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Abstract 

Parkinson’s disease (PD) is challenging for clinicians to accurately diagnose in the early stages. Quantitative measures 
of brain health can be obtained safely and non-invasively using medical imaging techniques like magnetic resonance 
imaging (MRI) and single photon emission computed tomography (SPECT). For accurate diagnosis of PD, powerful 
machine learning and deep learning models as well as the effectiveness of medical imaging tools for assessing neuro-
logical health are required. This study proposes four deep learning models with a hybrid model for the early detection 
of PD. For the simulation study, two standard datasets are chosen. Further to improve the performance of the models, 
grey wolf optimization (GWO) is used to automatically fine-tune the hyperparameters of the models. The GWO-
VGG16, GWO-DenseNet, GWO-DenseNet + LSTM, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 are applied 
to the T1,T2-weighted and SPECT DaTscan datasets. All the models performed well and obtained near or above 99% 
accuracy. The highest accuracy of 99.94% and AUC of 99.99% is achieved by the hybrid model (GWO-VGG16 + Incep-
tionV3) for T1,T2-weighted dataset and 100% accuracy and 99.92% AUC is recorded for GWO-VGG16 + InceptionV3 
models using SPECT DaTscan dataset.

Keywords Parkinson’s disease, SPECT DaTscan, T1, T2-weighted, Deep learning, VGG16, InceptionV3, Grey wolf 
optimization

Introduction
Parkinson’s disease, also known as neurodegeneration, is 
a long-term, neurological, and progressive motor illness 
[1] characterised by the progressive death of dopamine-
producing brain cells. Dopamine is an organic substance 
produced by neurons that serves as a neurotransmitter in 
the brain, facilitating communication between neurons. 
Parkinson’s disease results from impaired neuronal com-
munication due to insufficient dopamine production in 
the brain. The substantia nigra, a small region where the 
neurons of the human brain are affected due to Parkin-
son’s disease.

A new United Nations research claims that nearly 1 bil-
lion people worldwide, or approximately one in six, suf-
fer from neurological conditions like epilepsy, migraine, 
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brain injuries, and neuro-infections like Alzheimer’s, 
PD as well as stroke, and multiple sclerosis. Each year, 
6.8 million of these sufferers pass away (https:// news. 
un. org/ en/ story/ 2007/ 02/ 210312). Although the actual 
cause of Parkinson’s disease is unknown, it is believed 
that a combination of inherited and environmental fac-
tors is responsible for it [2]. In the modern world, PD 
is affecting 2% to 3% of people who are at the age of 65 
and older [3]. Parkinson’s disease progresses differently 
in every patient, and it is impossible to anticipate how 
quickly the disease may progress in any specific person. 
While some people may have only minor symptoms for 
years, others may do so quite fast as they progress to 
more severe problems. Parkinson’s disease often starts 
with minor tremors or other motor symptoms on one 
side of the body and progresses slowly over a number of 
years. The disease’s symptoms could extend throughout 
the body and get worse, possibly affecting both sides of 
it. Even though Parkinson’s disease is an ongoing and 
advancing condition, there are medicines that can help 
to manage symptoms and improve the standard of living. 
Parkinson’s disease does not yet have an appropriate early 
diagnosis or treatment. Medication, physical therapy, and 
lifestyle modifications are some of its treatments. Parkin-
son’s disease progression can be slowed down or stopped, 
even though there is presently no known cure for it.

These days, artificial intelligence (AI) approaches—
machine learning (ML) and state of art deep learning 
(DL) are greatly assisting medical professionals in the 
early diagnosis of illnesses. Due to this, research has 
recently been done to automatically identify Parkinson’s 
disease using MRI images utilizing a variety of AI and 
ML algorithms. Many different diseases and ailments 
have been diagnosed using deep learning, and the find-
ings frequently outperform traditional benchmarks [4].

Deep learning models have become powerful and 
are mostly used in image classification problems. With 
their ability to learn intricate patterns and features from 
images, they can often surpass traditional machine-learn-
ing approaches in accuracy. It automatically extracts rele-
vant features from images, hence causing the elimination 
of manual feature engineering. This feature extraction 
capability permits the model to learn complicated rep-
resentations and capture both low-level and high-level 
features present in the images. It can handle large-scale 
datasets efficiently. They can learn from vast amounts 
of labelled data, which is essential for training accurate 
image classifiers. Deep learning frameworks and librar-
ies are designed to leverage parallel computing resources 
like GPUs to accelerate training and inference processes.

Over the past two decades, meta-heuristic optimiza-
tion techniques have gained a lot of popularity. A few 
of these include particle swarm optimization (PSO) 

[5], grey wolf optimization (GWO) [6], ant colony opti-
mization (ACO) [7], artificial bee colony optimization 
(ABC) [8], etc. Hyperparameter tuning is one of the 
tedious jobs to manually fine-tune the parameters to 
obtain the best optimal values. The population-based 
metaheuristic algorithm known as grey wolf optimiza-
tion (GWO) is influenced by the way grey wolves hunt. 
It searches for the best answers in a problem area by 
combining exploration (diversification) with exploita-
tion (intensification). It is used to automatically fine-
tune the parameters which mimic the social behaviour 
of grey wolves, including their leadership hierarchy and 
group hunting. The improved capacity of GWO pre-
vents results from being stuck in the local optimal value 
[9]. It also finds the best solution with a quick conver-
gence rate.

The benefits of deep learning and GWO in image clas-
sification include higher accuracy, autonomous feature 
extraction, scalability, transfer learning skills, robust-
ness to fluctuations, finding the optimal solutions, auto-
matic hyperparameter tunning and continuous progress 
through continuing research and development. A variety 
of AI approaches using ML and DL models have been 
created in the past. In this study, a new framework is 
employed by combining grey wolf optimization (GWO) 
with four deep learning models known as VGG16 [10], 
DenseNet [11], InceptionV3 [12], DenseNet-LSTM [13] 
and a hybrid model VGG16 + InceptionV3.

The following is a concise explanation of the paper’s 
main contribution.

 (I) Number of images created empty tuples, from 
which the performance of deep learning mod-
els degrades. These empty tuples are removed to 
obtain better performance by using the Python 
function.

 (II) Proposed four deep learning models with hyperpa-
rameter optimization by GWO known as GWO-
VGG16, GWO-DenseNet, GWO-InceptionV3, and  
GWO-DenseNet-LSTM.

 (III) Proposed hybrid model using GWO-VGG16 + 
 InceptionV3.

 (IV) The proposed models are compared with the exist-
ing models using various performance metrics.

Following is the format for the remaining section: The 
earlier studies are covered in “Related literature” section. 
“Materials and methods” section explains the preprocess-
ing of MRI images and the development of methodolo-
gies. Experimental results and discussions, comparisons 
between the existing models and proposed models are 
discussed in “Results and discussion” section. In “Con-
clusion and future work” section, conclusions and future 
scope are discussed briefly.

https://news.un.org/en/story/2007/02/210312
https://news.un.org/en/story/2007/02/210312
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Related literature
In the past few years, various studies have been created 
and published by academics worldwide to help in Parkin-
son’s disease diagnosis. Many of these researchers have 
used various AI methods to analyse and classify the MRI 
brain images in order to detect various diseases related 
to Parkinson’s disease. Deep learning techniques are the 
most often used method for classifying MRI images, due 
to their capacity to deliver superior results than those 
obtained by more conventional machine learning tech-
niques. This particular section explains the research 
using ML and DL methods to diagnose patients with Par-
kinson’s disease.

Related review literature using T1, T2‑weighted dataset
Camacho et  al., (2023) [14] have developed a robust 
explainable deep learning classifier trained for the classifi-
cation of Parkinson’s disease using T1-weighted MRI data-
set. A total of 1,024 PD and 1,017 subjects from matched 
controls (HC) of the same age and gender are gathered 
from 2,041 MRI data i.e. T1-weighted MRI datasets from 
13 separate investigations. The datasets undergone a skull-
stripping process, isotropic resampling, bias field correc-
tion, and nonlinear registration to the MNI PD25 atlas. 
Convolutional Neural Network is trained to categorise PD 
and HC participants using the Jacobian maps produced 
from the fields of deformation and fundamental clinical 
data. The authors provide improved knowledge of the clini-
cal variables associated with Impulse Control Behaviors 
(ICB) and structural and functional brain abnormalities in 
PD patients. They have measured grey and white matter 
brain volume, and graph topological features using multi-
modal MRI data [15]. A new technique is introduced for 
categorising a person’s 3-D magnetic resonance scans as a 
diagnostic tool for Parkinson’s disease by using one of the 
largest Parkinson’s Progressive Marker Initiative (PPMI) 
MRI datasets from a patient group with the condition and 
healthy controls. Due to the fact that gender has a substan-
tial impact on neurobiology and PD cases are developed 
more likely in males than women, it is advantageous that 
different research is conducted for men and women [16]. 
The viability and usefulness of employing multi-modal 
MRI datasets to automatically distinguish between PD, 
PSP-RS, and HC subjects are examined. For this investiga-
tion, there are 45 PD, 20 PSP-RS, and 38 HC subjects with 
available T1-weighted MRI datasets, T2-weighted MRI 
datasets, and diffusion-tensor (DTI) MRI datasets [17]. 
Brain morphology using T1-weighted, brain iron metabo-
lism using T2-weighted, and microstructural integrity 
using DTI dataset regional values are determined by an 
atlas-based approach. These values are used to choose fea-
tures, and then classification is performed using a variety 
of well-known machine learning approaches. A 3D CNN 

architecture is proposed after data pre-processing in order 
to learn the complex patterns in MRI images for the identi-
fication of Parkinson’s Disease. From the baseline visit, 406 
individuals including 203 in good health and 203 with Par-
kinson’s disease are selected for the experiment [18].

A novel method is used which trains a deep neural net-
work model using data from new patients, specifically with 
T1 MRI and DaTscan datasets. The information utilized 
to model the knowledge retrieved from the PPMI data-
base contains a set of vectors that represent the clustering 
centers of these representations, along with the matching 
Deep Neural Network (DNN) structure. The ability of the 
unified model created using these many datasets to predict 
Parkinson’s disease in an effective and transparent manner 
has then been demonstrated [19]. Two new deep learn-
ing techniques are proposed for ensemble learning-based 
Parkinson’s disease detection. Instead of using the entire 
MRI image, authors focused on the Grey and White Mat-
ter areas which greatly improved detection accuracy and 
obtained 94.7% accuracy [20]. To discover which brain 
regions are important in the decision-making process for 
architecture is performed by occlusion analysis as well. 
Multiple parcellated brain areas are used to train a CNN. 
The idea is to create a complicated model by combining the 
models from various locations using a greedy algorithm. 
Three retrospective investigations included 305 PD patients 
(59.9–9.7 years of age) and 227 HC patients (61.0–7.4 years 
of age). Based on the Automatic Anatomic Labelling tem-
plate, fractional anisotropy and mean diffusivity are deter-
mined and then divided into 90 different brain regions of 
interest (ROIs) [21].

The authors have suggested CNN with eight layers deep 
for 3D T1-weighted MRI images to differentiate between 
PD and HC individuals. The proposed model additionally 
made use of the information provided by the individu-
als’ ages and genders. In addition, batch and group nor-
malization are applied to the designed model, increasing 
the accuracy up to 100% [22]. An autonomous diagnosis 
approach that distinguishes the PD and HC with high 
accuracy. Benchmark T2-weighted MRI scans for both 
PD and HC are made available to the public by the PPMI. 
Image registration technique is used to choose and align 
the middle 500 slices of a T2-weighted MRI scan [23].

The study evaluates the viability of machine learning 
techniques for classifying patients with Parkinson’s dis-
ease (PD) and non-proliferative osteoporosis (NPOD) 
using 30 patients data. It demonstrates that PD patients 
can be distinguished from NPOD patients by (a) using 
T1-weighted axial magnetic resonance imaging (MRI) 
scans, or (b) using morphometric measurements such 
as cortical thickness, cortical surface area, and volumet-
ric measurements of the brain’s subcortical and cortical 
areas division [24].
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Based on the analysis performed using the brain MRI 
slices, authors [25] has suggested machine-learning-tech-
nique (MLT) to assess and classify the tumour locations 
into low/high grade using 30 patients. A series of opera-
tions, including pre, post and classification procedures, 
are carried out by MLT. The Social Group Optimiza-
tion (SGO) method in conjunction with Fuzzy-Tsallis 
thresholding improves the tumour section during pre-
processing. For the mining of the tumour area Level-Set 
Segmentation (LSS) is utilized in the post-processing step.

Related review literature using SPECT DaTscan dataset
Thakur et al. (2022) [11] have constructed a CNN model 
that can accurately pinpoint the ROIs after feature extrac-
tion. In the study, 1,390 groups of DaTscan images with 
PD and normal classes are examined. The final classifica-
tion layer includes a soft-attention block which makes use 
of the DenseNet-121 design. After classifying the images, 
Soft Attention Maps and feature map representation are 
reutilized to visually analyse the region of interest (ROI). 
The work sought to establish an ensemble deep learning 
technique with three stages for PD patient prognosis. Ret-
rospective information on 198 Parkinson’s disease (PD) 
patients is obtained from the PPMI database and then 
randomly 118 patients are assigned to training, and 40–40 
patients are assigned to both validation and test sets. The 
features are extracted from the DaTscan dataset and clini-
cal assessments of motor symptoms in steps 1 and 2. In 
step 3, an ensemble of DNN are trained to predict 4 years 
of patient outcome [26]. A CNN model is created that can 
distinguish between PD patients and HC patients based on 
SPECT images. In this study, 2723 images of the SPECT 
dataset are used out of which 1364 samples from the PD 
group and 1359 samples from the HC group. The image 
normalization method is used to improve the regions of 
interest (ROIs) required for the network to learn attributes 
that set them apart from other regions of interest (ROIs). 
In order to assess the effectiveness of the network model, 
tenfold cross validation is used [27]. Six well-known inter-
pretation techniques and four deep-convolutional neu-
ral network are designed [28]. Also, the authors suggest a 
mechanism for evaluating interpretation performance as 
well as a way to use interpreted input to aid in model selec-
tion. It is suggested to develop a computer learning model 
that accurately identifies whether every given DaTscan has 
PD or not while offering a logical justification for the pre-
diction. Visual indicators are created utilizing Local Inter-
pretable Model-Agnostic Explainer (LIME) approaches. 
Further, transfer learning is used to train DaTscans on a 
CNN (VGG16) from the PPMI database, and the resulting 
models have 95.2% accuracy. Finally, the paper concludes 
that the suggested approach may successfully assist medi-
cal professionals in PD detection because of its measured 

interpretability and  accuracy11. To analyse pictures from 
dopamine transporter single-photon emission computed 
tomography (DAT-SPECT) has been suggested utilizing 
an ANN. With the use of an active contour model, striatal 
regions are segmented and utilized as the data performing 
transfer learning on the artificial neural network which is 
pre-trained to distinguish Parkinson’s disease. To serve as 
a benchmark, the support vector machine is trained to use 
semi-quantitative measurement metrics including the spe-
cific binding ratio (SBR) and asymmetry index [29].

The active contour model is utilized to segment the stri-
atal regions in the images. These segmented regions are 
then employed as the dataset for an already-trained ANN 
to do transfer learning. The goal is to separate PD from Par-
kinsonism associated with other diseases. Artificial neural 
networks (ANN) and image processing techniques are 
proposed to identify Parkinson’s disease in its early stages 
[30]. The images used are 200 SPECT scans from the PPMI 
dataset, out of which 130 are of normal participants and 70 
are of Parkinson’s disease (PD) patients. Using the sequen-
tial grass fire algorithm, the caudate and putamen areas 
of the images are determined. To distinguish healthy and 
Parkinson’s disease-infected people, these above features 
are loaded into an ANN. A novel approach is introduced 
for the medical treatment of neurodegenerative disorders, 
like Parkinson’s, that utilizes trained DNNs to extract and 
utilize latent information. The paper uses transfer learning 
along with k-means clustering, K-NN classification, and 
DNN trained representations to enhance disease predic-
tion using MRI data [31]. In the recent past, authors have 
presented a model for the early identification of PD which 
combines image processing with ANN in order to improve 
the imaging diagnosis of PD. The caudate and putamen 
serve as the study’s region of interest (ROI), and the model 
identified them by analysing 200 SPECT images from the 
PPMI database, out of which 100 are of healthy people and 
100 are of PD people. The ANN is then fed with the ROI 
area data, with a thought it will recognise patterns similar 
to how a human observer would do [32]. A novel method 
is suggested that uses 3-dimensional convolutional neural 
networks (CNNs) to differentiate between PD and healthy 
control. In order to reduce overfitting and boost the neural 
network’s generalisation abilities, the training set as well as 
the data from this set’s sagittal plane using a straightfor-
ward data augmentation technique is given as input to the 
model [33].

One of the difficult challenges all are facing is determining 
Parkinson’s disease in the early stages. To conduct research 
on the early detection of PD using MRI images, various 
authors developed numerous computer-based machine 
learning and deep learning methods as described above.

In this study, authors have proposed four deep learn-
ing models whose hyperparameters are optimized using 
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GWO, namely GWO-VGG16, GWO-DenseNet, GWO-
DenseNet + LSTM, GWO-IncepionV3, and a hybrid model 
(GWO-VGG16 + InceptionV3) which is the novelty of 
this paper. No authors earlier used these models with T1, 
T2-weighted and SPECT DaTscan for PD detection. Here, 
a number of images are creating empty tuples, from which 
the performance of the deep learning models degrades. 
These empty tuples are properly handled and removed to 
obtain better performance. This problem has also never 
been addressed by any authors previously in the literature.

Materials and methods
This section illustrates the proposed methodology, pre-
processing of MRI images, and model development. After 
that, the data is divided into two sets using an 80:20 ratio 
for the train and test sets. Again, the train set is divided 
into train and validation sets. The 80% of input images 
are fed to the proposed model for training and then the 
models are validated using 20% from the train set sam-
ples. Finally, models are tested using the remaining 20% 
of the data. The distribution is depicted in Fig. 1 below.

Proposed methodology
In the proposed methodology, steps are given in the 
following:

Step 1: Firstly, T1, T2-weighted and SPECT DaTscan 
MRI datasets are collected from the PPMI website.
Step 2: MRI images are then pre-processed using 
preprocessing techniques such as the conversion 
of DICOM file to.jpg format, cropped images using 
MicroDICOM Viewer desktop application, removing 
empty tuples and finally skull stripping is done using 
the python package (simple ITK). Normalization is 
also done using batch normalization for scaling.
Step 3: Datasets are divided into train and test sets 
using the holdout method (80:20 ratio) Again train 
set is divided into (80:20 ratio) two sets i.e. train and 
validation set.
Step 4: Four deep learning models are proposed 
whose hyperparameters are optimized by GWO, 

known as GWO-VGG16, GWO-DenseNet, GWO-
DenseNet-LSTM, GWO-InceptionV3, with one 
hybrid model GWO-VGG16 + InceptionV3.
Step 5: Finally, results are evaluated using various 
performance measures such as accuracy (acc), sensi-
tivity (sen), specificity (spe), precision (pre), f1_score 
(f1-scr) and AUC score. The proposed methodology 
is also graphically presented in Fig. 2

MRI data collection
The MRI data are extracted from PPMI website [34]. The 
PPMI dataset is a large-scale longitudinal investigation of 
Parkinson’s Disease (PD) conducted by the Michael J. Fox 
Foundation for the research of Parkinson’s. The objective of 
the study is to find biomarkers that can aid in predicting the 
onset and progression of PD and to create new treatments 
for the condition. The PPMI dataset contains a variety of 
information, including clinical evaluations, genetic infor-
mation, biospecimen samples (blood and CSF), and brain 
imaging data (MRI and DaTscan). Researchers from all 
across the world can analyse and do research on the dataset.

One of the distinguishing characteristics of the PPMI 
dataset is its longitudinal nature, which monitors 
patients over a number of years. This feature enables 
researchers to examine changes in disease development 
and find potential biomarkers for the illness. The data-
set also includes a large control group of healthy indi-
viduals, which provides a baseline for comparison. T1, 
T2-weighted MRI [35] and SPECT DaTscan [34] datasets 
used in this study are collected from the PPMI website.

MRI data samples
T1,T2-weighted and SPECT DaTscan dataset from PPMI 
are chosen for this investigation. A 1.5—3 Tesla scanner was 
used to create these pictures. The entire scan takes about 
twenty to thirty minutes. Three distinct views—axial, sagit-
tal, and coronal—were used to acquire the T1, T2-weighted 
MRI images as a three-dimensional sequence with a slice 
thickness of 1.5 mm or less. The description of MRI images 
of both datasets is given below in Tables 1 and 2.

In this study, two datasets are used i.e. T1,T2-weighted 
and SPECT DaTscan. A total of 30 subjects are included 
in T1,T2-weighted MRI dataset from which 15 subjects 
(Male-7, Female-8) are Parkinson’s disease (PD) and 15 
subjects (Male-7, Female-8) are healthy control (HC) which 
contains a total number of 9070 MRI images of different 
sizes. Out of 9070 MRI images, 3620 are PD subjects and 
5450 are HC subjects. A total of 36 subjects are included 
in SPECT DaTscan dataset from which 18 subjects (Male-9, 
Female-9) are suffering from Parkinson’s disease (PD) and 
18 subjects (Male-9, Female-9) are healthy control (HC) Fig. 1 Splitting of MRI datasets
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which contains a total of 20,096 MRI images. Out of 20,096 
MRI images, 5752 are PD subjects, and 14,344 are HC sub-
jects. The sample size is distributed as shown in Table 3.

Inclusion criteria
Those patients are included in the study whose age is 
between 55 and 75 years. Only PD and HC subjects are 
included.

Exclusion criteria
Patients whose age is less than 55 and greater than 75 
are excluded from this study. Other category subjects are 
excluded, such as SWEDD, PRODROMAL, etc.

Image pre‑processing
MRI images are available in DICOM (Digital Imaging and 
Communications in Medicine) (https:// www. micro dicom. 
com/ dicom- viewer- user- manual/) file format which is 
used to store and send medical pictures like X-rays, CT 
scans, and MRIs. A lot of image-related metadata, includ-
ing patient data, information on the image’s acquisition, 
and other medical data, is included in DICOM files. How-
ever, the DICOM file format is difficult to deal with when 
employing these pictures for machine learning tasks.

Many machine learning libraries and frameworks 
don’t natively support DICOM files, which is one of the 
reasons DICOM images are generally transformed to 
other image formats, like png or jpg, before being used 

Fig. 2 Proposed methodology for early detection of PD using GWO and deep learning models

Table 1 Description of MRI images of T1,T2-weighted dataset

Dataset Dimension Flip Angle Thickness of slice Slice orientation Matrix original size After pre‑
processing matrix 
size

Voxel Size

T1,T2-weighted MRI 
image

3D 9 degrees 1.5 mm Sagittal 256 × 256 224 × 224 1 × 1 × 1  mm3

Table 2 Description of MRI images of SPECT DaTscan dataset

Imaging mode Orbit Matrix Acquisition Zoom Angle Time No. of Projections Slice orientation Radius

Step and Shoot Circular 128 × 128 1.23 3 degrees 30 s 60 projections Sagittal 15 cm

https://www.microdicom.com/dicom-viewer-user-manual/
https://www.microdicom.com/dicom-viewer-user-manual/
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for image classification. Although Python has libraries 
for reading and manipulating DICOM files, it can often 
be simpler to convert the images to a more widely used 
format, such as png or jpg, and then use conventional 
image processing packages to work with the images.

Another reason for converting DICOM images to jpg is 
that DICOM images have different pixel representations and 
bit depths, depending on the specific equipment and soft-
ware used to generate them. Jpg images, on the other hand, 
have a standardized pixel representation and bit depth, mak-
ing them more consistent and easier to work with.

Finally, unlike some other picture formats, png, jpg images 
don’t lose any information when they are compressed, which 
might be crucial in the area of medical imaging, where even 
minor data loss can have serious repercussions.

In this study, all the DICOM (.dic) file format images 
are first converted into the .jpg format using MicroDI-
COM Viewer desktop application. The original image 
size is 256 × 256 × 3. The images which generate empty 
tuples are removed from the selected images. Empty 
tuples are those that create the null arrays for which the 
machine learning models create a huge number of mis-
classifications. These images are removed based on the 
threshold value of 30 pixels. Then images are cropped 
and stripped using Python library functions. Then, 
images are normalized using batch normalization. 
After preprocessing, the final size of the MRI images is 
224 × 224 × 3, which is given as input to the models. The 
original MRI images are shown in Fig. 3a and b.

After pre-processing the images are shown in Fig.  4a 
and b.

Model development
Four deep learning models with the combination of grey 
wolf optimization technique GWO-VGG16, GWO-
DenseNet, GWO-DenseNet-LSTM, GWO-InceptionV3 
and a hybrid model GWO-VGG16 + InceptionV3 have 
been proposed in this study for detection of PD accurately. 
All the proposed models are explained briefly below:

VGG16: VGG16 (Visual Geometry Group 16) [10] is 
a deep CNN architecture that was suggested by the 
University of Oxford’s Visual Geometry Group in 
2014. It is created for image classification problems 
and has accomplished state-of-the-art performance 
on various benchmarks, including the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) 
dataset. Thirteen Conv (convolutional) layers, 3 fully 
connected dense layers, and other layers made up the 
16-layer, VGG16. The input layer accepts an image 
as input of size 224 × 224 × 3. Each of the 13 convo-
lutional layers is having 3 × 3 filters with a stride of 
(1). After each max pooling layer, the number of fil-
ters doubles i.e. 6 × 6 with a stride of 2, starting with 
the first convolutional layer that includes 64 filters. 
The max pooling layers help to decrease the number 
of model parameters and avoid overfitting by reduc-
ing the spatial dimensions of the output by a factor 
of 2. Padding is a technique that is used by all convo-
lutional layers to guarantee that the output’s spatial 
dimensions match those of the inputs. Rectified lin-
ear unit (ReLU) is one of the activation functions that 
introduces nonlinearity into the model comes after 
each convolutional layer. It has 2 fully connected 
layers, each with 256, and 128 neurons respectively. 

Table 3 MRI data sample distribution

Datasets used Total no. of 
subjects

Subject 
Division
(80%:20%)

Total no. of image 
samples used

Training samples (80%) Testing (20%)

Training samples (80%) Validation 
samples (20%)

T1, T2-weighted MRI images 30 24:6 9070 7256
(PD-2896, HC-4351)

1814

PD 15 PD 3620 5805 1451 PD 724

HC 15 HC 5450 HC 1090

SPECT DaTscan 36 29:7 20096 16077
(PD-4601, HC-11475)

4019

PD 18 PD 5752 12,862 3215 PD 1151

HC 18 HC 14344 HC 2869

Fig. 3 Original MRI brain images of T1, T2-weighted dataset (a) PD 
subject (b) HC subject
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There are 128 neurons in the output layer, corre-
sponding to the two classes in the T1,T2-weighted 
and SPECT DaTscan datasets. In order to output a 
VGG16 algorithm is renowned for its ease of use and 
capacity to extract intricate information from images. 
However, it can be expensive to train and utilize com-
putationally probability distribution over the classes, 
it uses a “sigmoid” activation function. VGG16 is a 
very deep network with huge parameters.
DenseNet: DenseNet [11], short for Dense CNN, is a 
deep learning architecture that Huang et al. have first 
presented in 2016. It is designed to address the vanish-
ing gradient problem and encourage deep neural net-
works that reuse features. It creates connections that 
are dense between all layers. Each layer in this archi-
tecture receives feature maps from all levels below it as 

input. Gradient flow throughout the network is made 
possible by this connection structure, which provides 
direct access to features at various depths.

DenseNet is made up of dense blocks, each of which 
has several levels. Each layer in a dense block is con-
nected to all layers before it. The overall network design 
is created by gradually connecting dense units. Convo-
lutional and pooling layers are employed as transition 
layers to shorten the distance between packed blocks. 
They contribute to preserving connections while lower-
ing computational complexity and feature map sizes. The 
key advantages of DenseNet are feature reuse, parameter 
efficiency, and mitigating the vanishing gradient problem.

DenseNet is widely used and has produced state of art 
outcomes for a number of computer vision applications, 

Fig. 4 Image resizing and skull stripping of T1,T2-weighted dataset of both the PD and HC subjects in (a) gray scale and in (b) color
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such as semantic segmentation, image classification and 
object recognition. It is now a well-liked option among 
deep learning researchers and practitioners.

DenseNet‑LSTM: DenseNet with LSTM [13] refers 
to a network that combines Long Short-Term Mem-
ory (LSTM) networks with the DenseNet network. 
The strengths of LSTM’s modelling of sequential data 
and ability to detect temporal relationships are com-
bined with DenseNet’s feature extraction skills in this 
hybrid architecture.

The DenseNet component serves as the feature extrac-
tion backbone. The dense connections and hierarchical 
structure aid in the efficient acquisition of both local and 
global image features. At various degrees of abstraction, 
the DenseNet layers process the input image or sequence 
to extract significant information.

Afterwards, an LSTM network receives the output 
from the DenseNet layers. The LSTM is a form of recur-
rent neural network (RNN) that excels at modelling 
sequential data because it preserves long-term depend-
encies and detects temporal patterns. Memory cells are 
present in the network, allowing it to selectively recall or 
forget information over time. DenseNet and LSTM are 
used in various applications such as video action recogni-
tion, natural language processing, sentiment analysis, etc. 
in order to identify actions or activities, DenseNet cap-
tures features from individual frames, while LSTM pro-
cesses the sequence of features.

InceptionV3: InceptionV3 [13] is a variant of the 
Inception architecture that is introduced by Christian 
Szegedy et al. in 2015. InceptionV3 is a deep neural 
network that is created for image classification and 
object detection tasks. It consists of an input layer, 
stem network, inception modules, auxiliary classifi-
ers, average pooling, fully connected dense layers and 
a final (output) layer.

The images are given as input to the input layer, typi-
cally of size 224 × 224 × 3. The stem network extracts 
feature from the input images using three convolutional 
layers. With a 3 × 3 kernel, the first, second and third lay-
ers consist of 32, 32 and 64 filters respectively. The max 
pooling layer, which follows the stem network, has a 3 × 3 
filter with a stride of 2.

There are several inception modules in InceptionV3 
that are responsible for doing feature extraction at vari-
ous scales. Each inception module is made up of a num-
ber of convolutional layers with pooling layers and of 
various filters of sizes (1 × 1, 3 × 3, and 5 × 5) concat-
enated along the channel dimension. Compared to con-
ventional convolutional layers, Inception modules are 
computationally inexpensive. Two auxiliary classifiers are 

included in InceptionV3 after the  5th and  9th inception 
modules. The auxiliary classifiers are made up of a drop-
out layer, a softmax activation function, a ReLU activa-
tion function, a fully connected layer with 1024 neurons, 
and a global average pooling layer. The auxiliary classifi-
ers’ role includes supplying the network with more train-
ing data and minimizing the vanishing gradient issue.

After the last inception module, InceptionV3 utilizes a 
global average pooling layer to shrink the output’s spatial 
dimensions to a 1 × 1 feature map. A fully connected layer 
with 128 neurons is fed with the output of the global aver-
age pooling layer, which corresponds to the two classes in 
the T1,T2-weighted and SPECT DaTscan datasets. The 
fully connected layer outputs a probability distribution over 
the classes using a sigmoid activation function.

Proposed hybrid model (VGG16 + InceptionV3)
The proposed hybrid model is the fusion of VGG16 
[10] and two blocks of InceptionV3 [36] as illustrated in 
Fig. 5. All sixteen layers of VGG16 makes the Block-1 fol-
lowed by two blocks Block-2 and Block-3 of inception-
reduction. Then in Block-4 global average pooling, fully 
connected and sigmoid layers are used. The size of the 
input to the Block-1 (VGG16) is 224 × 224 × 3 and output 
matrix size from it is 7 × 7 × 512. This output is passed as 
input to the inception-reduction block (named as Block-
2) and output matrix obtained is of the size 7 × 7 × 640. 
Same process is repeated in Block-3 and size of the out-
put is 3 × 3 × 832. Finally, in Block-4, global average pool-
ing is executed and its output is fed to the fully connected 
layer to detect the patient as PD or HC.

Figure 6a and b present the detailed structure of Block-2 
and Block-3 which are made up of inception-reduction 
blocks. Four (1 × 1) convolution, three (3 × 3) convolu-
tion, and maxpooling of kernel size (3 × 3) are present in 
the inception block. In comparison to the (3 × 3) convo-
lution, the (1 × 1) convolution has a smaller coefficient 
which can decrease the number of input channels, and 
speed up the training process [37]. To extract the image’s 
low-level features, such as edges, lines and corners, the 
(1 × 1) and (3 × 3) convolution layers are used. These are 
concatenated and routed to the reduction block. To pre-
vent a representational blockage, the reduction block 
is employed which is made up of three (3 × 3) convolu-
tion, one (1 × 1) convolution and maxpooling layers. The 
advantage of using this Block-2 is that it lowers the cost 
and increases the efficiency of the network. The Block-3 
is exhibited in Fig. 6b, which is also contains one incep-
tion and one reduction blocks. The generated output from 
the Block-2 is passed as input to the Block-3. To extract 
high-level features like events and objects, a convolution 
with a kernel of size (7 × 7) is employed. In place of (7 × 7) 
convolution, a (7 × 1) and (1 × 7) convolutions are used. 
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The inception block consists of four (1 × 1) convolution 
and three sets of [(7 × 1) and (1 × 7)], as well as (3 × 3) aver-
age pooling layers [36]. Comparing the model to a single 
(7 × 7) convolution, factorization reduces the model’s cost. 
Afterwards, the reduction block receives all of these lay-
ers concatenated together. The reduction block consists of 
two (1 × 1) convolution, two (3 × 3) convolution, one set of 
[(7 × 1) and (1 × 7)] and one (3 × 3) maxpooling layer. The 
output from the Block-3 is passed as input to the Block-4, 
global average pooling layer which determines the image’s 
overall feature average. After that, the output of global 
average pooling layer is passed to the fully connected 
layer. The detailed output of each convolution layer is 
presented in Table 4. Finally, the predicted class is deter-
mined by selecting the class with the highest probability, 
which is represented by the Sigmoid layer.

The detailed output size of each layer is given below in 
Table 4.

Grey Wolf Optimization (GWO)
Seyedali Mirjalili introduced GWO in 2014 by imitating 
the social conduct, hierarchy of leadership, and hunting 
on the communal land of grey wolves [6]. Canidae is the 

family that includes the grey wolf (Canis lupus). As the 
top predators in the food chain, grey wolves are known as 
apex predators. The majority of grey wolves prefer to live 
in packs. The typical size of the group is between 5 and 
12 people. Alpha, Beta, Delta and Omega are four differ-
ent species denoted by (α), (β), (δ) and (ω).

The step-by-step procedure of grey wolf hunting is.

1. tracking, chasing, and approaching the prey.
2. As soon as the target starts moving, it is pursued, 

hounded, and surrounded.
3. attacking the prey or assaulting it.

In this section, social hierarchy, encircling, and 
attacking is mathematically represented as follows

Social hierarchy: Alpha is the best solution (α) to 
mathematically express the social hierarchy, fol-
lowed by (β) and (δ) as the next two best options. 
The remaining candidate solution is the (ω). α, β, 
and δ serve as the hunting (or optimization) cues in 
the GWO algorithm. The remaining ω wolves come 
after these α, β, and δ wolves.

Fig. 5 Architecture of the proposed Hybrid Model (VGG16 + InceptionV3) for PD detection
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Encircling/Surrounding Prey: Grey wolves circle 
their prey during hunting. The encircling behavior 
is mathematically represented as

(1)V =
−→
S .

−→
T x(t)−

−→
T (t)

(2)−→
T (t + 1) =

−→
T x(t)−

−→
U .

−→
V

where the current iteration is denoted by t, coefficient 
vectors are denoted by S and U, the position of the prey is 
denoted by  Tx, and the grey wolf ’s position is denoted by 
T. The vector 

−→
S  and 

−→
U  are represented as

where  q1,  q2 are arbitrary vectors with a range of [0, 1] 
and the components of −→p  decrease linearly from the 
value 2 to 0 throughout the course of iterations.

Hunting the prey: Grey wolves have the ability to 
track down and encircle their prey. Typically, the 
alpha leads the hunt. Hunting may occasionally be 
done by the beta and delta. It is assumed that the 
most promising candidate solution, alpha, delta, 
improve knowledge of the potential prey’s location in 
order to mathematically replicate the hunting behav-
iour of the wolves. The three best candidate solutions 
are mathematically represented to update their posi-
tion as follows –

(3)−→
U = 2

−→
p .−→q1 −

−→
p

(4)−→
S = 2.−→q2

Fig. 6 Architecture of (a) Block-2 and (b) Block-3 of Inception V3 models

Table 4 The detailed output of each convolution layer of 
proposed hybrid model

Phase Feature Maps

Block-1 (VGG16) 7 × 7 × 512

Block-2 (Inception-reduction) 7 × 7 × 640

Block-3 (Inception-reduction) 3 × 3 × 832

Block-4 (Global Average Pooling Layer) 1024

Fully Connected Layer 1024

Sigmoid 1
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Alpha Wolf, Beta Wolf, Delta Wolf

(5)
−→
Vα =

∣

∣

∣

−→
S1 .

−→
Tα −

−→
T
∣

∣

∣

(6)
−→
Vβ =

∣

∣

∣

−→
S2 .

−→
Tβ −

−→
T
∣

∣

∣

(7)
−→
Vδ =

∣

∣

∣

−→
S3 .

−→
Tδ −

−→
T
∣

∣

∣

(8)
−→
T1 =

−→
Tα −

−→
U1.

(

−→
Vα

)

(9)
−→
T2 =

−→
Tβ −

−→
U2.

(

−→
Vβ

)

The wolves in motion attack the prey when it stops. 
−→
U  

is a randomly chosen number between -2r and 2r, while 
 r2 is a number between -1 and 1. The search agent’s next 
position is a position that falls somewhere between the 
object’s most recent location and its preyer position. 
Thus, the attacking state is appropriate when 

∣

∣

∣

−→
U
∣

∣

∣
< 1 

[38]. The behaviour of wolves is used to depict the pro-
cess of finding the best solution. Following is the pseu-
docode of grey wolf optimization-

(10)
−→
T3 =

−→
Tδ −

−→
U3.

(

−→
Vδ

)

(11)−→
T (t + 1) =

−→
T1 +

−→
T2 +

−→
T3

3

Algorithm 1. Hyperparameters optimization of deep learning models using GWO –
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Step-by-step procedure:

Step-1: Set the ranges of hyperparameter values. The 
ranges are given in Table 6.
Step-2: Set the population size of the grey wolves.
Step-3: Create an objective function that measures 
how well the deep learning models performed after 
being trained with the provided hyperparameters. 
This function gauges the model’s effectiveness on a 
validation set.
Step-4: Using the wolves’ fitness levels, the domi-
nance and hierarchy are determined.
Step-5: Update the alpha, beta, delta and omega 
wolf ’s position using the Eq. (11)
Step-6: Restrict the wolf ’s new positions to remain 
inside each hyperparameter’s stated ranges. A loca-
tion is modified if it exceeds the limits.
Step-7: Verify that the termination condition-such 
as completing the required number of iterations or 
obtaining the target fitness value-is met. The opti-
mization procedure ends if the condition is satisfied; 
otherwise, return to step 5.
Step-8: Take the optimal collection of hyperparame-
ters for the deep learning models, which corresponds 
to the solution that is best and represents the wolf 
with the highest fitness value.

Results and discussion
Prior to discussing the outcome, the fundamental per-
formance evaluation criteria that are frequently used to 
evaluate different machine learning models while they 
are still in the training phase as well as in the testing 
phase are discussed in this section.

Performance evaluation with confusion matrix
The confusion matrix [39] which is a two-dimensional 
table is used to determine performance metrics. It dis-
plays the actual and predicted class values which are 
represented by its elements as true positive (T + ve), true 
negative (T-ve), false positive (F + ve), and false negative 
(F-ve). The classification performance can be quanti-
fied using these four elements. Based on the confusion 
matrix, the five score metrics used in this study are as fol-
lows -

(12)Accuracy (Acc) =
TP + TN

TP + TN + FP + FN

(13)Sensitivity (Se) =
TP

TP + FN

Along with the true + ve rate and false + ve rate, the 
ROC curve is shown on a graph which is known as the 
receiver operator characteristic. An area under the curve 
(AUC) score, or area under the curve, is also obtained.

Experimental results analysis of all the proposed models
Experimental results are described by the following sub-
sections that display the training results by plotting the 
accuracy and loss curves for each model used. For each 
model, the confusion matrix is also created and displayed.

Training results of all the proposed deep learning models
The experiments are carried out in Python by using 
various packages such as keras, opencv, tensorflow 2.1, 
scikitlearn [40] using the system configuration of intel 
Core i5 processor,  8th Generation, with 16 GB RAM, and 
NVIDIA GEFORCE graphics combined with 8 GB mem-
ory. The standard T1, T2-weighted and SPECT DaTscan 
datasets are used for the study. The datasets are split into 
two sets i.e. train and test using an 80:20 ratio. Again, the 
training set is then split into train and validation sets. To 
train all the proposed deep learning models with GWO 
using the algorithm given in “Image pre-processing” sec-
tion, various hyperparameters used are shown in Table 5 
and the optimized hyperparameters by GWO are shown 
in Table 6.

All the proposed deep learning models GWO-VGG16, 
GWO-DenseNet, GWO-DenseNet-LSTM, GWO-Incep-
tionV3 and hybrid model GWO-VGG16 + InceptionV3 
are pre-trained using the above hyperparameters. All the 
models comprise of an input layer, two hidden layers and 
an output layer. Every model has its own layers, such as 
convolutional, maxpooling, stem, global average pooling 
etc. Each layer consists of 256, and 128 neurons respec-
tively. Every hidden layer ends with a dropout layer with 
20 percent of neurons dropping out to overcome the over-
fitting problem. ReLu activation function is employed to 
all the hidden layers. To train all the models ‘adam’ opti-
mizer and loss function ‘binary_crossentropy’ is used. The 
GWO algorithm is used for hyperparameter optimization 

(14)Specificity (Spe) =
TN

TN + FP

(15)Precision (P) =
TP

TP + FP

(16)F1− score = 2×

(

Precision× Recall

Precision+ Recall

)
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with all the proposed models to obtain better perfor-
mance. The ranges of parameters are given manually and 
optimized hyperparameters are shown in Table 6.

Testing results of all the proposed deep learning models
A fully separate data subset that is previously prepared, 
is used to test and evaluate the effectiveness of the pro-
posed models. Figures 7a-e and 8a-e show the confusion 
matrix for all the proposed models for both the datasets 
i.e. T1,T2-weighted MRI and SPECT DaTscan respectively.

Experimental results and discussions
Before obtaining the results of the proposed models, 
various preprocessing and hyperparameter optimiza-
tion techniques are applied to obtain better accuracy and 
other performance measure results. Four deep learning 
models VGG16, DenseNet, DenseNet + LSTM, Incep-
tionV3 and a hybrid model VGG16 + InceptionV3 are 
trained using the two standard datasets T1,T2-weighted 
and SPECT DaTscan with 9070 and 20,096 images. The 
results are briefly explained below for both datasets.

Results using T1,T2‑weighted MRI dataset The results 
evaluation and comparison of all the proposed models 
are presented in Table 7.

The results of Table 7 demonstrate that all the proposed 
models achieved more than 99% of testing accuracy except 
GWO-DenseNet + LSTM which resulted in 98.29% accu-
racy and the hybrid model (GWO-VGG16 + InceptionV3) 
obtained highest accuracy 99.94% with the training loss of 
0.0272 which is minimum among all models.

Results using SPECT DaTscan MRI dataset The result 
evaluations and comparison of all the proposed models 
are given in Table 8.

The aforementioned table demonstrates that all the 
proposed models achieved more than 99% testing accu-
racy. The hybrid model GWO-VGG16 + InceptionV3 
obtained exactly 100% testing accuracy with the training 
loss values 0.0153 in comparison to other models.

The description of the validation of proposed models 
using independent data for both datasets is given in Table 9.

Results using SPECT DaTscan MRI dataset The 
results of Table  10 demonstrate that all the proposed 
models performed well and the hybrid model (GWO-
VGG16 + InceptionV3) obtained highest accuracy of 
99.54% with the training loss of 0.0027 which is mini-
mum among all models.

Results using SPECT DaTscan MRI dataset Similarly, 
the above Table 11, results exhibit that all the proposed 
models performed well and the hybrid model (GWO-
VGG16 + InceptionV3) resulted 99.11% accuracy during 
testing with the training loss values 0.0041 in comparison 
to other models.

Comparison with the existing models
The proposed models’ outcomes are presented in Tables 12 
and 13 along with comparisons to other previously reported 
models. The comparison exhibits that for both datasets, the 

Table 5 Hyperparameters used in all the proposed models

Models Hyperparameters Values

GWO-VGG16
GWO-DenseNet
GWO-DenseNet-LSTM
GWO-InceptionV3
Hybrid (GWO-VGG16 + InceptionV3)

No. of hidden layers 2

Dropout 0.20

Activation Function ReLu

Output Layer Sigmoid

Optimizer Adam

Loss Function binary_crossentropy

Table 6 Optimized hyperparameters using GWO

Models Manually tunning (range) Learning rate Batch‑size Momentum Dense‑units epochs

GWO-VGG16 Lr = [0.001,0.01]
Batch_size = [32, 128]
Momentum = [0.9, 0.99]
Dense_units = [128, 512]
Epochs = [10, 50]

0.001 128 0.9 256, 128 30

GWO-DenseNet 0.001 128 0.9 256, 128 34

GWO-DenseNet-LSTM 0.01 128 0.95 256, 128 30

GWO-InceptionV3 0.001 128 0.9 256, 128 32

GWO-VGG16 + InceptionV3 0.01 128 0.99 256, 128 35
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proposed deep learning models beat all other existing mod-
els in terms of performance metrics like accuracy, sensitiv-
ity, specificity, precision, f1-score and AUC score.

The above table shows that, in terms of accuracy, from all 
the proposed deep learning models, hybrid model GWO-
VGG16 + InceptionV3 outperforms the other eleven exist-
ing models and obtained 99.92% accuracy which is nearly 
similar to the model proposed by [22] with 100% accuracy.

Table  13 demonstrates that, in terms of accuracy, 
from all the proposed models, hybrid model GWO-
VGG16 + InceptionV3 outperforms the other existing 
models with 100% accuracy.

When doing comparison on the basis of accuracy the 
reported machine learning models give the values as 
99.01(Men), 96.97% (Women) [16], 85% [17], 96.4 [41] 
which is less than the result of the proposed deep learning 
models (99.94%) in T1,T2 weighted datasets. The papers 
[18] and [39] do comparison on the basis of AUC rather 
than accuracy and the values are 94.2% and 98% respec-
tively. In the present investigation, the proposed deep 

learning models demonstrated an improvement of 1.9% to 
4.8% in the AUC values in comparison to the existing mod-
els given in [18] and [39]. Similarly for the SPECT DaTs-
can dataset the proposed deep learning models exhibit 
better performance with 100% accuracy and 99.92% AUC 
in comparison to the reported literature [42] and [11] that 
give AUC of 97% and 99% respectively. Hence, in overall 
comparison, the proposed deep learning based models out-
perform the existing models in terms of accuracy and AUC 
values. The deep learning classification models presented 
in this study show the potential of such computational tools 
as future assistive diagnostic solution for doctors.

Limitations of the study
The study has certain research limitations which are 
listed below :

1.To implement it needs high memory space more 
than 16GB RAM, a high-end GPU system in this case.

Fig. 7 Confusion matrix for all the proposed models (a) GWO-VGG16, (b) GWO-DenseNet, (c) GWO-DenseNet-LSTM, (d) GWO-InceptionV3 and (e) 
Hybrid model (GWO-VGG16 + InceptionV3) using T1,T2-weighted MRI dataset
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Fig. 8 Confusion matrix of all the proposed models (a) GWO-VGG16, (b) GWO-DenseNet, (c) GWO-DenseNet-LSTM, (d) GWO-InceptionV3 and (e) 
Hybrid model (GWO-VGG16 + InceptionV3) using SPECT DaTscan dataset

Table 7 Results of the proposed models using T1,T2-weighted dataset

Performance Measures Proposed Models

GWO‑VGG16 (%) GWO‑DenseNet 
(%)

GWO‑DenseNet + LSTM
(%)

GWO‑InceptionV3 
(%)

Hybrid Model

GWO‑
VGG16 + InceptionV3 
(%)

Accuracy 99.00 99.55 98.29 99.77 99.94
Sensitivity 98.20 99.44 96.27 100 100

Specificity 99.54 99.63 99.63 99.77 99.21

Precision 99.30 99.44 99.43 99.96 99.84

F1-Score 98.74 99.44 97.82 99.92 99.68

AUC-ROC 99.67 99.99 99.88 99.78 99.99

Training Loss 0.0272 0.009 0.575 0.0348 0.0272
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2.Because of the high-dimension data, it takes more 
time to execute and also increases the time and space 
complexity.
3.Only binary class classification problem is used for 
early prediction of Parkinson’s disease. Multiclass 
classification can also be done.

Conclusion and future work
The detection of Parkinson’s disease is becoming more 
and more crucial today. Because PD is a tremor illness, 
it is increasingly difficult to make an accurate diagno-
sis of the condition, especially in the early stages. This 
study proposes a classification approach for Parkinson’s 
disease (PD) detection that enables doctors to make 
an accurate and timely diagnosis. The novelty of the 
paper is development of the hybrid model containing 
VGG16 and part of InceptionV3 whose hyperparam-
eters are updated using GWO for PD detection which 
is first of its kind. The paper proposes four deep learn-
ing models, VGG16, DenseNet, DenseNet + LSTM, 
InceptionV3 and a hybrid model VGG16 + Incep-
tionV3. In order to optimize the hyperparameters of 
proposed deep learning models, the GWO algorithm 
is used which automatically fine tune the hyperpa-
rameters and enhance the performance of the models. 
Two datasets T1, T2-weighted and SPECT DaTscan 

Table 8 Results of the proposed models using SPECT DaTscan dataset

Performance Measures Proposed Models

GWO‑VGG16 (%) GWO‑DenseNet 
(%)

GWO‑DenseNet + LSTM
(%)

GWO‑InceptionV3 
(%)

Hybrid Model

GWO‑
VGG16 + InceptionV3 
(%)

Accuracy 99.77 99.52 99.75 99.71 100
Sensitivity 100 99.42 99.64 99.44 99.82

Specificity 99.21 99.65 99.85 99.68 100

Precision 99.84 99.72 99.90 99.69 99.99

F1-Score 99.68 99.66 99.87 99.45 100

AUC-ROC 99.99 99.52 99.73 99.71 99.92

Training Loss 0.0221 0.0033 0.0452 0.0412 0.0153

Table 9 MRI data sample distribution for independent dataset

Datasets Used Total no. of 
subjects

Total no. of 
image samples 
used

T1, T2-weighted MRI images 30 9086
PD 15

HC 15

SPECT DaTscan 36 20120
PD 18

HC 18

Table 10 Validation of the proposed models using independent data of T1,T2-weighted dataset

Performance Measures Proposed Models

GWO‑VGG16 (%) GWO‑DenseNet 
(%)

GWO‑DenseNet + LSTM
(%)

GWO‑InceptionV3 
(%)

Hybrid Model

GWO‑
VGG16 + InceptionV3 
(%)

Accuracy 98.64 97.74 97.58 98.26 99.54
Sensitivity 97.21 97.98 97.25 98.36 99.14

Specificity 98.34 97.65 96.11 98.72 98.62

Precision 97.63 97.55 97.22 98.12 99.72

F1-Score 98.28 97.24 97.28 98.45 99.20

AUC-ROC 98.32 97.85 97.60 98.30 99.56

Training Loss 0.0027 0.009 0.0545 0.0034 0.0027



Page 18 of 20Majhi et al. BMC Medical Imaging          (2024) 24:156 

are used for the experiment. Various preprocessing 
techniques are applied to the images to enhance the 
models’ functionality. After pre-processing, the GWO 
optimization algorithm is fitted into all the models 
and efficiently encoded. The hybrid model GWO-
VGG16 + InceptionV3 has obtained 99.92% of accuracy 
and 99.99% AUC with T1,T2 dataset. While the same 
hybrid model has resulted 100% of accuracy and 99.92% 
AUC for SPECT DaTscan dataset. The paper also vali-
dates the effectiveness of the proposed hybrid model 
using independent data and demonstrated its superior-
ity with accuracy and AUC values of 99.54% and 99.56% 

for T1,T2 weighted dataset and 99.11% accuracy with 
99.15% AUC for SPECT DaTscan dataset respectively.

The work can be expanded in the future by adding 
new hyperparameter tuning techniques. Feature extrac-
tion will be done using Region of Interest (ROI) of two 
regions caudate and putamen in SPECT DaTscan data-
set. Segmentation will be applied to the MRI images to 
detect the Parkinson’s disease. Also, work can be done 
on multiclass classification problems and more no of 
patients with larger MRI images.

The proposed model will help the physicians to detect 
the PD disease before the detection of motor symptoms 

Table 11 Validation of the proposed models using independent data of SPECT DaTscan dataset

Performance Measures Proposed Models

GWO‑VGG16 (%) GWO‑DenseNet 
(%)

GWO‑DenseNet + LSTM
(%)

GWO‑InceptionV3 
(%)

Hybrid Model

GWO‑
VGG16 + InceptionV3 
(%)

Accuracy 98.84 98.99 97.00 98.38 99.11
Sensitivity 98.09 97.87 97.41 96.79 95.00

Specificity 99.66 98.55 97.36 98.66 98.65

Precision 99.66 98.62 95.53 97.77 99.00

F1-Score 98.84 98.40 95.97 97.28 98.36

AUC-ROC 98.86 98.95 97.12 98.32 99.15

Training Loss 0.0045 0.005 0.038 0.0056 0.0041

Table 12 Proposed models comparison with existing models using T1,T2-weighted dataset

Authors Models used in their 
study

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1‑score (%) AUC‑ROC 
score (%)

Lei et al. (2018) [41] SVM 78.37 84.70 ‑ 66.73 70.21 94.20

Esmaeilzadeh et al. (2018) 
[22]

Deep Learning 100 ‑ ‑ ‑ ‑ ‑

Shah et al. (2018) [23] CNN 96 ‑ ‑ ‑ ‑ ‑
Ramamurthy et al. (2019) 
[42]

CNN 94.33 97.47 82.54 95.45 ‑ ‑

Mostafa et al. (2020) [20] Ensemble Model 94.70 ‑ ‑ ‑ ‑ ‑
Sivaranjini, et al. (2020) [21] CNN 88.90 ‑ ‑ ‑ ‑ ‑
Chakraborty et al. (2021) 
[18]

3D-CNN 95.29 94.3 94.30 92.7 93.6 98

Solana-Lavalle et al. (2021) 
[16]

Logistic, RF, NB, Bayesian 
Net, KNN, MLP and SVM

Men (99.01) 99.35 100 100 ‑ ‑
Women (96.97) 100 96.15 97.22 ‑ ‑

Talai et al. (2021) [17] SVM + MLP 95.1 - 100 - 100 ‑
Siddiqui et al. (2022) [43] SVM 96.4

Camacho et al. (2023) [14] Explainable AI, CNN 79.3 77.7 81.3 80.2 - 87

Proposed Model GWO‑VGG16 + Incep‑
tionV3

99.92 99.81 100 99.9 100 100
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which help them to initiate treatment timely and 
make proper strategy for better treatment and hence 
improved quality of their lives. Secondly, the proposed 
algorithm can be integrated with wearable sensors and 
devices for real time tracking of PD disease and hence 
can reduce the treatment time.
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