratio of the total perimeter 
of the contour L to the total area of the contour S.

 
λ =

∑N
i=1Li∑N
i=1Si

where Li  and Si  denote the perimeter and area of the 
i.th segment profile, respectively. The larger the fragmen-
tation coefficient, the more fragmented the dusty lung 
picture is. And the details were shown in Table 2. Addi-
tionally, the morphological operators smooth the seg-
mentation mask. To mitigate potential adverse impacts, 
we employed the smallest possible morphological opera-
tor that still effectively eliminated imperfections. This 
approach ensured minimal alteration to the mask while 
maintaining its integrity. Larger morphological operator 
like nine pixels, while effective in eliminating imperfec-
tions, resulted in an excessively smooth mask, potentially 
compromising the original information.

After obtaining the complete mask layer, the mask layer 
was acted on the original chest film to separate the lungs 
from other parts and find out the outer rectangle of the 
mask layer; then according to the national standard of 
chest film classification, the chest film can be divided into 
six parts: upper-left, upper-right, middle-left, middle-
right, lower-left and lower-right. Divide the above outer 
rectangle of the chest film into six small rectangles to get 
six partitions, as Fig. 5 shown.

The labeled dataset obtained in this study was inde-
pendently subjected to the first round of reading by 
radiologists of post-partitioned chest radiographs by the 
national standard GBZ70-2015, and the staging stage of 
pneumoconiosis was determined by independently anno-
tating the abundance of small turbidities (grades 0, 1, 2, 
or 3) and the presence of large turbidities for each subre-
gion, after which we trained the dataset.

Data enhancement
After the above preprocessing, the resolution of the 
chest X-ray film was still too large, and it would take a 
long time to load and process if it was directly inputted 
into the Convolutional Neural Networks (CNN), consid-
ering the memory limitations of the device and the con-
venience of the CNN inputs, the above-processed image 
was down-sampled to 1000 × 1000.

Data enhancement such as rotation and cropping are 
a desirable approach to effectively expand the train-
ing samples and enhance the model generalization and 
robustness performance while suppressing overfitting. 
After testing, it was found that mild data enhancement by 
small angle (5°~10°) rotation, small range (110%~120%) 
zoom, and horizontal flipping could improve the accu-
racy, but after too extensive data enhancement (including 
rotation, horizontal flipping, vertical flipping, Gaussian 
noise, etc.), the accuracy of the model decreased, and the 
results were shown in Table 3.

We used mild data augmentation on the data after par-
titioning with U-Net before training the staging model.

Efficient-net-based staging of pneumoconiosis
We have trained pneumoconiosis staging using neu-
ral networks with different structures such as VGG16, 
ResNet18, Mobile-Net, Efficient-Net, etc. The accuracy 
and Quadratic Weighted Kappa (QWK) obtained based 
on the corresponding confusion matrices (Fig.  6) were 
compared with the EfficientNet-B0-V1 model as shown 
in Table 4. The EfficientNet-B0-V1 works better because 
Efficient-Net has elastic structures such as scalable con-
volutional kernel, so it has good performance for large 
images, such as X-ray film.

The overall accuracy of a whole image can be obtained 
by combining the diagnostic results of each partitioning 
by Table 5.

Efficient-Net has three main parameters: width (ω
), depth (d) and resolution I. The width represents the 

Table 2 Guidelines for selection of morphological size (in pixels)
Number of contours Fragmentation factor

(/10−2 )
Morphological 
operator size
(px)

2 Arbitrarily None
2–5 < 3.2 3
2–5 3.2-4 5
2–5 > 4 7
> 5 Arbitrarily 9

Table 3 Accuracy of efficient-net after using different image 
enhancements
Data Enhancement Staging Accuracy
No data enhancement is used 80%
Use light data enhancement 83%
Overused data enhancements 77%

Fig. 5 Schematic diagram of image partitioning
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number of convolutional layers or channels; the depth 
represents the number of layers of the network after each 
convolution; and the resolution represents the size of the 
input image.

For how to balance the three dimensions of resolution, 
depth and width to achieve the optimization of convolu-
tional networks in terms of accuracy and efficiency, Effi-
cient-Net proposes a model composite scaling method 
(composite scaling method), which envisions that in 
a basic network, the network can be scaled up in the 
dimensions of width, depth and resolution, and the main 
idea of Efficient-Net is to synthesize these three dimen-
sions for composite scaling of the network.

The unsegmented pneumoconiosis dataset had only 
one class of objects: dust lungs. As a result, the images 
had few features, so our model didn’t need many con-
volutional kernels to generate many channels for feature 
extraction. Therefore, we chose Efficient-Net with a small 
width; moreover, the segmented pneumoconiosis data-
set still had a large resolution (1000 × 1000). Therefore, 
we needed a CNN with larger depth to process larger 
images. The basic structure of the model was shown in 
Fig. 7.

After repeated experiments, three hyperparameters: 
depth factor, width factor, and resolution are selected 
by grid search method. We finally found that depth fac-
tor = 2, width factor = 0.5, and Resolution = 1000 was the 
optimal choice (relative to the factors in EfficientNet-B0).

Multi-stage combined staging diagnosis
Clinical practice shows that the diagnosis of pneumo-
coniosis stage III is the easiest, the distinction between 
stage I and stage II is the second, and the distinction 
between stage 0 and stage I is the most difficult.

Following the assessment and analysis, the Efficient-
Net model has been identified as having a challenge in 
differentiating between stages I and II in multi-classifica-
tion. To enhance the accuracy of the model, a multi-stage 
joint method has been employed.

Stage 1 Distinguish between stage 0 patients and stage I/
II/III patients;

Stage 2 Distinguish between stage I/II and stage III 
patients;

Stage 3 Distinguish between stage I/II patients.
The flowchart was shown in Fig. 8:

Through the joint multi-phase approach, a more spe-
cialized model can be trained, and the generalization 
ability of the model can also be increased, increasing 
its robustness. When higher sensitivity of the model is 
needed to distinguish between stage 0 and 1/2/3, and 
higher specificity of the model is needed to distinguish 
between stage 1/2, the characteristic improvement of 
Res-Net34 for each stage according to the distinguishing 
characteristics of the stages can bring out the advantages 
of the model and improve the accuracy.

Experimental setup and model training
The neural network models for the multi-stage joint 
staging model were trained separately. A five-fold cross-
validation method was used to optimize the network 
parameters in the training set, and then the model with 
the highest accuracy was selected for testing in an exter-
nal test set. Its training environment was NVIDIA RTX 

Table 4 Comparison of accuracy and QWK of efficient-net with 
other models
Neural Network ACC QWK
ResNet18 72% 0.822
MobileNet-V2 75% 0.833
EfficientNet-B0-V2 74% 0.813
EfficientNet-B0-V1 83% 0.889

Table 5 Pneumoconiosis classification scale
Description

Normal No opacities discover, or Level 1 profusion 
of opacity presented in one subregion

Stage I Level 1 profusion of opacities presented 
in more than two subregions, or
Level 2 profusion of opacities presented 
in four subregions or less

Stage II Level 2 profusion of opacities presented 
in four subregions or more, or
Level 3 profusion of opacities presented

Stage III Large opacities presented

Fig. 6 Confusion matrix of ResNet18, MobileNet-V2, and EfficientNet-B0-V2 models (from left to right) on the validation set
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Fig. 8 Multi-stage joint flow chart

 

Fig. 7 Comparison of EfficientNet-B0 and Efficient-Net used in this paper
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3060 GPU (8GB), and all code was implemented by 
Python 3.9.8. The batch size was initially set to 32, the 
optimizer was Adam, the weights were initialized using 
default initializer (standard normal distribution), and the 
initial learning rate was set to 0.0001. We used a stepped 
learning rate tuning strategy, where the learning rate was 
tuned to 1/10th of the original rate every 15 calendar 
hours, and training was stopped after 1000 iterations.

Convolutional layers use an ReLU  activation func-
tion, which is a function that is semi-corrected from the 
bottom, and the mathematical formula is specified as 
follows:

 f (x) = max(0, x)

Where, thex  denotes the input. Staging pneumoco-
niosis is a multiclassification problem. For the classifica-
tion problem, the most used loss function is the Cross 
Entropy Loss, which can be expressed as.

 
LCE = −

4∑

i=1

yilog (pi)

where.4  is the number of pneumoconiosis staging;yi  is a 
One-hot vector, the outputs on the staging are 0 except 
for the target staging which is 1;pi  is the prediction of the 
neural network, that is, the staging i  probability of the 
staging.

Sometimes we may only want to distinguish whether 
we are sick or not, which is a binary classification prob-
lem. In this case, the network predictions end up with 

only 2 categories, assuming that for each category the 
probability of prediction is respectively p  and1− p , then 
at this point the cross-entropy loss function is formulated 
as:

 LCE = −[y · log(p) + (1 − y) · log(1 − p )]

Where y  is the sample label, positive sample label is 1, 
and negative sample label is 0.p  denotes the probability 
of predicting a positive sample.

Results
U-net semantic segmentation
The U-Net semantic segmentation model evaluation uti-
lized an open-source dataset derived from Kaggle con-
taining training and test chest slices and already labeled 
mask layers. After 20 cycles of training, the localization 
accuracy rate IoU (Intersection over Union) reached 
97.8%. Figure  9 showed the trend of loss function and 
accuracy with the number of training cycles, respectively.

The loss degree and validation set loss degree fit was 
high, indicating that there was no overfitting, as shown 
in the left figure. The accuracy of both the training and 
validation sets increased with the increase of cycles, as 
shown in the right figure. This indicated that the model 
was well trained, and the final accuracy gradually con-
verged to about 97.8%. Figure  10 showed the effect of 
U-Net image segmentation, and it can be seen from the 
figure that the accuracy of the U-Net image model was 
high.

Fig. 9 Variation of loss and accuracy with the number of training sessions
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Efficient-net multi-classification model evaluation
By referring to other neural network models in the field 
of medical images, this study used the accuracy, preci-
sion, recall, F1-score, quadratic weighted kappa score 
(QWK) and ROC curve and AUC to evaluate the perfor-
mance of the model. All the above metrics except ROC, 
can be calculated by the confusion matrix. A confusion 
matrix is used as a table for evaluating the performance 
of a classification model, where each row represents 
the actual category, and each column represents the 
predicted category. Table  6 showed the visualization 
of the classification results on the validation set for the 
multi-classification model applying the neural network 
Efficient-Net.

The above confusion matrix showed that the model 
accuracy was 83% and most of the data was distributed 
on the main diagonal, which indicated that the model 
was accurate.

The precision, recall, and F1-score of each stage were 
shown in Table 7.

Multi-stage combined staged diagnostic assessment
The multi-stage joint staging diagnostic model integrated 
multiple neural network models to have higher accuracy, 
and its confusion matrix was shown in Table 8.

The accuracy of the multi-stage joint staging diagnostic 
model for each partition was shown in Table 9:

The accuracy of the whole chest radiograph was 
obtained after aggregating the partitioned accuracies 

Table 6 Confusion matrix of efficient-net multi-classification 
model on validation set
Predict
Reality

Normal Stage I Stage II Stage III Total

Normal 44 3 0 0 47
Stage I 7 20 3 0 30
Stage II 0 3 12 0 15
Stage III 0 1 0 7 8
Total 51 27 15 7 100

Table 7 Accuracy rates by stage
Normal Stage I Stage II Stage III

Precision 0.86 0.74 0.80 1.00
Recall 0.94 0.67 0.80 0.88
F1-score 0.89 0.70 0.80 0.93
QWK 0.889

Table 8 Confusion matrix for the multi-stage combined staging 
diagnostic model
Predict
Reality

Normal Stage I Stage II Stage III Total

Normal 130 1 0 0 131
Stage I 9 9 4 1 23
Stage II 1 1 17 4 23
Stage III 0 0 1 15 16
Total 140 11 22 20 193

Fig. 10 U-net image segmentation effect diagram
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and calculating them according to the criteria above. The 
model of the precision, recall, and F1-scores for each 
staging were shown in Table 10:

The accuracy of the model on the validation set varied 
during the model training process as shown in Fig. 11:

Comparing Efficient-Net single-model multi-classifica-
tion and multi-stage joint staging diagnostic models, the 
comparison of their indicators were as Table 11 showed 
that the multi-stage joint staging diagnostic model 
had made great progress compared with Efficient-Net 
multi-classification.

The dichotomous ROC curves for the multi-stage com-
bined staging diagnostic model were shown in Fig.  12. 
The differentiation effect of the model was excellent.

Stability analysis
In pneumoconiosis clinical diagnosis, we expect the out-
put of neural networks to be reliable and consistent. If the 
network performs unstable when the input data changes 
slightly or with slight perturbations, its reliability will be 
threatened. Stability analysis can help us to understand 

Table 9 Partition accuracy
Subregion Dichotomous (distinguishing only 

between the presence or absence of 
disease)

Stag-
ing 
Accu-
racyAccuracy Sensitivity Specificity

Top-right 0.929 0.882 0.942 0.866
Top- left 0.912 0.829 0.930 0.864
Middle-right 0.934 0.908 0.941 0.895
Middle-left 0.881 0.918 0.883 0.932
Bottom-right 0.856 0.604 0.907 0.849
Bottom-left 0.818 0.500 0.876 0.895
Subject 0.973 0.981 0.970 0.886

Table 10 Accuracy rates by staging
Normal Stage I Stage II Stage III

Precision 0.93 0.82 0.77 0.79
Recall 0.99 0.41 0.74 0.94
F1-score 0.96 0.55 0.76 0.86
QWK 0.94

Table 11 Comparison of efficient-net multi-classification model and multi-stage joint staging
Efficient-Net Single-model Multi-Classification Multi-stage joint Staging Diagnostic Model
Dichotomous Staging Accuracy Dichotomous Staging Accuracy
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
90.0% 86.8% 93.6% 83.0% 94.3% 84.1% 99.2% 89.0%

Fig. 12 ROC curves for the multi-stage combined staging diagnostic 
model

 

Fig. 11 Figure 11 Variation of accuracy with epoch. (a) Distinguish between Stage 0 and Stage I/II/III. (b) Distinguish between Stage I/II and Stage III. (c) 
Distinguish between Stage I and II
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the sensitivity of the network to the input data and take 
corresponding measures to improve the reliability of 
the network. To test the stability of the model, we added 
Gaussian blur with different radii (units: pixels) and dif-
ferent proportions of Gaussian noise to the model. The 
larger the blur radius, the stronger the blur. The higher 
the noise percentage, the more noise. Figure 13 showed 
that the result of testing the consistency of the model 
output on the test set. It can be observed that the consis-
tency of the model decreased slightly with increasing blur 
and noise, but still remained at a higher level. Therefore, 
the model can be considered to have high stability.

Discussion
In the diagnosis of pneumoconiosis, the relevant occu-
pational history, the condition of the patient and the 
X-ray chest film of the patient are the main evidence for 
the doctor to determine whether the patient is suffering 
from pneumoconiosis and to diagnose the specific pneu-
moconiosis stage. Due to the complexity of the human 
body structure and organization, X-ray chest radiographs 
are characterized by poor contrast, wide dynamic range 
and rich details, etc. Primary healthcare institutions are 
severely limited by the bottleneck of capacity and tal-
ent, especially the diagnostic decision-making ability 
of healthcare institutions in rural areas, which makes it 
easy for inconsistent and unreliable diagnostic results 
to occur. Therefore, for the application of pneumoco-
niosis diagnosis, doctors need an automated auxiliary 
diagnostic system to help them complete the diagnosis 
of pneumoconiosis, to reduce the difficulty of reading 
radiographs and improve diagnostic efficiency. In this 
study, we utilized powerful neural network learning and 
well-labeled chest radiographs to develop a deep learn-
ing-based pneumoconiosis staging diagnostic model.

The main difference between the joint deep learning-
based multi-stage model proposed in this study and other 
models for pneumoconiosis screening is:

1) Compared with other machine learning methods, 
our binary classification result achieved 94.3% 
accuracy, which is significantly better than other 
results [23], where the best result among general 
neural network classifiers is only 83%.

2) The model we developed had higher screening 
accuracy in the paper reports on the staged diagnosis 
of pneumoconiosis. In the study of Yang F [17] et al., 
the overall accuracy of the four classifications was 
only 70.1%, and the model screening accuracy in 
the study of Cai [6] et al. was 79%, even though the 
AUC for experienced physicians was only 0.668 and 
0.772 [24]. Our model not only diagnoses the disease, 
but also focuses on staging the diagnosis, with an 
accuracy of 83%.

3) After we use the improved U-net neural network for 
image segmentation, we use Efficient-Net to train the 
model with fewer parameters and higher accuracy 
compared to other models. Overfitting is avoided by 
adding Dropout layer and L2 regularization, which 
improves the model generalization ability. Efficient-
Net optimizes the use of computational resources 
by systematically balancing the depth, width, and 
resolution of the network, which enables more 
efficient use of hardware resources such as memory 
and processing power.

4) Compared with our previous research [15], the 
image segmentation method used in this study is 
U-Net, with an IOU of 97.8%, which is better than 
the previous 94.3%. Although the accuracy (89%) is 
slightly lower than the previous 90.4%, considering 
that the sample size of the previous study was more 
than twice that of this study, increasing the sample 
size may increase the accuracy. The previous study’s 
AUC was 0.96, but in this study, the AUC increased 
to 0.98. In addition, this study added new evaluation 
indicators, QWK which equals 0.94, indicating that 
the classification model has excellent performance.

5) In terms of methods, Liton [25] et al. employs an 
integrated model for classification using weighted 

Fig. 13 The consistency of the model output on the test set
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average and majority voting, but only for binary 
classification. Yang F [17] et al. first segments the 
lungs from the background using U-net and then 
classifies them using Res-Net, also only for binary 
classification. Liuzhuo Zhang [18] divides the lung 
into six regions using U-net, classifies each partition 
using Res-Net with four classifications, and finally 
obtains the radiograph’s overall result. Zhang [26] 
initially divided the lung into six regions using U-net 
and then staged it using traditional algorithms. In 
contrast, we utilized a segmentation method prior 
to classification. During the segmentation stage, we 
first separated the lungs from the background using 
U-net. We then repaired any defects in the mask 
through morphological manipulation before dividing 
the lungs into six regions. This approach achieved 
more accurate partitioning and avoided any defects 
in the mask that could affect the classification. In the 
classification stage, we utilized two models. The first 
is Efficient-Net, which is simpler, faster, and more 
accurate for direct classification. The second is Res-
Net, which is used for multi-stage classification and 
further improves accuracy.

Our research results showed that for single-stage and 
multi-stage models, the QWK of the single-stage model 
was 0.89, and the QWK of the multi-stage model was 
0.94. The accuracy of the single-stage model was 83%. 
The multi-stage four classification was 89%, and the 
accuracy of the multi-stage two classification was 97.3%, 
which proved that Multistage Joint Staging Diagnos-
tic Model outperformed the Efficient-Net Single model 
Multi Classification.

The advantage of QWK lies in its sensitivity to the 
severity of misclassifications: Accuracy treats all misclas-
sifications equally, regardless of their severity. But QWK 
will consider the degree of consistency between the pre-
dicted results and the actual labels, and conduct a more 
detailed evaluation of the model performance by impos-
ing stricter penalties on larger differences. For example, 
when the model misclassifies the 0 stage of a chest X-ray 
as stage 1 and stage 3, its accuracy is the same, but for 
QWK, the latter is more severe than the former.

The high resolution of digital chest radiographs and 
the often-limited computational resources available in 
practice make it unfeasible to develop and deploy neural 
networks for direct use on full chest radiographs. This 
necessitates either downsampling the images or reduc-
ing the model capacity to a manageable size. However, 
since the diagnosis of pneumoconiosis heavily relies 
on recognizing subtle image features, it is imperative to 
maintain image resolution and feature richness without 
compromise. Consequently, in this study, we optimized 
the model while reducing the demand for computational 

resources by partitioning the chest radio graph and learn-
ing the sub-partitions for classification and then overall 
classification and diagnosis. This reduced the computa-
tional volume and increased the actual training sample 
size. Given the limited amount of pneumoconiosis data, 
data augmentation is employed to enhance model gen-
eralization. Augmenting the dataset with variations of 
the original images, such as rotations, flips, shifts, and 
zooms, exposes the model to a broader range of pos-
sible input variations, thereby reducing overfitting and 
improving its ability to handle unseen data. However, 
excessive data augmentation can reduce accuracy, as 
inappropriate image transformations may distort the 
fundamental pathological features of pneumoconiosis. 
Furthermore, in the image segmentation stage, morpho-
logical operations were employed to rectify deficiencies 
in the mask. This was undertaken to preclude any adverse 
impact on the classification process. Additionally, two 
methodologies, Efficient-Net and Multi-stage Classifica-
tion Model, were subjected to testing and comparison. 
The classification was conducted on each segment, and 
the results were subsequently aggregated to yield the out-
come for the entire image.

There were some limitations in this study. Firstly, the 
training set data was relatively small, and the samples 
were unevenly distributed due to practical constraints, 
especially the small number of patients with stage II and 
III pneumoconiosis. The sample size needs to be enlarged 
to increase the data to optimize the model. In the future, 
we will collect more data on stage III pneumoconio-
sis patients to enhance the balance of the data. From an 
epidemiological point of view, all images were collected 
from a single hospital, which may warn against the gen-
eralization ability of the proposed method. Therefore, 
it is strongly recommended that future studies consider 
merging data from multiple centers to verify its gen-
eralizability to different conditions. Secondly, the cur-
rent dataset contained only chest radiographs. Although 
X-ray chest radiographs are the gold standard for pneu-
moconiosis diagnosis, they lack detailed details of turbid 
areas in the lungs, which can be improved by computed 
tomography (CT) images, and therefore the inclusion of 
CT tests should be considered in future diagnostic stud-
ies on pneumoconiosis staging. Finally, due to the spe-
cial characteristics of radiographs, it is difficult to use 
data enhancement, and image enhancement can only be 
performed by using minor adjustments such as horizon-
tal flip, small magnification, and small-angle rotation, 
which have little effect on alleviating overfitting, so more 
extensive image enhancement is needed for effective 
preprocessing to enrich the diversity of data and avoid 
overfitting.
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