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Abstract
Background  For prostate electrosurgery, where real-time surveillance screens are relied upon for operations, manual 
identification of the prostate capsule remains the primary method. With the need for rapid and accurate detection 
becoming increasingly urgent, we set out to develop a deep learning approach for detecting the prostate capsule 
using endoscopic optical images.

Methods  Our method involves utilizing the Simple, Parameter-Free Attention Module(SimAM) residual attention 
fusion module to enhance the extraction of texture and detail information, enabling better feature extraction 
capabilities. This enhanced detail information is then hierarchically transferred from lower to higher levels to aid in the 
extraction of semantic information. By employing a forward feature-by-feature hierarchical fusion network based on 
the 3D residual attention mechanism, we have proposed an improved single-shot multibox detector model.

Results  Our proposed model achieves a detection precision of 83.12% and a speed of 0.014 ms on NVIDIA RTX 
2060, demonstrating its effectiveness in rapid detection. Furthermore, when compared to various existing methods 
including Faster Region-based Convolutional Neural Network (Faster R-CNN), Single Shot Multibox Detector (SSD), 
EfficientDet and others, our method Attention based Feature Fusion Single Shot Multibox Detector (AFFSSD) stands 
out with the highest mean Average Precision (mAP) and faster speed, ranking only below You Only Look Once version 
7 (YOLOv7).

Conclusions  This network excels in extracting regional features from images while retaining the spatial structure, 
facilitating the rapid detection of medical images.
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Introduction
A major focus of computer vision research is improving 
feature representations and precisely capturing impor-
tant object features in images. According to recent 
developments, networks can capture spatial feature cor-
relations more efficiently when learning mechanisms are 
integrated into them. Convolutional neural networks’ 
feature extraction capabilities are improved by this inte-
gration. Effective strategies to improve feature extraction 
skills have been found, including feature fusion and the 
incorporation of attention mechanisms [1, 2].

Jianhui Yu et al. proposed an attention-based convolu-
tional neural network model specifically for medical point 
clouds, namely 3D Medical Point Converter (3DMedPT), 
for detecting complex biological structures [3]. Tianyu 
Shi et al. proposed a novel network for segmenting 
acute ischemic stroke (AIS) lesions from four computed 
tomography (CT) perfusion images [4]. Their approach 
is built on the idea that incorporating cross-modal and 
cross-attention mechanisms can be advantageous for 
this task. Duran et al. proposed a new end-to-end multi-
class network for co-segmenting prostate and cancer 
lesions by gleason score (GS) group grading [5]. A novel 
multimodal multi-head convolutional attention module 
for super-resolution CT and magnetic resonance imag-
ing (MRI) scanning was proposed by Georgescu et al. 
[6]. Building upon traditional convolutional neural net-
works, Furui Bai and colleagues enhanced the model by 
integrating a convolutional attention mechanism, which 
leverages weighted jump connections [7]. In a separate 
development, Yusuke Takagi and his team introduced a 
Personalized Attention Mechanism designed to dynami-
cally adjust the focus areas within medical images, tak-
ing into account associated clinical records [8]. This 
approach notably utilizes a modified transformer archi-
tecture to map the intricate interplay between medical 
imagery and textual clinical data. Further, Jianfang Wu 
and his team developed a novel approach for classifying 
diabetic retinopathy, employing a technique centered on 
visual transformation [9].

Danni Ai et al. introduced a rapid multi-scale fusion 
algorithm for heartbeat classification, comprising four 
key stages: pre-processing, feature extraction, feature 
fusion, and classification. The feature fusion approach 
utilizes the tension-based multi-line subspace learning 
method [10]. Xinsheng Zhan proposed a multiple fea-
ture fusion mechanism for micro-calcified clusters in 
X-ray images, involving double sampling on the underly-
ing feature map followed by horizontal connection to the 
previous layer [11]. Atkale et al. suggested a multi-scale 
feature fusion model for facial aging, featuring 5 paral-
lel branches and employing up-sampling and down-
sampling operations through pooling, convolution, and 
cavity convolution [12]. Bakkouri et al. presented a 3D 

multi-scale feature fusion algorithm with four levels, 
each comprising four 3D-CNN branches of identical 
architecture but different parameters [13]. The integra-
tion of multi-scale features in feature fusion requires con-
siderations such as spatial dimension consistency and the 
merging and selection of feature maps. While these algo-
rithms address these aspects, they may overlook the cru-
cial balance between network precision and speed post 
feature fusion.

Moreover, the latest state-of-the art object detection 
technologies designed for natural images may not always 
be suitable for heterogeneous medical images with signif-
icant scale variations and complex backgrounds. Faster 
speed and higher precision can improve the safety and 
success rate of surgery, reducing the probability of surgi-
cal complications such as capsule perforation. This paper 
addresses the challenge of rapidly detecting the prostate 
capsule by developing a detection network that integrates 
a 3D attention-free residual network and progressive 
fusion of forward features.

Methods
Attention-based single shot multibox (ASSD)
We apply SimAM to augment the features of four 
convolutional layers in VGG16 (Fig.  1). SimAM is a 
parameterless attention mechanism, and incorporating 
its 3D attention module ensures the network’s speed in 
ASSD.

Building upon VGG16, ASSD enhances conv2_2, 
conv3_3, conv4_3, conv5_3, etc., through attention-based 
mechanisms, thereby enhancing low-level feature extrac-
tion capabilities. After the convolution layer, four mod-
ules are incorporated, with BatchNorm and Rectified 
Linear Units(ReLU) layers aiding in network convergence 
acceleration. BatchNorm, a technique aimed at stabiliz-
ing input distribution within layers, allows for control 
over mean and variance through an additional network 
layer. This enables the model to utilize a broader spec-
trum of learning rates and facilitates faster convergence 
during the training process.

Multi-scale feature fusion single shot multibox detector 
(MFFSSD)
To enable the network to learn more discriminative 
neurons, it is essential to consider spatial and channel 
dimensions while allowing for flexible attention weight 
adjustments. By incorporating a three-dimensional atten-
tion fusion of features using an attention-free mecha-
nism, the network can extract features more effectively. 
Additionally, relying on a shallow network can weaken 
the generalization ability and result in lower detection 
precision. Hence, the feature fusion network Multi-
scale Feature Fusion Single Shot Multibox Detector is 
employed to increase the network’s depth and enhance 
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its feature extraction capabilities. The architecture of the 
MFFSSD network in AFSSD is illustrated in Fig. 2.

The MFFSSD module consists of four forward fea-
ture stepwise fusion modules, and one of the fusion 

processes is shown in Fig.  3. In Fig.  3, the first feature 
fusion module is illustrated. The SimAM module was 
introduced to conv2_2 (150 × 150 × 128) for enhanced 
convergence and activation through BatchNorm and 

Fig. 2  The MFFSSD network

 

Fig. 1  The ASSD network
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ReLU. Subsequently, a residual attention fusion was con-
ducted with the original conv2_2, resulting in a fused fea-
ture map size of 75 × 75 × 128. The fusion continued with 
conv3_3 (75 × 75 × 256) after applying the SimAM mod-
ule, followed by BatchNorm and ReLU for accelerated 

convergence and activation. The resultant fused feature 
map was concatenated with a 75 × 75 × 128 feature map, 
underwent a 1 × 1 × 512 linear transformation, and fur-
ther optimized for convergence and activation by Batch-
Norm and ReLU, leading to a final size of 75 × 75 × 512.

Fig. 6  Forward feature stepwise Fusion module (The forth feature fusion module)

 

Fig. 5  Forward feature stepwise Fusion module (The third feature fusion module)

 

Fig. 4  Forward feature stepwise Fusion module (The second feature fusion module)

 

Fig. 3  Forward feature stepwise Fusion module (The first feature fusion module)
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Fig. 4 showcases the second feature fusion module. Fol-
lowing the integration of the SimAM module, conv4_3 
(38 × 38 × 512) underwent acceleration for convergence 
and activation through BatchNorm and ReLU, and was 
subjected to residual attention fusion with the original 
conv4_3. The downsampled first feature fusion module 
was then merged with the conv4_3 residual attention 
feature fusion module, with convergence optimization 
facilitated by BatchNorm and activation by ReLU. Upon 
completion of the second feature fusion, the resulting 
size was 38 × 38 × 512.

In Fig.  5, the third feature fusion module is depicted. 
This module performs double downsampling of the fea-
ture map, reducing its size to 19 × 19 × 512. The down-
sized feature map is then fused with the convolutional 
layer fc7, resulting in a fused feature map with 1536 
channels. Subsequently, a 1 × 1 convolution operation is 
applied to enhance nonlinearity after fusion, adjusting 
the number of channels in the feature map to 1024. The 
adjusted feature map, now sized 19 × 19 × 1024, under-
goes convergence acceleration through BatchNorm and 
activation via ReLU.

After the third feature fusion is completed within this 
module, the resulting size of the feature map remains 
consistent at 19 × 19 × 1024. This process ensures that 
the features are effectively fused and optimized for sub-
sequent stages of the network, maintaining the integrity 
and quality of the information encoded within the feature 
maps.

In Fig. 6, the fusion process of the fourth feature fusion 
module is illustrated. The third feature fusion module 
initiates by performing double downsampling of the fea-
ture map, reducing its size to 10 × 10 × 1024. The down-
sized feature map is then fused with the convolution 
layer conv6_2, resulting in a fused feature map with 1280 

channels. Following this fusion, a 1 × 1 convolution oper-
ation is applied to enhance nonlinearity, adjusting the 
number of channels in the feature map to 256.

The adjusted feature map, now sized at 10 × 10 × 256, 
undergoes convergence acceleration through BatchNorm 
and activation via ReLU. Upon completion of the fourth 
feature fusion process, the resulting size of the feature 
map is maintained at 10 × 10 × 256. This meticulous fusion 
and optimization process ensures that the features are 
effectively integrated and refined for subsequent stages in 
the network, preserving the quality and integrity of the 
information encoded within the feature maps.

AFFSSD
A new model named AFFSSD has been proposed, draw-
ing inspiration from the residual attention fusion model 
ASSD and the progressive forward feature fusion model 
MFFSSD. The AFFSSD model combines the progressive 
fusion of residual attention and forward features, as illus-
trated in Fig. 7.

SimAM, a component of AFFSSD, dynamically adjusts 
weights based on the significance of location information, 
focusing on learning crucial features. This adaptive learn-
ing mechanism facilitates rapid network convergence and 
enhances the independent learning capacity of AFFSSD. 
Additionally, the four progressive fusion modules of for-
ward features in AFFSSD allow for higher-level convo-
lutions, enabling the extraction of more coarse-grained 
position information.

By leveraging semantic feature learning, the AFFSSD 
model can adeptly learn and represent robust spatial 
position information. This proficiency in capturing spa-
tial details proves beneficial for the accurate classifica-
tion and precise localization of the prostate capsule. The 
fusion of attention-based mechanisms and progressive 

Fig. 7  The AFFSSD network
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feature fusion in AFFSSD contributes to its superior per-
formance in object detection tasks, particularly in sce-
narios where precise localization and classification are 
essential.

Results
This paper not only compares the AFFSSD model with 
the SSD model but also delves into the distinctions 
between the AFFSSD model and other two-stage mod-
els like Faster R-CNN, Region-based Fully Convolutional 
Networks (R-FCN), Sparse R-CNN, as well as one-stage 
object detection models such as Foveabox, Feature 
Fusion SSD (FSSD), Task-Oriented Object Detection 
(TOOD), Efficientdet, YOLOv4, among others [14–24]. 
Through the analysis of performance variations among 
these models, the superiority of the model based on the 
stepwise fusion of residual attention and forward features 
is validated.

Dataset
The dataset used in this study comprises a total of 597 
images, with 478 images allocated for training and 119 
images for testing. In the summer of 2017, four surgi-
cal videos were collected from the Department of Urol-
ogy in Zhongnan Hospital of Wuhan University for the 
treatment of prostate hyperplasia, and were labeled by 
the doctors of the Department of Urology in Zhongnan 
Hospital of Wuhan University. Medical images present 
unique challenges compared to other datasets, particu-
larly in terms of shape and contour determination. The 
prostate capsule is not an independent tissue but rather 
a layer of external capsule attached to the prostate. It is 
composed of collagen, smooth muscle, and striated mus-
cle (the external urethral sphincter of the prostate cap-
sule), which envelops and blends with the fibromuscular 
stroma of the prostate parenchyma. It is characterized by 
hash fibers, significant deformation, and non-uniform 
thickness. During examination, the outer capsule may 
resemble a white fatty tissue sheet on the prostate, mak-
ing it difficult for untrained individuals to distinguish. 
Only trained personnel or experienced medical profes-
sionals can accurately judge the prostate capsule.

Experimental environment
The deep learning networks in this study were trained 
using the Caffe and Pytorch frameworks. The hardware 
environment for Caffe consists of an Intel Core-i7-8700 
CPU running at 3.2  GHz, 16 GB of memory, NVIDIA 
GTX 1070 or NVIDIA RTX 2060 graphics card, and 
Ubuntu Linux 64-bit operating system. The learning 
rate used in the Caffe environment was set to 0.0001. 
On the other hand, the Pytorch framework was utilized 
in a hardware environment with a 12 vCPU Intel® Xeon® 

E5-2650 v4 processor clocked at 2.20  GHz and a Tesla 
V100 graphics card with 32 GB of memory.

we will present experimental results from five key 
perspectives: comparing mAP and loss training curves, 
visualizing features, assessing speed and precision, con-
ducting ablation experiments, and analyzing detection 
results.

The mAP/loss curve
The mAP curve evolution during training for SSD, FSSD, 
and AFFSSD models is depicted in Fig.  8, covering the 
initial 3100 training iterations.

The rapid improvement in mAP for AFFSSD is attrib-
uted to the integration of attention and feature fusion 
mechanisms. Meanwhile, FSSD exhibits significant fluc-
tuations in mAP under the full training sample mode. The 
evolution of the loss curve during training is illustrated in 
Fig. 9, capturing the first 3100 training iterations.

Initially, the loss for AFFSSD was relatively high; how-
ever, it decreased rapidly, reaching approximately 2.5 
after 700 iterations. With the progression of iterations, 
the loss for AFFSSD decreases at a faster rate and to a 
lower level compared to SSD and FSSD.

Fig. 9  The Loss curve transformation comparison

 

Fig. 8  The mAP curve transformation (SSD, FSSD, AFFSSD)
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Feature visualization
During the training of AFFSSD, SimAM was employed 
to boost the attention of convolution layers conv2_2, 
conv3_3, conv4_3 and cov5_3.

Following the attention enhancement by SimAM, the 
extracted features from the convolutional layer feature 
maps become more enriched. Typically, lower convolu-
tions are responsible for localization, and the heightened 
attention to these lower convolutions aids in extracting 
decision-making features. Fig. 10 presents a visual com-
parison of features extracted from conv2_2, conv3_3, 
and conv4_3, showcasing the impact of attention 
enhancement.

The speed and precision comparison
The proposed model achieves a speed of 0.014 ms on 
NVIDIA RTX 2060, making it suitable for real-time 
detection. Various methods, such as Faster R-CNN (ZF, 
VGG16, ResNet 50), SSD (VGG16, ResNet 101), Effi-
cientDet (D0-D7), FoveaBox, TOOD, YOLOv4, Sparse 
R-CNN, Object Detection in Aerial Images without 
Object-level Supervision (OWOD), R-FCN (ResNet-50), 
and FSSD (VGG16), are compared in Table  1, which 
presents the settings and results of AFFSSD (VGG16-
simAM) parameters.

The model AFFSSD, which combines nonparametric 
attention fusion and progressive fusion of forward fea-
tures, achieves a detection precision of 83.12%.

The ablation experiment
Before adopting SimAM, Table 2 compared the improve-
ment results of various attention mechanism methods on 
SSD networks and selected the SimAM attention mech-
anism based on precision and number of parameters. 
Within the VGG16 framework, SimAM demonstrated 
the best performance and achieved the highest mAP 
when integrated with SSD.

In Table  3, different low-level convolutional combina-
tions are compared, and the impact of residual attention 
fusion on the detection precision of SSD networks is dis-
cussed. When conv2_2 and conv5__3 both undergo resid-
ual attention fusion, the detection precision of ASSD can 
reach 82.19%. However, it is important to note that this 
combination scheme (conv2_2, conv5__3) does not nec-
essarily work best when combined with the optimal com-
bination of MFFSSD (conv2_2, conv3_3, conv4_3, fc7, 
conv6__2). The combined mAP achieved with this com-
bination is only 80.04%. Table 4 presents the variation in 
detection precision of the object detection network with 
different feature fusion schemes. The forward feature 
stepwise fusion module that demonstrated the best per-
formance in MFFSSD was selected based on mAP. This 
module includes four feature fusion modules formed by 

the stepwise fusion of conv2_2, conv3_3, conv4_3, fc7, 
and conv6_2.

In the progressive fusion experiments for forward 
features, Table  5 presents the mAP comparison results 
across different feature fusion strategies incorporating 
residual attention fusion. Vgg16-simam-F denotes an 
enhanced parameterless residual attention feature fusion 
and addressing resolution loss caused by downsampling. 
Additionally, the AFFSSD network utilizes a forward 
feature fusion approach to dynamically compensate for 
four-level semantic information.

Fig.  11 displays the comparison of detection results 
between AFFSSD, TOOD, Sparse R-CNN, and YOLOv4. 
The performance of the comparison networks is lim-
ited, possibly due to training results that do not con-
verge effectively with the small dataset. AFFSSD achieved 
superior detection results by incorporating the SimAM 
attention enhancement mechanism for texture-related 
convolutions like conv2_2 and conv3_3, utilizing param-
eterless residual attention feature fusion for lower-level 
features, and addressing resolution loss from downs-
ampling. The AFFSSD network employs a forward fea-
ture fusion method to progressively integrate four-level 
semantic information for improved performance.

Discussion
The limited dataset may have hindered the training con-
vergence of the comparison networks, leading to their 
underdeveloped performance. In contrast, AFFSSD 
achieves superior detection results by leveraging the 
SimAM attention enhancement mechanism for texture-
related convolutions, such as conv2_2 and conv3_3. This 
is achieved through parameterless residual attention 
feature fusion that enhances lower-level features. Fur-
thermore, AFFSSD addresses resolution loss caused by 
downsampling, contributing to its improved detection 
performance.

Utilizing the compact VGGNet enables the model to 
achieve high precision with reduced computational com-
plexity, thereby accelerating inference speed. The non-
parametric attention residual fusion method enhances 
the network’s representation learning capability, mini-
mizing redundant information and boosting inference 
speed. Furthermore, employing multi-scale detection 
techniques enhances the network’s detection perfor-
mance and speed across various scales.

Our experiments have shown that a small model on a 
small dataset yields better results. Using a large model 
on a small dataset can lead to overfitting, as the model 
may memorize the samples rather than learn their gen-
eral features. In contrast, small models are simpler and 
more likely to generalize to new samples outside the 
small dataset. Small models require fewer parameters 
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Fig. 10  The feature visualization comparison(AFFSSD and SSD)
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and computational resources, making them suitable for 
training on small datasets. This allows for faster model 
training, avoiding overfitting and resource wastage. Small 
models focus more on learning key features of the data, 

avoiding the confusion of noise and irrelevant features 
that overly complex models may encounter. They are typ-
ically easier to interpret and understand, enabling better 
insights into patterns and trends within the data.

Therefore, training with a small model on a small 
dataset can effectively utilize the data, mitigate over-
fitting, and deliver better performance in practical 
applications.

One major limitation of this study is the small dataset. 
It is recommended to utilize a combination of generative 
adversarial networks and deep active learning methods 
to augment the dataset in the future.

Conclusions
The proposed model demonstrates impressive speed 
capabilities, achieving an inference time of 0.014 ms on 
an NVIDIA RTX 2060, enabling rapid detection. The 
AFFSSD model, which comprises unparametric atten-
tion fusion and progressive fusion of forward features, 
achieves a high detection precision of 83.12%. When 
compared to popular object detection models such as 
Faster R-CNN (ZF, VGG16, ResNet 50), SSD (VGG16, 
ResNet 101), EfficientDet (D0-D7), FoveaBox, TOOD, 
YOLOv4, Sparse R-CNN, OWOD, R-FCN (ResNet-50), 
and FSSD (VGG16), the proposed AFFSSD method out-
performs them with the highest mean Average Preci-
sion (mAP) while maintaining faster speeds, only slightly 
slower than YOLOv7.

This paper enhances the inference capability, detection 
speed, and detection precision of the object detection 
network using methods such as parameter-free atten-
tion, residual fusion, and progressive feature propagation. 
Achieving a balance between speed and precision using a 
small model on a small dataset.

This article focuses on discussing real-time detection 
of medical images. Real-time detection can help doctors 
accurately locate lesion areas or target tissues, thereby 
avoiding damage to healthy tissues or organs. Through 
real-time detection, doctors can promptly identify and 
address unexpected situations or complications that may 
arise during surgery, improving the safety and success 
rate of the procedure. Real-time detection results can 
provide doctors with timely feedback, assisting them in 
making adjustments and decisions to ensure the smooth 
progress of the surgery. The location of the detected pros-
tate capsule is marked with a box on the display screen, 
and a buzzer sounds to alert the doctor. After viewing 
the real-time test results, the doctor finally determines 
whether the algorithm has flagged the prostate capsule. 
Accurate real-time detection results may impact post-
operative treatment outcomes and patient recovery, 
thereby enhancing the therapeutic effect and prognosis 
of the surgery.

Table 1  The Speed and precision comparison of various 
methods
Methods Backbone 

network
mAP FPS

Faster R-CNN [21] ZF 62.00% 15
Faster R-CNN [21] VGG16 62.67% 5 (K40)
Faster R-CNN [21] ResNet 50 + FPN 74.41% —
SSD [20] VGG16 71.60% 46 (NVIDIA GTX 1070)
SSD [20] ResNet-101 [165] 74.39% 15 (NVIDIA GTX 1070)
EfficientDet-D0 
[23]

EfficientNets 53.38% 97 (Telsa v100)

EfficientDet-D1 
[23]

EfficientNets 56.58% 74 (Telsa v100)

EfficientDet-D2 
[23]

EfficientNets 59.23% 57 (Telsa v100)

EfficientDet-D3 
[23]

EfficientNets 61.14% 35 (Telsa v100)

EfficientDet-D4 
[23]

EfficientNets 58.81% 23 (Telsa v100)

EfficientDet-D5 
[23]

EfficientNets 58.09% 10 (Telsa v100)

EfficientDet-D7 
[23]

EfficientNets 77.21% —

FoveaBox [18] ResNet50 + FPN 81.10% 25 (NVIDIA RTX 2060)
TOOD [16] ResNet50 + FPN 73.08% 20 (NVIDIA RTX 2060)
YOLOv4 [14] CSPDarknet-53 70.29% 45 (NVIDIA RTX 2060)
YOLOv7 [24] EfficientNet 74.20% 161 (Telsa v100)
Sparse R-CNN [22] ResNet50 + FPN 75.68% 17 (NVIDIA RTX 2060)
OWOD [17] ResNet-50 71.30% 62 (NVIDIA RTX 2060)
R-FCN [15] ResNet 50 65.38% 12 (NVIDIA GTX 1070)
FSSD [19] VGG16 73.50% 65.8 (NVIDIA GTX 

1080Ti)
AFFSSD [ours] VGG16-simAM 83.12% 72 (NVIDIA RTX 2060)

Table 2  The improvement of different attention mechanism 
methods for SSD networks
ModelBack-
bone network

Attention 
network

Backbone 
network 
parameters

Attention 
network 
parameters

mAP

SSD(ResNet-50) SENet [25] 24.37 M 2.514 M 73.27%
SSD(ResNet-50) CBAM [26] 24.37 M 2.532 M 79.25%
SSD(ResNet-50) SimAM [27] 24.37 M 0 75.57%
SSD(ResNet-50) ECANet [28] 24.37 M 0 75.86%
SSD(ResNet-50) Triplet [29] 24.37 M 0.005 M 75.39%
SSD(ResNet-50) Split-Atten-

tion [30]
24.37 M 3.130 M 75.42%

SSD(VGG16) SENet [25] 23.06 M 2.514 M 75.14%
SSD(VGG16) CBAM [26] 23.06 M 2.532 M 76.31%
SSD(VGG16) ECANet [28] 23.06 M 0 76.37%
SSD(VGG16) SimAM [27] 23.06 M 0 79.26%
SSD(VGG16) SANet [31] 23.06 M 0.005 M 74.40%
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Table 3  Residual attention fusion ablation experiment based on ASSD
Model Backbone network conv2_2 conv3_3 conv4_3 conv5_3 mAP
ASSD VGG16-SimAM ✓ ✓ ✓ ✓ 79.26%
ASSD VGG16-SimAM ✓ ✓ ✓ 80.62%
ASSD VGG16-SimAM ✓ ✓ ✓ 75.54%
ASSD VGG16-SimAM ✓ ✓ ✓ 81.03%
ASSD VGG16-SimAM ✓ ✓ ✓ 77.37%
ASSD VGG16-SimAM ✓ ✓ 75.91%
ASSD VGG16-SimAM ✓ ✓ 80.01%
ASSD VGG16-SimAM ✓ ✓ 75.59%
ASSD VGG16-SimAM ✓ ✓ 82.19%
ASSD VGG16-SimAM ✓ ✓ 76.05%
ASSD VGG16-SimAM ✓ ✓ 74.91%
ASSD VGG16-SimAM ✓ 76.06%
ASSD VGG16-SimAM ✓ 74.26%
ASSD VGG16-SimAM ✓ 76.94%

Table 4  Progressive fusion module of forward feature based on MFFSSD
Model Backbone network conv2_2 conv3_3 conv4_3 fc7 conv6_2 mAP
MFFSSD VGG16 ✓ ✓ ✓ ✓ ✓ 80.49%
MFFSSD VGG16 ✓ ✓ ✓ ✓ 76.13%
MFFSSD VGG16 ✓ ✓ ✓ 79.18%
MFFSSD VGG16 ✓ ✓ ✓ ✓ 76.97%
MFFSSD VGG16 ✓ ✓ ✓ 79.35%
MFFSSD VGG16 ✓ ✓ 80.86%
MFFSSD VGG16 ✓ ✓ ✓ 77.76%
MFFSSD VGG16 ✓ ✓ 79.54%
MFFSSD VGG16 ✓ ✓ 80.47%
MFFSSD VGG16 ✓ ✓ 79.54%
MFFSSD VGG16 ✓ ✓ ✓ 80.37%

Table 5  Ablation experiments based on AFFSSD
Model Backbone network conv2_2 conv3_3 conv4_3 conv5_3 mAP
AFFSSD VGG16-SimAM-F ✓ ✓ ✓ ✓ 83.12%
AFFSSD VGG16-SimAM-F ✓ ✓ ✓ 78.47%
AFFSSD VGG16-SimAM-F ✓ ✓ ✓ 81.46%
AFFSSD VGG16-SimAM-F ✓ ✓ ✓ 78.98%
AFFSSD VGG16-SimAM-F ✓ ✓ ✓ 77.89%
AFFSSD VGG16-SimAM-F ✓ ✓ 79.96%
AFFSSD VGG16-SimAM-F ✓ ✓ 77.21%
AFFSSD VGG16-SimAM-F ✓ ✓ 81.97%
AFFSSD VGG16-SimAM-F ✓ ✓ 80.04%
AFFSSD VGG16-SimAM-F ✓ ✓ 75.05%
AFFSSD VGG16-SimAM-F ✓ ✓ 81.96%
AFFSSD VGG16-SimAM-F ✓ ✓ 81.97%
AFFSSD VGG16-SimAM-F ✓ 79.91%
AFFSSD VGG16-SimAM-F ✓ 78.42%
AFFSSD VGG16-SimAM-F ✓ 79.63%
AFFSSD VGG16-SimAM-F ✓ 82.87%
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GS	� Gleason score
MRI	� Magnetic Resonance Imaging
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