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Abstract
Background To assess the improvement of image quality and diagnostic acceptance of thinner slice iodine maps 
enabled by deep learning image reconstruction (DLIR) in abdominal dual-energy CT (DECT).

Methods This study prospectively included 104 participants with 136 lesions. Four series of iodine maps were 
generated based on portal-venous scans of contrast-enhanced abdominal DECT: 5-mm and 1.25-mm using adaptive 
statistical iterative reconstruction-V (Asir-V) with 50% blending (AV-50), and 1.25-mm using DLIR with medium 
(DLIR-M), and high strength (DLIR-H). The iodine concentrations (IC) and their standard deviations of nine anatomical 
sites were measured, and the corresponding coefficient of variations (CV) were calculated. Noise-power-spectrum 
(NPS) and edge-rise-slope (ERS) were measured. Five radiologists rated image quality in terms of image noise, 
contrast, sharpness, texture, and small structure visibility, and evaluated overall diagnostic acceptability of images and 
lesion conspicuity.

Results The four reconstructions maintained the IC values unchanged in nine anatomical sites (all p > 0.999). 
Compared to 1.25-mm AV-50, 1.25-mm DLIR-M and DLIR-H significantly reduced CV values (all p < 0.001) and 
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Background
Dual-energy CT (DECT) allows further material decom-
position analysis to generate iodine maps for quantifying 
the presence of iodine-containing contrast material [1]. 
The iodine mapping is desirable to be used as a imaging 
biomarker for the detection of vascular emboli, char-
acterization of lesions, and evaluation of treatment 
response [2–4]. The current application of iodine maps is 
mainly based on established iodine concentration thresh-
olds; therefore, the accuracy and consistency of iodine 
concentration measurements has attracted attention of 
many researchers [5–8]. However, the application and 
investigation of iodine maps for diagnosis is hindered by 
low spatial resolution and severe image noise. The slice 
thickness of 5-mm and 1.25-mm is used for diagnosis in 
current clinical routine [9], with the 5-mm being more 
common for the abdomen due to the patient radiation 
concern. The 5-mm images display with lower image 
noise; however, may suffer from the low spatial resolution 
due to partial volume effect. In contrast, the 1.25-mm 
images enable higher spatial resolution for detection of 
more lesion details but the signal-to-noise ratio would be 
reduced.

It is thus very important to reconstruct iodine maps in 
DECT into thinner slices but with reduced image noise 
for iodine maps to gain clinical acceptance as interpreta-
tive images. Deep learning image reconstruction (DLIR), 
an algorithm uses deep convolutional neural networks, 
has been developed and tested for improving image 
quality in virtual monochromatic images (VMIs) with 
reduced radiation and iodine dose [10–18], and has also 
shown higher accuracy in iodine concentration measure-
ments [5–8]. Nevertheless, it has not been fully investi-
gated whether the DLIR can improve image quality of 
iodine maps with thinner slice thickness to increase diag-
nostic confidence [19].

Therefore, this prospective study is aimed to assess the 
hypothesis that the use of thin slice thickness (1.25-mm) 
iodine maps combined with DLIR in abdominal DECT 
can provide lower image noise, higher spatial resolu-
tion, to diagnostic acceptance and lesion conspicuity, in 
comparison with iodine maps reconstructed using the 

state-of-the-art reconstruction algorithm of adaptive sta-
tistical iterative reconstruction-V (Asir-V).

Methods
The local institutional ethic review board approved this 
study, and the written informed consents from all partici-
pants have been received. The Fig. 1 presents the work-
flow of current study.

Participants
This study prospectively screened 110 consecutive par-
ticipants who underwent standard abdominal contrast-
enhanced CT scan for clinical purpose at our institution 
between March and July 2022 using a DECT scanner 
(Revolution Apex CT, GE Healthcare). The inclusion cri-
teria were: (a) ≥ 18 years old; (b) scheduled to undergo 
abdominal contrast-enhanced CT scan for clinical pur-
pose; (c) agree to participate the study. The exclusion 
criteria were: (a) severe artifacts; (b) incomplete images 
series or reconstruction failure; (c) lack of anatomi-
cal structure for evaluation. There were six participants 
excluded for: incomplete images series (n = 3), severe 
motion artifacts (n = 2), and splenectomy (n = 1), respec-
tively. Accordingly, 104 participants were included in the 
study. One radiologist with 4-year-experience in radiol-
ogy identified 136 lesions for analysis. The lesions were 
selected if they were detectable on the portal-venous 
scans. The largest lesion was selected when there were 
multiple lesions detectable in the same organ. These 
lesions were confirmed by an abdominal radiologist with 
20-year-experience in abdominal radiology.

Image acquisition and reconstruction
The abdominal contrast-enhanced DECT scans were 
conducted using a typical abdominal protocol. The DECT 
scans were performed using a fast-kilovoltage-switching 
technique between 80 and 140 kVp, with an automatic 
tube current (GSI Assist, GE Healthcare), 0.625 × 128 mm 
of beam collimation, 0.8  s of rotation time, 0.992:1 of 
pitch factor, 50 cm of scan field of view, 38 cm of display 
field of view, and 512 × 512 of image matrix. A nonionic 
contrast media was administered intravenously (approxi-
mately 520 mgI/kg body weight) within a fixed duration 

presented lower noise and noise peak (both p < 0.001). Compared to 5-mm AV-50, 1.25-mm images had higher ERS 
(all p < 0.001). The difference of the peak and average spatial frequency among the four reconstructions was relatively 
small but statistically significant (both p < 0.001). The 1.25-mm DLIR-M images were rated higher than the 5-mm and 
1.25-mm AV-50 images for diagnostic acceptability and lesion conspicuity (all P < 0.001).

Conclusions DLIR may facilitate the thinner slice thickness iodine maps in abdominal DECT for improvement of 
image quality, diagnostic acceptability, and lesion conspicuity.
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of 30  s. The real-time fluoroscopic monitoring (140 
kVp, 20  mA) was initiated 10  s after the contrast injec-
tion. After the bolus-tracking program (SmartPrep, GE 
Healthcare) detected an enhancement over the threshold 
of 140 HU in the abdominal aorta, the arterial, portal-
venous, and equilibrium scans were initiated with addi-
tional delays of 12, 30, and 100 s. The delay duration in 
this protocol was optimized by the local institution.

The raw data of portal-venous scans were used for 
reconstruction. There were four series of iodine maps 
for each participant reconstructed using a vendor-spe-
cific workstation (advantage workstation, AW version 
4.7, GE Healthcare): 5-mm (thick slice) and 1.25-mm 
(thin slice) using Asir-V with 50% blending (AV-50), and 
1.25-mm using DLIR with medium (DLIR-M), and high 
strength (DLIR-H), all applying the standard kernel. The 
slice thickness and blending ratio of Asir-V is deter-
mined according to the institutional clinical routine. The 
5-mm and 1.25-mm AV-50 images were used as refer-
ence for image spatial resolution and noise, respectively. 

Our pilot study suggested that only the 1.25-mm DLIR-
M and DLIR-H images have potential in improving 
both image noise and spatial resolution (Supplementary 
Note S1). However, the DLIR-L did not show advan-
tage compared to the routine 1.25-mm or 5-mm AV-50 
images. Therefore, the 1.25-mm DLIR-L images were not 
reconstructed.

Quantitative image evaluation
A radiologist with 4-year-experience in radiology con-
ducted the quantitative image evaluation using the open-
source imQuest software version 7.1 (Duke University; 
https://deckard.duhs.duke.edu/~samei/tg233.html) 
(Supplementary Note S2) [5, 8, 9, 13]. Regions of inter-
est (ROI) were selected on the 5 mm AV-50 images. The 
corresponding images in thinner slices in other recon-
structions were linked, to ensure the identical ROIs 
were used for evaluation. The iodine concentration (IC) 
and its standard deviation (SD) of nine anatomic struc-
tures were measured. The coefficient of variation (CV) 

Fig. 1 Study workflow
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for each structure was calculated to evaluate the extent 
of variability by dividing the mean IC by the SD over the 
patient cohort. The image noise magnitude was evaluated 
using noise power spectrum (NPS) by placing ROIs on 
the relatively homogenous regions of the liver. The NPS 
curve, NPS noise, NPS noise peak, the average spatial fre-
quency and the peak spatial frequency were generated. 
The image sharpness was evaluated using edge rise slope 
(ERS). The ERS was calculated by dividing the IC differ-
ence between the last dip and the first peak on the ris-
ing IC curve by the distance between these two points. 
The ERS was measured using a selected axial plane that 
presents a running portal vein. Ten participants were 
randomly selected for repeated measurements by the 
same radiologist and by another radiologist with 5-year-
experience in radiology two weeks after the first readout. 
These repeated measurements were used to calculate the 
intra- in inter-rater quantitative measurement variabili-
ties, respectively.

Qualitative image evaluation
Five radiologists with 1- to 6-year-experience in radiol-
ogy performed the qualitative image quality assessment 
(Supplementary Note S3) [6, 7, 9, 11–16, 18]. The read-
ers independently rated image quality in terms of image 
noise, contrast, sharpness, texture, small structure vis-
ibility, and evaluated overall diagnostic acceptability 
of images and lesion conspicuity. A value of more than 
3 was defined as an image quality satisfactory for clini-
cal use. The readers should detect the lesions for evalu-
ation by themselves but were instructed what lesions to 
rate. All the images were randomly presented to the read-
ers without reconstruction parameters. The images were 
shown with a window width of 15.0 mgI/mL and window 
level of 5.0 mgI/mL, using the same settings for daily 
image interpretation at the reading room. There were no 
time limits for the evaluation, and the readers can view 
the images with the window width and level as well as 
distance they like. Two weeks after the first readout, a 
radiologist with 5-year- experience in radiology repeated 
all the assessment of images and lesions. The intra- in 
inter-rater qualitative assessment variabilities were cal-
culated using assessments of five raters and the repeated 
assessments by this rater, respectively.

Statistical analysis
We applied R language version 4.1.3 (https://www.r-proj-
ect.org/) with related packages within RStudio version 
1.4.1106 (https://www.rstudio.com/) (Supplementary 
Note S4) [20] for statistical analysis. The difference of 
among the reconstruction algorithms were performed by 
using repeated-measure analysis of variance (ANOVA) 
for quantitative metrics and Friedman test for qualita-
tive metrics, respectively. Once there was an overall 

significant difference, the post hoc pairwise comparisons 
between groups would be conducted with Bonferroni 
correction. For the lesion conspicuity, subgroup analy-
sis was performed according to (1) location of lesion, 
(2) the largest diameter of lesions, and (3) the presenta-
tion of lesions compared to surrounding tissue. The sta-
tistical analysis was two-tailed and the alpha value was 
set at 0.05. The agreements of quantitative evaluations 
were evaluated by using an intraclass correlation coeffi-
cient (ICC) of single measurement, absolute agreement, 
and two-way random-effects model [21]. For qualitative 
evaluations, the intra-rater and inter-rater agreements 
were evaluated by using the weighted kappa statistic for 
and the Kendall’s W statistics, respectively [22]. Accord-
ing to our pilot study, the a priori sample size estimation 
yielded a size of 22 participants for a power of 0.85, when 
alpha was 0.05. With 104 participants, the post hoc power 
calculation resulted in 1-beta values > 0.995, when alpha 
was 0.05, indicating an efficient statistical power [23].

Results
Characteristics of participants and lesions
Our study included 104 participants (62 men; mean 
age ± standard deviation, 56.8 ± 13.1 years; median 
58, range, 24 to 80 years) with 136 lesions (mean size, 
14.5 ± 14.1 mm; median 11, range, 3 to 107 mm) for anal-
ysis (Table 1 and Supplementary Table S1).

Quantitative evaluation results
The intra-rater and inter-rater agreements were excel-
lent for IC of liver (ICC 0.938–0.939) and SD of liver IC 
(ICC 0.921–0.967) measurements (Supplementary Table 
S2). The effect sizes of these quantitative evaluation met-
rics between the different reconstruction algorithms 
are calculated (Supplementary Table S3). The IC values 
remained stable among the four series with different 
reconstruction algorithms (all p > 0.05) (Table  2; Fig.  2). 
The CV values of nine anatomical sites on the thin slice 
DLIR-M and DLIR-H images were lower than that on the 
thin slice AV-50 (all p < 0.001), with that of the thin DLIR-
H images being the lowest among the three groups. The 
CV values of kidney, psoas major, and abdominal subcu-
taneous fat on the thin slice DLIR-H were similar to that 
on the thick slice AV-50 images (all p > 0.999), but those 
of other anatomical sites were slightly higher (all other 
p < 0.001).

The intra-rater and inter-rater agreements were mod-
erate to excellent for NPS metrics (ICC 0.731–0.960) and 
ERS (ICC 0.933–0.964) measurements (Supplementary 
Table S2). The noise on the thin slice DLIR-H images 
were lower than thin slice AV-50 (p < 0.001), and thin 
slice DLIR-M images (p < 0.001), but were higher than 
that on the thick slice AV-50 images (p < 0.001) (Table 3; 
Fig.  3). The noise peaks of DLIR-H images were similar 

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/


Page 5 of 13Zhong et al. BMC Medical Imaging          (2024) 24:159 

to that of the thick slice AV-50 images (p = 0.150). The 
peak spatial frequency and average spatial frequency var-
ied among the four reconstruction algorithms, except for 
the peak spatial frequency between thin slice AV-50, and 
thin slice DLIR-H images (p = 0.210). However, the differ-
ence of the peak and average spatial frequency among the 
four reconstruction algorithms were relatively small. The 
ERS values on the thin slice AV-50, thin slice DLIR-M, 
and thin slice DLIR-H images were higher than that on 
thick slice AV-50 images (all P < 0.001), but the difference 
in ERS values among the thin slice images could not be 
identified (all p > 0.999).

Qualitative evaluation results
The intra-rater and inter-rater agreements were moder-
ate to good (weighted kappa statistic 0.546–0.769; Ken-
dall’s W statistic 0.536–0.717) for qualitative analysis 
(Supplementary Table S2). The effect sizes of these quali-
tative evaluation metrics between the different recon-
struction algorithms are calculated (Supplementary Table 
S4). The thin slice DLIR-H images were rated the high-
est for image noise (p < 0.001) and presented comparable 

ratings for small structure visibility as the thin slice 
DLIR-M images (p > 0.999) (Table 4; Fig. 4). The thin slice 
DLIR-M images were rated the highest in terms of image 
contrast, sharpness, and texture, and gained the highest 
diagnostic acceptance among four image reconstruction 
algorithms (all p < 0.001). The thin slice AV-50 images 
suffered from undiagnostic image noise, while the thick 
slice AV-50 only showed advantages in image noise. Both 
of the AV-50 images were less acceptable for diagnosis 
than DLIR images (all p < 0.001).

For lesion conspicuity, the thin slice images showed 
higher acceptance than the thick slice AV-50 images by 
five readers (all p < 0.001) (Table  5; Fig.  4). Among the 
thin slice images, the thin slice DLIR-M gained higher 
rating than the thin slice AV-50 and thin slice DLIR-H 
(both p < 0.001). The subgroup analysis for lesion conspi-
cuity suggested that the thin slice DLIR-M images were 
the most acceptable for the readers, while the thin slice 
DLIR-H images did not show significant improvements 
in lesion conspicuity compared to thin slice AV-50. The 
representative cases for lesion characterization are shown 
in Figs. 5 and 6, and Supplementary Figure S1.

Discussion
The current study evaluated the improvements in image 
quality, diagnostic acceptance, and lesion conspicuity 
of using thinner slice iodine maps combined with DLIR 
algorithm. The thin slice DLIR images provided stable 
IC measurement compared to the conventional Asir-V 
image reconstruction algorithm and showed lower CV 
values than that of thin slice AV-50 to allow accurate 
and consistent iodine quantification. The thin slice DLIR 
significantly reduced the image noise compared to thin 
slice AV-50, while provided higher spatial resolution with 
thinner slice thickness compared to thick slice AV-50. 
The subjective evaluation showed higher diagnostic 
acceptance and higher lesion conspicuity with thin slice 
DLIR images compared to thick slice AV-50 images, indi-
cating the potential of thin slice iodine maps with DLIR 
for clinical diagnostic purpose.

The previous phantom studies have demonstrated that 
DECT scanners using a fast-kilovoltage-switching mode 
with DLIR can provide possible small improvement in 
iodine quantification accuracy compared with the Asir-V 
[5, 8]. The clinical study further confirmed the potential 
of DLIR in reducing image noise as well as variability of 
IC values compared to Asir-V [6–8]. However, the stud-
ies only investigated the IC accuracy and image quality at 
one slice thickness of 5-mm [5] or thin slice [6–8]. As the 
current clinical standard of obtaining iodine maps is still 
iterative reconstruction with relative thick slice thickness, 
we further investigated the influence of slice thickness on 
the iodine quantification. Our results suggested that the 
DLIR allows thinner slice thickness with consistent IC 

Table 1 Participant and lesion characteristics
Characteristics Data
Number of participants 104
Age, year, mean ± SD, median (range) 56.8 ± 13.1, 

58 (24 to 
80)

Gender, n (%)
 Male 62 (60)
 Female 42 (40)
Clinical purpose, n (%)
 Cancer stating 71 (68)
 Cancer Surveillance 33 (32)
Number of lesions 136
No. of lesions of each participant, mean ± SD, median 
(range)

1.3 ± 0.9, 1 
(0 to 3)

Largest diameter of lesions, millimeters, mean ± SD, median 
(range)

14.5 ± 14.1, 
11 (3 to 
107)

Presentation of lesions compared to surrounding tissue, 
n (%)
 Lower 109 (80)
 Mixed 18 (13)
 Higher 9 (7)
Location of lesions, n (%)
 Right lobe of Liver 48 (35)
 Right kidney 32 (24)
 Left kidney 24 (18)
 Left lobe of Liver 19 (14)
 Gallbladder 4 (3)
 Spleen 4 (3)
 Stomach 3 (2)
 Pancreas 2 (1)
Note SD = standard deviation
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values with lower variability, indicating the generalizabil-
ity of quantitative thresholds established by different slice 
thickness and reconstruction algorithms in fast-kilovolt-
age-switching DECT scanners. It is important to evalu-
ate the quantification consistency of IC values, because 
the current application of iodine maps is mainly based on 
established iodine concentration thresholds [2–4]. Our 
study suggested that the DLIR can be safely accepted as 
a new reconstruction algorithm for quantitative analysis 
of abdomen.

The thicker slice images have low image noise, but 
usually presents with lower spatial resolution and suf-
fer from partial volume effects. This led to difficulties in 
displaying small and low-density objects. In contrast, the 
improved ERS and spatial resolution can provide higher 
sharpness and better contrast to allow better detectabil-
ity of lesions. However, the thinner slice images have 
potential for improving the conspicuity for these lesions, 
but increase the image noise [9]. In our study, the thin 
slice AV-50 showed higher ERS values compared to thick 
slice AV-50, but suffered from the increased image noise, 

Table 2 Iodine concentration and variability
5-mm
AV-50

1.25-mm
AV-50

1.25-mm
DLIR-M

1.25-mm
DLIR-H

p p1 p2 p3 p4 p5 p6

Iodine concentration 
and variability
Liver
IC, mgI/mL 2.520 ± 0.524 2.509 ± 0.520 2.510 ± 0.521 2.509 ± 0.519 0.757 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.159 ± 0.037 0.266 ± 0.048 0.223 ± 0.043 0.174 ± 0.041 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV 0.065 ± 0.017 0.109 ± 0.025 0.091 ± 0.021 0.071 ± 0.018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Spleen
IC, mgI/mL 3.311 ± 0.645 3.262 ± 0.744 3.28 ± 0.707 3.305 ± 0.647 0.502 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.166 ± 0.047 0.272 ± 0.049 0.226 ± 0.042 0.178 ± 0.041 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV 0.051 ± 0.014 0.094 ± 0.084 0.073 ± 0.037 0.055 ± 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Pancreas
IC, mgI/mL 2.557 ± 0.654 2.569 ± 0.647 2.567 ± 0.651 2.568 ± 0.65 0.324 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.183 ± 0.053 0.303 ± 0.067 0.275 ± 0.063 0.218 ± 0.058 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV 0.075 ± 0.029 0.126 ± 0.045 0.114 ± 0.042 0.091 ± 0.038 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Kidney
IC, mgI/mL 6.294 ± 1.122 6.316 ± 1.102 6.319 ± 1.102 6.312 ± 1.105 0.265 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.215 ± 0.099 0.293 ± 0.094 0.267 ± 0.088 0.215 ± 0.079 < 0.001 < 0.001 < 0.001 > 0.999 < 0.001 < 0.001 < 0.001
CV 0.035 ± 0.016 0.047 ± 0.016 0.043 ± 0.015 0.034 ± 0.012 < 0.001 < 0.001 < 0.001 > 0.999 < 0.001 < 0.001 < 0.001
Abdominal aorta
IC, mgI/mL 5.374 ± 0.998 5.314 ± 0.992 5.308 ± 0.995 5.307 ± 0.996 0.532 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.170 ± 0.044 0.301 ± 0.050 0.265 ± 0.046 0.205 ± 0.040 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV 0.032 ± 0.011 0.058 ± 0.015 0.051 ± 0.013 0.039 ± 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Main portal vein
IC, mgI/mL 5.504 ± 1.025 5.463 ± 1.035 5.479 ± 1.037 5.472 ± 1.040 0.383 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.185 ± 0.070 0.317 ± 0.066 0.287 ± 0.064 0.230 ± 0.059 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV 0.034 ± 0.014 0.059 ± 0.015 0.053 ± 0.014 0.043 ± 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Inferior vena cava
IC, mgI/mL 4.091 ± 0.961 4.03 ± 0.938 4.035 ± 0.938 4.014 ± 0.987 0.327 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.217 ± 0.083 0.338 ± 0.075 0.305 ± 0.072 0.248 ± 0.076 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV 0.057 ± 0.031 0.089 ± 0.033 0.081 ± 0.031 0.068 ± 0.035 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Psoas major
IC, mgI/mL 0.638 ± 0.132 0.660 ± 0.134 0.656 ± 0.133 0.652 ± 0.133 0.416 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.141 ± 0.024 0.239 ± 0.035 0.194 ± 0.028 0.146 ± 0.024 < 0.001 < 0.001 < 0.001 0.023 < 0.001 < 0.001 < 0.001
CV 0.231 ± 0.068 0.380 ± 0.108 0.308 ± 0.081 0.233 ± 0.063 < 0.001 < 0.001 < 0.001 > 0.999 < 0.001 < 0.001 < 0.001
Abdominal subcutane-
ous fat
IC, mgI/mL -1.071 ± 0.265 -1.119 ± 0.256 -1.131 ± 0.250 -1.107 ± 0.340 0.994 n. a. n. a. n. a. n. a. n. a. n. a.
SD, mgI/mL 0.131 ± 0.045 0.215 ± 0.066 0.185 ± 0.071 0.147 ± 0.064 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
CV -0.143 ± 0.105 -0.215 ± 0.128 -0.186 ± 0.134 -0.147 ± 0.121 < 0.001 < 0.001 < 0.001 > 0.999 < 0.001 < 0.001 < 0.001
Note Data were presented as mean ± standard deviation. p = p value for repeated-measure analysis of variance. p1 to p6 were p values for post hoc pairwise 
comparisons using Bonferroni correction, the p values presented were presented as adjusted p values
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which resulted in suboptimal clinical acceptance evalu-
ated by five radiologists. As the thinner slice thickness 
with AV-50 cannot provide satisfied balanced image 
quality for lesion detection, the new DLIR algorithm was 
introduced. To overcome the dilemma of spatial resolu-
tion and image noise, the DLIR algorithm was used and 
presented potential for improving image quality in VMIs 
[10–18]. The DLIR algorithm is developed by using deep 
convolutional neural networks with a ground-truth train-
ing data of filtered back-projection images acquired with 
high-dose scans, to generate high quality images from 
low-dose scans. The reduced image noise is believed 
to yield lower variability in the measured IC values [8]. 
The thin slice DLIR images presented similar ERS values 
compared to thin slice AV-50, while maintained relatively 
low image noise compared to thick slice AV-50, which 
gained higher clinical acceptance in subjective evalua-
tion. Therefore, we believed that the DLIR may facilitate 
a thinner slice thickness as a new state-of-art standard 
for routine reconstruction of iodine maps in abdominal 

DECT, to replace the original thicker slice iodine maps 
using Asir-V.

The lesion conspicuity has been seldomly investigated 
in the iodine maps [8], while the studies using VMIs have 
demonstrated the potential of DLIR for improvement 
of lesion conspicuity [6, 7]. Our study suggested a pos-
sible improvement in lesion conspicuity in iodine maps 
by using DLIR, indicating a potential role of iodine maps 
for clinical diagnosis purpose in the future, in addition to 
the current iodine quantification. The thick slice AV-50 
images, although with lower noise, were not optimal for 
diagnosis purpose due to thick slice thickness and lower 
sharpness. Cao et al. [9] have suggested in their study of 
using conventional CT images, the DLIR allows the use 
of thinner slice images by significantly suppressing image 
noise while improving image spatial resolution as well as 
overall image quality. Our study extended that statement 
into the iodine maps and recommended the thinner slice 
images as a new standard for iodine maps in abdominal 
DECT. The thin slice AV-50 images provided improved 
sharpness but suffered from high image noise, which 

Table 3 NPS and ERS assessment
5-mm
AV-50

1.25-mm
AV-50

1.25-mm
DLIR-M

1.25-mm
DLIR-H

p p1 p2 p3 p4 p5 p6

Noise, mgI/mL 0.130 ± 0.017 0.246 ± 0.026 0.202 ± 0.022 0.152 ± 0.019 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Noise peak, (mgI/mL)2 
· mm2

0.788 ± 0.331 2.371 ± 0.883 1.308 ± 0.542 0.859 ± 0.445 < 0.001 < 0.001 < 0.001 0.150 < 0.001 < 0.001 < 0.001

fpeak, mm− 1 0.106 ± 0.028 0.117 ± 0.031 0.126 ± 0.040 0.120 ± 0.041 < 0.001 0.001 < 0.001 0.003 < 0.001 0.210 < 0.001
faverage, mm− 1 0.193 ± 0.029 0.205 ± 0.022 0.220 ± 0.021 0.215 ± 0.025 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ERS, (mgI/mL)/mm 6.703 ± 2.880 8.997 ± 4.474 9.132 ± 4.554 9.103 ± 4.545 < 0.001 < 0.001 < 0.001 < 0.001 > 0.999 > 0.999 > 0.999
Note Data were presented as mean ± standard deviation. p = p value for repeated-measure analysis of variance. p1 to p6 were p values for post hoc pairwise 
comparisons using Bonferroni correction, the p values presented were presented as adjusted p values

Fig. 2 Iodine concentration and variability. (A) IC values, (B) SD values, and (C) CV values of nine anatomical sites obtained using the four different image 
reconstruction algorithms
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potentially hindered the diagnosis. Xu et al. [13, 16] sug-
gested that the DLIR significantly reduces image noise 
than Asir-V in low-keV VMIs, and were most evident and 
consistent in thin slice images. Sato et al. [7] and Noda 
et al. [11] showed representative cases for better lesion 
conspicuity in iodine maps using DLIR. Our study sug-
gested small but significant improvements in lesion con-
spicuity using DLIR-M than AV-50, but the DLIR-H did 

not show significant advantages than AV-50. It is not sur-
prising that the DLIR-M gained a higher rating in lesion 
conspicuity than DLIR-H in our study, since the DLIR-M 
images were preferred by the readers in subjective image 
quality evaluation and gained higher diagnostic accep-
tance. However, strength level selection of DLIR may 
depends on the clinical tasks, as previous studies recom-
mended different strength level of DLIR for solid or cystic 

Table 4 Qualitative image quality rating
5-mm
AV-50

1.25-mm
AV-50

1.25-mm
DLIR-M

1.25-mm
DLIR-H

p p1 p2 p3 p4 p5 p6

Image contrast 2.43 ± 0.25 3.29 ± 0.24 3.59 ± 0.26 3.46 ± 0.28 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.002
Image noise 3.37 ± 0.21 2.01 ± 0.17 2.95 ± 0.22 3.70 ± 0.26 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Image sharpness 2.35 ± 0.22 3.39 ± 0.22 3.87 ± 0.24 3.61 ± 0.31 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Image texture 2.31 ± 0.23 3.40 ± 0.24 3.75 ± 0.25 3.11 ± 0.32 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Small structure visibility 2.35 ± 0.25 3.27 ± 0.26 3.65 ± 0.31 3.64 ± 0.28 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 > 0.999
Diagnostic acceptability 2.61 ± 0.25 3.38 ± 0.24 3.93 ± 0.18 3.61 ± 0.27 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.004 < 0.001
Note Data were presented as mean ± standard deviation. p = p value for Friedman test. p1 to p6 were p values for post hoc pairwise comparisons using Bonferroni 
correction, the p values presented were presented as adjusted p values

Fig. 3 NPS and ERS assessment. (A) NPS curves obtained with the four different image reconstruction algorithms using homogenous region of the liver 
of a patient. (B) The NPS and ERS metrics among the four different image reconstruction algorithms. n. s. indicates non-significant post hoc comparison 
results using Bonferroni method
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Table 5 Lesion conspicuity rating
5-mm
AV-50

1.25-mm
AV-50

1.25-mm
DLIR-M

1.25-mm
DLIR-H

p p1 p2 p3 p4 p5 p6

Overall 2.13 ± 0.47 3.03 ± 0.32 3.17 ± 0.34 3.11 ± 0.34 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.145 0.029
Location of lesion
Liver (n = 67) 2.14 ± 0.48 3.01 ± 0.35 3.15 ± 0.35 3.13 ± 0.34 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.210 > 0.999
Kidney (n = 56) 2.17 ± 0.44 3.05 ± 0.30 3.20 ± 0.33 3.09 ± 0.33 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 > 0.999 0.050
Other (n = 13) 1.89 ± 0.50 2.99 ± 0.30 3.17 ± 0.41 3.09 ± 0.36 < 0.001 < 0.001 < 0.001 < 0.001 0.664 > 0.999 > 0.999
Largest diameter of lesion
< 11 mm (n = 66) 2.07 ± 0.43 3.01 ± 0.32 3.13 ± 0.33 3.05 ± 0.34 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 > 0.999 0.091
>= 11 mm (n = 70) 2.19 ± 0.50 3.04 ± 0.33 3.21 ± 0.35 3.17 ± 0.34 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.156 0.697
Presentation of lesions com-
pared to surrounding tissue
Lower (n = 109) 2.10 ± 0.46 3.03 ± 0.31 3.16 ± 0.33 3.10 ± 0.34 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.559 0.165
Higher or mixed (n = 27) 2.52 ± 0.47 3.00 ± 0.38 3.24 ± 0.38 3.16 ± 0.37 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.550 0.347
Note Data were presented as mean ± standard deviation. p = p value for Friedman test. p1 to p6 were p values for post hoc pairwise comparisons using Bonferroni 
correction, the p values presented were presented as adjusted p values

Fig. 4 Qualitative image quality and lesion conspicuity rating. Bar plots for image noise, image contrast, image sharpness, small structure visibility, diag-
nostic acceptability of participants (n = 104), and lesion conspicuity of evaluated lesions (n = 136) obtained with four image reconstruction algorithms. n. 
s. indicates non-significant post hoc comparison results using Bonferroni method
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lesions [7, 18] and pancreatic cancers [11]. Our study has 
confirmed the ability of DLIR for improving image qual-
ity as well as lesion conspicuity in iodine maps by using 
objective and subjective evaluations. Nevertheless, com-
prehensive evaluation of abdominal diseases and modi-
fication of reconstruction parameters are needed before 
the iodine maps can be accepted as a new extra reference 
for diagnosis purpose.

Our study has following limitations to address. First, 
the current study was conducted with a relatively small 
sample size at one institution. Although post hoc power 
calculation showed high efficiency, our conclusions 

require further validation in other centers. Second, our 
study only employed only one fast-kilovoltage-switch-
ing DECT scanner since the DLIR algorithm is vendor-
specific, and we only compared the vendor-specific 
Asir-V algorithm with DLIR-M and DLIR-H. The inter-
vendor and inter-scanner differences were not assessed 
[5, 24–27]. However, we chose thick slice AV-50 iodine 
maps as the benchmark, to present the improvement 
accomplished by DLIR compared to the current clinical 
standard. The DLIR with low strength was not included 
because it is not hopeful to provide available image qual-
ity [17, 18]. Third, our study only measured the IC values 

Fig. 5 Four examples of abdominal CT studies. These portal-venous phase abdominal CT studies were reconstructed into iodine maps using 5-mm AV-
50, 1.25-mm AV-50, 1.25-mm DLIR-M, and 1.25-mm DLIR-H algorithms; and present with the same windowing (width of 15.0 mgI/mL, level of 5.0 mgI/mL). 
(A) A patient underwent CT scan for cancer staging. A low-density hepatic lesion was better visualized in 1.25-mm images than the 5-mm AV-50 image. 
The 1.25-mm DLIR image better balanced the image noise and spatial resolution. (B) A patient underwent CT scan for cancer staging. The enhanced 
hepatic lesion can be detected in all the images, while the details of the texture and boundary were better visualized in 1.25-mm images. The lesion of the 
stomach can be detected in all the images, but the enhanced range was better displayed with lower image noise in 1.25-mm DLIR-H images, potentially 
allowed more accurate staging. (C) A patient underwent CT scan for hepatic lesion. Compared with the 5-mm AV-50 image, the 1.25-mm images better 
showed the enhance pattern of the lesion. The 1.25-mm DLIR-H images presented the lesion with more details and lower image noise. (D) A patient un-
derwent CT scan for hepatic lesion. A hepatic lesion with surrounding enhancement was detected. The lesion texture of is better depicted with 1.25-mm 
images. The 1.25-mm DLIR-H images best balanced the image noise, and spatial resolution
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of normal structures. The influence of DLIR on iodine 
quantification and diagnosis must be ascertained with 
respect to different diseases. Also, the potential influence 
of DLIR on advanced quantitative analysis was not evalu-
ated [5, 25]. Fourth, the qualitative image evaluation in 
our study was conducted by five radiologists with 1- to 
6-year-experience in radiology. The experience in radi-
ologists may introduce bias in the rating. The results of 

our study should be validated by more studies with more 
radiologists with different levels of experience. Fifth, the 
diagnostic acceptance of using iodine maps was not com-
pared with that of the VMIs, as the best kiloelectron volt-
age level for VMIs using DLIR has not been determined 
yet. Further comparisons between VMIs and iodine maps 
are necessary to tell whether iodine maps have potential 
advantages for diagnosis purpose. Sixth, the potential 

Fig. 6 Four examples of abdominal CT studies with measurements. These portal-venous phase abdominal CT studies were reconstructed into iodine 
maps using 5-mm AV-50, 1.25-mm AV-50, 1.25-mm DLIR-M, and 1.25-mm DLIR-H algorithms, respectively; and present with the same windowing (width 
of 15.0 mgI/mL, level of 5.0 mgI/mL). (A) A patient was scanned for a suspected left renal lesion. With 1.25-mm images, the internal enhancement was 
better detected. The difference of iodine concentration between the low-density compartment and subtle enhancement was more obvious with 1.25-
mm AV-50 (1.14 mgI/mL) and 1.25-mm DLIR-H (1.04 mgI/mL) images, than 5-mm AV-50 (0.68 mgI/mL) image, which suffered from the partial volume 
effects. (B) A patient was scanned for cancer staging. The hepatic lesion with subtle circular and center enhancement in with 5-mm AV-50 image was 
suspected to be a metastasis lesion. The 1.25-mm images better visualized the boundary of lesion, and the subtle circular enhancement was excluded. 
The detailed center enhancement in the lesion can be better depicted in 1.25-mm images. The ERS of border of the enhancement was higher in 1.25-mm 
AV-50 [0.437 (mgI/mL)/mm] image than 5-mm AV-50 [0.262 (mgI/mL)/mm] image, and was even higher in 1.25 DLIR-H [0.655 (mgI/mL)/mm] image. The 
follow-up scans indicated that the lesion is benign. (C) A patient was scanned for a lesion in spleen. The difference of iodine concentration between the 
low-density lesion and spleen parenchyma was more obvious with 1.25-mm AV-50 (1.14 mgI/mL) and 1.25-mm DLIR-H (1.04 mgI/mL) images, than 5-mm 
AV-50 (0.60 mgI/mL) image. The ERS of the lesion boundary was higher in 1.25-mm AV-50 [0.334 (mgI/mL)/mm] and 1.25 DLIR-H [0.359 (mgI/mL)/mm] 
images than 5-mm AV-50 [0.164 (mgI/mL)/mm] image. The 1.25-mm DLIR-H image with lower noise improved the diagnostic confidence of a cyst. (D) 
A patient with gastric cancer was scanned for hepatic metastases. With the 1.25-mm images, the left boundary of the lesion was clearer than the 5-mm 
AV-50 images. The ERS of the subtle left boundary was higher in in 1.25-mm DLIR-H [0.586 (mgI/mL)/mm] image than 1.25 AV-50 [0.373 (mgI/mL)/mm] 
image, and lowest in 5-mm AV-50 [0.1.66 (mgI/mL)/mm] image. It was hard to measure the size of the lesion in 5-mm image, while it can be easier to be 
measured in 1.25-mm images, to guide later treatment selections
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influence of factors like patient motion, contrast agent 
dosage, and scanner settings on image quality were not 
assessed in our study. The future study may focus on 
these factors to deepen the DLIR application in clinical 
practice. Finally, the DLIR algorithm is a black box. We 
need further investigation to gain acceptance in clini-
cal practice. Further investigations on the its robustness 
to artifacts and noise [28–31], as well as its protentional 
influence on the later images processing steps [32–34]. 
The future investigations are encouraged to explore the 
impact of DLIR on specific types of lesions or compar-
ing its performance across different patient populations. 
Moreover, the cost-effectiveness of implementing DLIR 
in clinical practice would also be an interesting topic.

To summarize, the thinner slice thickness iodine maps 
with DLIR in abdominal DECT can keep the iodine con-
centration measurement values unchanged with lower 
variability compared with the standard reconstructions 
to allow consistent quantitative iodine analysis using 
established threshold values, and can provide improved 
image quality with reduced image noise, more natural 
image texture, and better spatial resolution. Compared 
to the standard thicker slice reconstructions, the thinner 
slice thickness iodine images with DLIR have the poten-
tial can potentially improve the accuracy of lesion detec-
tion and characterization in abdominal DECT. Future 
studies are encouraged to determine whether DLIR has 
clinical impact on iodine quantification and diagnosis 
confidence for specific clinical tasks.
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