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Abstract 

Background  Leishmaniasis is a vector-born neglected parasitic disease belonging to the genus Leishmania. Out 
of the 30 Leishmania species, 21 species cause human infection that affect the skin and the internal organs. Around, 
700,000 to 1,000,000 of the newly infected cases and 26,000 to 65,000 deaths are reported worldwide annually. The 
disease exhibits three clinical presentations, namely, the cutaneous, muco-cutaneous and visceral Leishmaniasis 
which affects the skin, mucosal membrane and the internal organs, respectively. The relapsing behavior of the disease 
limits its diagnosis and treatment efficiency. The common diagnostic approaches follow subjective, error-prone, repet-
itive processes. Despite, an ever pressing need for an accurate detection of Leishmaniasis, the research conducted 
so far is scarce. In this regard, the main aim of the current research is to develop an artificial intelligence based detec-
tion tool for the Leishmaniasis from the Geimsa-stained microscopic images using deep learning method.

Methods  Stained microscopic images were acquired locally and labeled by experts. The images were augmented 
using different methods to prevent overfitting and improve the generalizability of the system. Fine-tuned Faster 
RCNN, SSD, and YOLOV5 models were used for object detection. Mean average precision (MAP), precision, and Recall 
were calculated to evaluate and compare the performance of the models.

Results  The fine-tuned YOLOV5 outperformed the other models such as Faster RCNN and SSD, with the MAP scores, 
of 73%, 54% and 57%, respectively.

Conclusion  The currently developed YOLOV5 model can be tested in the clinics to assist the laboratorists in diag-
nosing Leishmaniasis from the microscopic images. Particularly, in low-resourced healthcare facilities, with fewer 
qualified medical professionals or hematologists, our AI support system can assist in reducing the diagnosing time, 
workload, and misdiagnosis. Furthermore, the dataset collected by us will be shared with other researchers who seek 
to improve upon the detection system of the parasite. The current model detects the parasites even in the presence 
of the monocyte cells, but sometimes, the accuracy decreases due to the differences in the sizes of the parasite cells 
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alongside the blood cells. The incorporation of cascaded networks in future and the quantification of the parasite 
load, shall overcome the limitations of the currently developed system.

Keywords  Leishmaniasis, Microscopic image, Deep learning, Object detection, Faster RCNN, YOLOV5, SSD

Introduction
Image processing and artificial intelligence (AI) are per-
vasive nowadays in healthcare sectors by providing 
support to various diagnostic and therapeutic medical 
imaging modalities [1–3]. An accurate and timely diagno-
sis of diseases leads to a positive outcome for the patients 
treatment [4–6]. Thus, the current study aims to develop 
more sensetive diagnosing system for a Dermato-patho-
logic disease named Leishmaniasis by combining the best 
of image processing and AI domains.

Leishmaniasis is a vector-born neglected parasitic dis-
ease which is transmitted by the bite of infected female 
phlebotomine sand flies, and human infection is caused 
by 21 of the 30 known species [7, 8]. These are broadly 
divided into Leishmaniasis donovani complex, Leish-
maniasis Tropica, Leishmaniasis Mexicana complex, 
Leishmaniasis Aethopica, Leishmaniasis Majora, and 
Subgenus Vianna. The disease is found in 88 countries, 
and approximately 350 million people live in Leishmania 
endemic areas (East and North Africa, India, Mexico, 
Central America, the Middle East etc.) [7, 9]. Besides 
this, it affects people living in areas associated with mal-
nutrition, population displacement, poor housing, weak 
immune systems, and lack of financial resources [4]. 
Moreover, it is linked to environmental changes such as 
deforestation, the building of dams, irrigation schemes, 
and urbanization. Globally, an estimated 1.5 to 2  mil-
lion new cases are reported every year, between 12 and 
15  million people are infected, and 350  million people 
are at risk of infection. Besides, 70,000 deaths occur 
annually worldwide [9, 10]. The disease prevalence is 
not well studied/recorded at the country level. In Ethi-
opia, an estimated number of 4500 to 5000, new cases 
of Visceral Leishmaniasis (VL) are reported every year, 
and over 3.2  million people are at the risk of infection 
[11, 12].

Leishmaniasis manifests in three clinical forms: Vis-
ceral Leishmaniasis, Cutaneous Leishmaniasis (CL), and 
Muco-cutaneous Leishmaniasis (MCL). Visceral Leish-
maniasis, also known as Kal-azar, proves fatal in over 
95% of cases if untreated. Its symptoms include irregu-
lar fever episodes, weight loss, spleen and liver enlarge-
ment, and anemia. Globally, though an estimated 
number of 50,000 to 90,000 new cases of Visceral Leish-
maniasis occurs annually, only around 25–45% of those 
cases are documented by the World Health Organiza-
tion [8]. Visceral Leishmaniasis disease is mainly found 

around the northern regions of Ethiopia. Cutaneous 
Leishmaniasis stands out as the most prevalent variant 
of Leishmaniasis, characterized by the development of 
skin lesions, primarily ulcers, on exposed areas of the 
body. These lesions often lead to lifelong scars, con-
tributing to significant disability or social stigma [13]. 
Mucocutaneous Leishmaniasis results in the partial 
or complete destruction of the mucous membranes in 
the nose, mouth, and throat [14]. Furthermore, it can 
also arise as a complication of Cutaneous Leishmania-
sis (CL). Figure  1 illustrates the microscopic image of 
Cutaneous Leishmaniasis acquired at Armauer Hansen 
Research Institute (AHRI) for the purpose of this 
project.

Nowadays, incidence rate of the disease have started to 
increase at the country level [10, 15]. To diagnose Leish-
maniasis, clinical observations, molecular methods, sero-
logical tests, and parasitological diagnosis are adopted in 
clinics [12, 16]. Yet, parasitological diagnosis remains the 
gold standard. It is carried out by taking a sample from 
the infected area and analyzing the presence of Leish-
man parasite (Leishman body). The presence of either 
the promastigote (extracellular, motile, early stage) or the 
amastigote (macrophage-intracellular, non-motile, late 
stage) of Leishman parasite through direct observation 
under a microscope. Detecting the parasite on a micro-
scope requires skilled laboratory technicians, which is 
challenging in low-resourced developing countries. The 
procedure is generally tedious and time-consuming. The 
drug-resistance behavior of the disease is also another 
concern, making the effectiveness of treatments ques-
tionable [12, 17]. Besides, at the stage of amastigotes, 
the procedure is subject to false diagnosis because the 
parasite resembles other cells like neutrophils, platelets, 
bacteria, or some other artifacts found on the sample. To 
be consistent in the microscopic investigation, the expert 
laboratory technician has to go for 1000X views to claim 
a person is free from Leishmaniasis. Even if the molecular 
method provides accurate information, the device’s avail-
ability is limited to a few research institutions because 
of its expensiveness and the need for skilled laboratory 
technicians. Whereas, the serological test are preferred 
for rapid diagnosis because of its fastness and its ease of 
use. However, this test also provides unreliable (false neg-
ative/ positive) results.

A better diagnosing system facilitate both the treat-
ment options as well as the disease-controlling options 
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for the patients. So far only few studies have been car-
ried out on Leishmaniasis that used both advanced image 
analysis and AI concepts. Yet, further investigations are 
required to improve the diagnostic procedures in reduc-
ing the unreliability in parasite detection. The primary 
objective of this study was to design and develop a deep 
learning-based decision support tool that can detect 
leishmaniasis parasites from Giemsa stained Microscopic 
Images and support the ongoing research in this area.

To develop the tool, we first acquired Giemsa-stained 
microscopic images of the parasite. We then trained dif-
ferent fine-tuned deep-learning object detection models 
based on these images to locate and identify the parasites. 
The developed tool was evaluated for its performance 
using various metrics, such as accuracy, sensitivity, and 
specificity.

Related works
Recently, researchers have undertaken various investi-
gations to address this issue. Some have attempted to 
develop image processing algorithms incorporating 
machine learning concepts for both the promastig-
otes and amastigotes stages of the parasite. However, 
these systems tend to be computationally expensive 
and primarily focus on classification tasks, lacking 
the ability to localize the target parasite. Conversely, 
a few researchers have endeavored to devise diagnos-
ing methods based on deep learning. Nevertheless, as 
most of the datasets they utilized consist of fluorescent 
microscopic images, the practical application of such 
studies is confined to research centers. This under-
scores the necessity for the development of a more 
efficient Leishmaniasis diagnosing system. Researchers 

have gone through different investigations and experi-
ments in microscopic image analysis for the last dec-
ades. Among the image processing approaches, P. A. 
Nogueira et  al. [18] proposed a method using Otsu’s 
thresholding and Support Vector Machine (SVM) as a 
classifier and obtained 85.3% accuracy. The study used 
fluorescence-stained microscopy images from random 
drug trials with different experimental setups. Even if 
this method showed a good result, it failed to go for low 
parasite detection due to the segmentation step and 
did not quantify the parasite load. M. Farahi et al. [19] 
introduced another method called Modified Chan-vese 
(CV) Level Set method that automatically segments 
Leishmaniasis parasites from Geimsa-stained micro-
scopic images. The study employed contrast stretching 
and mask production as a preprocessing step. Then, 
the CV model was used to extract the boundaries. To 
exclude the unwanted boundaries extracted on the sub-
images, global and local methods were used and the 
study was able to achieve segmentation errors of 10.9% 
and 9.76%, respectively. In another study, J. C. Neves 
et al. [20] applied a blob detection method followed by 
contour detection and matching to classify the para-
sites in flurescence stained microscopic images. They 
were able to achieve an average F1 score of 84.48%. 
However, this method is complex and computationally 
expensive. Another approach proposed by F. Ouertani 
et  al. considered the watershed segmentation tech-
nique combined with the region merging method [21]. 
Despite the initial segmentation and the merging step, 
some parasites remain improperly segmented. This is 
due to the overlapping cells and not considering the 
elliptical form of the parasite. This method can ensure 

Fig. 1  Microscopic image of Cutaneous Leishmaniasis (indicated by red arrows; the black arrow indicates monocyte)
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the topological flexibility of the parasite, but it is com-
putationally expensive because it requires knowledge 
about the shape and size of the parasite.

On the other hand, in the work by M. Górriz et  al. 
[16], Leishmania parasites were segmented and classi-
fied into three groups using Fully Connected CNN and 
training using a U-net model that successfully segments 
Leishmaniasis parasites and classified them into promas-
tigotes, amastigotes and adhered parasites. However, the 
study used a small number of fluorescent microscopic 
images (only 37 images), and there was a class imbalance 
within the datasets. M. Zare et al. introduced Viola Jones 
machine learning-based algorithm to classify Leishma-
niasis parasites using 300 Geimsa-stained microscopic 
images. The research obtained 65% recall and 50% pre-
cision, giving a good indication and inciting that further 
investigations can be done [22].

Other methods used deep learning approaches on 
tropical infectious diseases like malaria, Trypanosomes. 
For example, O. Holmström et al. [23] evaluated the per-
formance of deep CNNs on three different microscopy 
tasks: diagnosis of malaria in thick blood smears, tuber-
culosis in sputum samples, and intestinal parasite eggs 
in stool samples. In all cases, accuracy was high and sub-
stantially better than alternative approaches based on 
traditional medical imaging techniques. Hence, such sys-
tems can be used for automatic diagnosis of Leishmania-
sis with larger datasets and better accuracy.

In the work by E. Yazdanparast et al. [24], a dedicated 
software called INsPECT was developed to automate 
infection level measurement based on fluorescent DNA 
staining. They also use morphological filtering as a pre-
processing step followed by what they call a threshold for 
images with a Decreasing Probability Density Function.

As far as the literature review carried out in the current 
study is concerned, deep learning-based object detec-
tion algorithms for Leishmaniasis detection is not yet 
been developed. Believing that we are the first to apply 
deep learning models to detect leishmaniasis, we gave 
our system a pioneering and unique name: ‘DeepLeish’. 
However, for other parasitic and infectious diseases like 
malaria [25, 26] and tuberculosis, researchers introduced 
several object detection-based algorithms. For instance, 
J. Hung and A. Carpenter [27], in their study applied 
object detection algorithm on malaria microscopic 
images. The dataset contained 1300 images with 100,000 
individual cells. The study used two stages: detection and 

classification. In the first stage, Faster RCNN was used to 
detect red blood cells only, and the output was fed into 
another network called ALEX Net with seven layers to 
classify the other cells, like parasites and leucocytes, into 
fine-grained categories.

Materials and methods
Study design and experiment
The study was followed experimental research meth-
ods. Leishmania-infected Giemsa-stained microscopic 
slides were primarily obtained from the AHRI and Jimma 
Medical Center in Ethiopia. The control group (mono-
cytes) was sourced from an online database. Microscopic 
images were acquired and labeled following second-
ary confirmation by clinical collaborators. The collected 
images underwent preprocessing before being input-
ted into deep learning-based object detectors to identify 
Leishman parasites. Figure 2 illustrates the general block 
diagram of the proposed method.

Image acquisition
Figure  1 above shows acquired sample Geimsa-stained 
microscopic image of a Leishmaniasis case. The shape 
and color of Leishmaniasis parasites can be observed by 
the eye to identify the amastigote stage of the parasite. 
Amastigotes are round to oval shaped with 2–10 μm in 
diameter. The most prominent features are kenetoplast, 
larger nucleus, and cytoplasm. In the Geimsa-stained 
amastigotes stage of the Leishman parasite, the cyto-
plasm appears pale blue, and the kinetoplast appears pink 
and placed in front of the larger nucleus, which appears 
as a deep red color [28].

Data preparation
Images were captured using a 12MP Olympus BX-63 
digital microscope and a 5MP Olympus digital micro-
scope from the two local sites. The online datasets were 
collected from medical images and the signal process-
ing research center at Isfahan University of Medical Sci-
ence, Iran (http://​misp.​mui.​ac.​ir/​en/​leish​mania), and 
monocyte images were collected from an online Men-
deley dataset [29]. In total, 1858 images were collected, 
out of which 244 are CL, 68 are Leishmaniasis parasites 
VL, 126 (negative background), and 1420 are monocytes. 
The data was split into 70% for training, 15% for valida-
tion, and 15% for testing. To increase the size of dataset, 
augmentation is performed (only on the training data set) 

Fig. 2  General block diagram of the developed system

http://www.misp.mui.ac.ir/en/leishmania
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and an additional 921 augmented images are obtained, 
making the total number of images 2779 out of which 
2,222 images were annotated and used to perform train-
ing while the rest 557 images were used for validation and 
testing. The collected dataset considers the variability of 
the dataset. To elucidate, images containing parasite or 
monocytes only, images with concentrated parasites, and 
images containing both parasites and monocytes were 
considered. Both thin film and thick film stained micro-
scopic images were considered as well. Figure 3; Table 1 
present the data composition considered during train-
ing, validation, and testing. The data quality assurance 
followed by collecting the data is attached in the Supple-
mentary material.

Preprocessing
Data augmentation, involving image rotation and Gauss-
ian filtering, was utilized as a pre-processing step in the 
proposed method. This technique is employed to gen-
erate additional training data, particularly useful when 
dealing with small datasets, to facilitate the implementa-
tion of machine learning and deep learning algorithms 
[30]. In this study, rotation and Gaussian filtering meth-
ods were employed not only to address class imbalance 
but also to leverage several other advantages. Rotation, as 
a type of augmentation method, involves altering the ori-
entation of the image across various angles. Essentially, 
it entails spinning the image around its axis to diversify 
the dataset and enhance model generalization [30, 31]. In 
this work, each image was rotated by 90o,180o, and 270o 
(see Supplementary material). Another data augmenta-
tion technique utilized was Gaussian blurring. Gauss-
ian noise is a common model used to simulate read-out 
noise in images, and Gaussian blurring, also known as 

smoothing, is employed to filter or reduce this noise [31]. 
Gaussian blurring is a method for generating multiple 
smoothed images by applying different kernel sizes with-
out sacrificing essential information. Therefore, when 
developing deep learning-based object detection algo-
rithms with limited datasets, Gaussian blurring serves 
as a crucial data augmentation technique. It helps assess 
the model’s ability to generalize and accurately detect 
the target object amidst the effects of blurring [32, 33]. 
Hence, without losing the essential features of the image, 
blurring (smoothing) with a kernel size of k = 3 × 3 was 
selected and applied to the original dataset (see Fig. 4).

Model training & fine‑tuning
Three deep-learning object detection models were cho-
sen: Faster RCNN [27], YOLOV5 [34], and SSD ResNet 
[35]. The YoloV5 modelwas trained using 100 images 
containing leishman parasites with fine tunned hyper-
parameters. A learning rate of 0.02 was used to train 
the model. A batch size of 128 was used, along with an 
anchor size of 3.44. After visualizing the output, the 
model was trained on all 2,222 images included in the 
training data set. The Faster RCNN model was trained 
with various Hyperparameters. An Epoch of 500 was 

Fig. 3  Dataset distribution and variability

Table 1  Dataset distribution

Category Number of Images

Original data 1858

Augmented data 921

Training Set 2222 (including augmented)

Validation Set 279

Testing Set 277
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chosen to train the model after performing trial and error 
experiments. A learning rate of 0.02 was used to train 
the model. In this work, a batch size of one (stochastic 
gradient descent) was used. Since the total dataset is not 
too large, such a small batch size was an option. In this 
work, a maximum of 100 detections were used, and other 
parameters remained the same as the default setting. 
Anchor boxes with aspect ratios of 1:1, 1:2, and 2:1, and 
scales of [0.25, 0.5, 1.0, 2.0] were selected in order to fit it 
to the anchor boxes with the target object. Similarly, for 
the third model, SSD ResNet50 FPN, training was done 
with different parameters where an Epoch of 500 and a 
batch size of 4 were finally assumed. Table 2 summarizes 
the Hyper-parameters used using the three deep learning 
schemes utilized in this work along with the computa-
tional resources required.

Model evaluation metrics
To evaluate the detection performance of the different 
models, two major distinct evaluations are performed, 
which are nontrivial: classification loss and localiza-
tion loss. Classification loss indicates how accurately the 
model classifies instances, while localization loss meas-
ures how precisely the model identifies the location of 
an instance. When dealing with datasets that have non-
uniform class distributions, a simple accuracy evalua-
tion metric may introduce biases. Therefore, analyzing 

the risk of misclassification is crucial. Thus, to measure 
the model at various confidence levels, it is necessary to 
associate confidence scores with the detected bound-
ing boxes. Accordingly, the following evaluation metrics 
were computed and utilized: [26, 27].

Precision: is a measure of how predictions are accurate 
(given by Eq. 1). It is the ratio of correctly predicted posi-
tive observations to the total predicted positive observa-
tions (the sum of true positives (TP) and false positives 
(FP)).

Mean Average Precision (MAP): is the average value 
of average precision values (it is the area under the preci-
sion-recall curve) and is stated as Eq. 2 below.

Where n is the total number of classes, and APk is the 
average precision of class k.

Recall:  is the ratio of correctly predicted positive 
observations to all observations in actual class (given by 
Eq.  3). It is defined in terms of TP and false negatives 
(FN).

Intersection over union (IOU): is an evaluation 
metric that is used to evaluate whether a predicted 
bounding box matches with the ground truth bound-
ing boxes. Such evaluation metric is used to measure 
the quality of localization [36]. This is because, in the 
case of object detection, the (x, y) co-ordinate does not 

(1)Precision =
TP

TP + FP

(2)mAP =
1

n

k=n

k=1
APk

(3)Recall =
TP

TP + FN

Fig. 4  Image blurring using Gaussian filter. a Orignal image, b Gaussian blurring with a 3 × 3 kernel

Table 2  Hyper-parameters and computational resources utilized

Model Type Hyper-parameters Computational 
Resource

Learning Rate Batch Size Epoch

YOLO_V5 0.02 128 1000 13.1 GB GPU

SSD 0.02 4 500 i7 CPU

Faster RCNN 0.02 1 500 i7 CPU
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exactly match the ground truth due to the variation of 
our model (feature extractor, sliding window size, etc.). 
Thus, to verify the detected (x, y) coordinates indicate 
the exact position of the detected object, IOU is cal-
culated. It implies the heavily matched bounding box 
will be rewarded. It is calculated as the ratio of the 
area of intersection to the area of the union of ground 
truth and predicted bounding boxes and given by Eq. 4 
below.

Results
Detection evaluation results
The results obtained from the three models, i.e. 
YOLOV5, Faster RCNN, and SSD, are discussed in the 
next sections.

(4)IOU =
Area of Intersection

Area of Union

A. Detection performance of YOLO V5
During the training of YOLOv5, approximately 13.1 GB 
of GPU memory was utilized to complete 1000 epochs 
on Colab, requiring several hours to run. The testing pro-
cedure averaged around 0.19 s per image, with the entire 
testing dataset taking approximately 54.15  s to process. 
The classification loss pertains to the box classifier, where 
the classifier identifies the targeted classes. The localiza-
tion loss of the box classifier indicates the accurate locali-
zation of the targeted object. During the training phase, 
the box loss at 1000 epochs was 0.03998, and the object-
ness loss was 0.02118. Similarly, for validation, the box 
loss was 0.03377, and the objectness loss was 0.02185. As 
depicted in Fig.  5, the model was trained with different 
epochs and learning rates. The figure illustrates training 
with 1000 epochs and a learning rate of 0.01, as well as 
another training session with 500 epochs and a learning 
rate of 0.00014. The testing of the model was performed 
on Colab.

Fig. 5  Evaluation results using YOLO V5: (A) MAP at IoU 0.5, (B) MAP at IoU 0.75:0.95, (C) Precision, (D) Recall
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Table  3 presents the object detection performance of 
the model during training for selected learning rates, 
epochs, and batch sizes. The performance is evaluated 
in terms of MAP, Precision, and Recall. By increasing 
the learning rate from 0.00014 to 0.02 the error rate has 
decreased for YOLOv5.

The computed MAP values per a given IoU are pre-
sented in Table  4, which shows that a MAP of 65% is 
achieved. At the same time, the overall performance of 
the YOLO V5 model is summarized in Table  5, which 
achieved a better MAP, Precision, and Recall of 65%, 70%, 
and 69%, respectively.

B. Detection performance of the SSD model
The SSD model was trained for about a month and 
was implemented in a local machine; compared to the 
YOLO V5 model, which was trained and tested using 
colab. The average time it took to detect parasites in 
test images was about 1.95 s. A sample result that dem-
onstrate the performance of the SSD model is presented 
in Fig.  7, and the MAP values computed for different 
IoUs is presented in Table  6. The overall performance 
of the SSD model is summarised in Table 7.

Figure  6 below shows the detection performance of 
the SSD model for images containing Leishmaniasis 
parasites devoid of monocytes. The effect of the dif-
ferent levels of staining is evident from these captured 
images. The performance of the SSD model despite 
such variations in staining is shown as labelled para-
sites. Though not shown here, the performance of the 
model decreased relatively while identifying the para-
site in the presence of the monocytes.

C. Detection performance of the faster RCNN model
Since Faster RCNN is a two-stage detection, first, the 
region proposal networks (RPNs) are generated. In 
the second stage, the overall classification and locali-
zation losses using the classifier (i.e. Faster RCNN) 
are computed. The classification loss is about the box 
classifier, in which the classifier identifies the targeted 
objects (classes). The localization loss of the box clas-
sifier indicates the proper localization of the targeted 
object. Table  8 below indicates the model evaluation 
results across different IOUs and its overall evaluation 
in Table 9.

Comparison between candidate models
Table  10 presents the outcomes following the compari-
son performed between the three models (YOLO V5, 
SSD, and Faster RCNN) utilized in the current study in 
terms of their computational efficiencies during training 
and testing. In general, YOLO V5 was found to be com-
putationally much cheaper than SSD and Faster RCNN, 
while the latter two models achieved comparable effi-
ciencies. Note that YOLO V5 was implemented on colab 
while the other two models were run on a local machine, 
and the comparison in terms of computational efficiency 
may not necessarily be a fair one.

Figure  7 above depicts bar graphs showing a com-
parison between the parasite detection performances in 
terms of the three matrices: MAP (at IoU of 50%), Pre-
cision, and Recall. Again, the highest MAP, Precision, 

Table 3  Performance of YOLO V5 for different epochs and 
learning rates during training

Experimental Setups MAP Precision Recall

Learning rate : 0.00014
Epoch: 500
Batch size: 128

45.6% 55.5% 49.1%

Learning rate:0.01
Epoch: 1000
Batch size:128

63% 67% 67%

Learning rate: 0.02
Epoch: 1000
Batch size: 128

73% 68% 69%

Table 4  Evaluation results of YOLOV5 across different IoU values

Evaluation Based on IoU IoU @0.5 IoU @ 0.75:0.95

MAP (Leishmaniasis parasites only) 73% 33%

MAP (with monocytes) 65% 35%

Table 5  Over all evaluation of YOLO V5

Overall Evaluation MAP (@0.5) Precision Recall

Leishmaniasis Parasite Detection 73% 68% 69%

Leishmaniasis Parasite Detection 
including monocyte cells

65% 70% 69%

Table 6  SSD evaluation results across different IoUs

Evaluation Based on IoU IoU @0.5 IoU @ 0.5:0.95 IoU @ 0.75

MAP 56.3% 40% 43%

Table 7  SSD over all evaluation

Over all Evaluation MAP (@0.5) Precision Recall

Leishmaniasis Parasite Detection 56.3% 40% 67.8%
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and Recall values were recorded using YOLO V5. SSD 
performed better than Faster RCNN. In terms of Recall, 
the performance of YOLO V5 and SSD was almost 
comparable.

Discussions
Table  11 summarizes the different studies carried out 
on Leishmaniasis parasite detection and compares their 
performance with our current study. In the list, three 
studies (including ours) used Geimsa stained micros-
copy images, while the rest used florescent dyes for 
detection purposes. Unlike our approach which relied 
on object detection, most of the other studies, relied on 
either segmentation or classification task. Though very 
sensitive and selective, the major limitation in adopting 
the fluorescence based approach in our study is the dif-
ficulty in sourcing the dyes as well as its availability in 
many of the clinics and research centers in sub Saharan 
region.

The previously reported study [22] that used 
machine learning for the detection of Leishmaniasis 
parasites from Geimsa-stained microscopic images, 
reported a lower precision and recall values of 50% and 
60%, respectively, compared to our values of 68% and 
69%, respectively. Further, that study was restricted 
to the design and development of an automated sys-
tem for diagnosing Leishmaniasis disease using vari-
ous transfer learning algorithms. This limitation is 
mainly attributed to the unavailability of larger data-
set required for training the algorithm from scratch, 
as well as the constraints such as time and budget. 

Fig. 6  Shows test images detected by the SSD-trained model

Table 8  Faster RCNN evaluation results across different IoUs

Evaluation Based on IoU IoU @0.5 IoU @ 0.5:0.95 IoU @ 0.75

MAP 54% 31% 35%

Table 9  Faster RCNN overall evaluation

Over all Evaluation MAP Precision Recall

Leishmaniasis Parasite Detection 54% 31% 33.3%

Table 10  Candidate models training and testing duration

Model Training Duration Testing 
Duration per 
Image

YOLO_V5 a day 0.19 s

SSD a month 1.95 s

Faster RCNN a month 1.8 s
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Further, the researchers focused solely on the amas-
tigote stage of the parasite and did not include the 
promastigote stage. Additionally, the identification of 
the causative agent (visceral or mucosal type) had not 
been addressed in this work.

The three pre-trained models: Faster RCNN, SSD and 
YOLO V5 considered in the current study used custom 
data for developing the computer-aided diagnosing sys-
tem. The pre-trained Faster RCNN, SSD, YOLO V5 
model based on the custom data achieved a MAP score 
of 54%, 56% and 73%, respectively, at 50% IoU. As men-
tioned earlier, the precision and recall of the current 
model is better than the previous reported study, at 50% 
IoU, while detecting the parasites in the presence of neg-
ative background and monocytes.

Previous studies have reported that generally, the YOLO 
V5 model outperforms other models when it comes to 

the identification of smaller objects [31, 32, 34]. Our 
experiment also confirmed that observation on YOLO V5 
model that it could recognize the object of interest better 
than the other two candidate models. Further improve-
ments in the efficiency of the YOLO V5 model came from 
the model’s capability to generate adaptable anchor boxes 
for the target object during training phase alongside the 
different augmentation techniques deployed for balanc-
ing the data in each class. Even though differentiating the 
Leishman body from the background image is challeng-
ing, the developed model was able to robustly and accu-
rately detect the parasites.

As depicted in Table 11 above, only our model devel-
oped using deep learning approach for Giemsa-stained 
microscopic images, has achieved a higher accuracy with 
a mean average precision (MAP) of 73%, precision of 
68%, and Recall of 69%.

Fig. 7  Performance comparison between the three models

Table 11  Comparison with recent findings

Author Method Types datasets Results Obtained

P. A. Nogueira et al. [18] Otsu thresholding; SVM classifier Fluorescence microscopic image 85.3% classification accuracy

M. Farahi et al. [19] Preprocessing (contrast stretching, 
masking); Segmentation (Modified 
Chan-vese (CV) Level Set Method)

Geimsa stained Microscopy images Segmentation error of 10.9% using 
global CV and 9.76% using local CV

J. C. Neves et al. [20] Blob detection based classification Fluorescence microscopic image Average F1 score of 84.48%

F. Ouertani et al. [21] Watershed segmentation technique 
combined with region merging

Fluorescence microscopic image NA

M. Górriz et al. [16] U-net model classification Florescence-stained microscopic 
image

NA

E. Yazdanparast et al. [24] INsPECT (infection level measurement); 
Preprocessing (morphological filtering)

Fluorescent DNA staining NA

M. Zare et al. [22] Machine learning based Leishman 
parasite detection

Geimsa-stained microscope images Precision 50% recall 60%

Proposed Model Object detection with YOLO_V5 Geimsa-stained microscope images MAP 73%, Precision 68%, Recall 69%
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Conclusion
The microscopic examination remains the gold stand-
ard method for diagnosing Leishmaniasis. However, 
this method imposes a significant burden on laboratory 
technologists, often resulting in misdiagnoses and time-
consuming examinations. The current study address this 
issue by developing a computer-aided system that reduces 
the workload of pathologists and laboratory technolo-
gists by automatically detecting the Leishmaniasis para-
sites. Giemsa-stained microscopic images were collected, 
augmented and resized during pre-processing step. The 
pre-processed images were used for training three deep 
learning networks—YOLO V5, SSD, and Faster RCNN. 
The results during test phase indicated that YOLO V5 
exhibited the highest detection capability, achieving a 
mean average precision (MAP) of 73%, precision and 
recall rates of 68% and 69%, respectively. The YOLO V5 
model outperformed the other two candidate models 
and was proficient in identifying both monocytes and 
the Leishman body. Our system can expedite the diag-
nosis process, decrease misdiagnoses and significantly 
reduces the burden on laboratory experts. In future, 
robust preprocessing algorithms such as CutMix, MixUp, 
and AutoAugment; and other deep learning algorithms 
such as variants of EfficientNet, and vision transformer 
(SegFormer), shall be explored on our dataset to improve 
the efficiency of parasites detection. Additionally, larger 
dataset will be collected to train models that extends our 
current model through identification of the types of Lish-
manianis such as Viceral or Cutaneous or Mucosal. Other 
aspects such as the severity of the infection or the para-
site load will also be considered. Identification of second-
ary infections besides Leishmaniasis could also make our 
system more versatile and multifunctional. Such systems 
have interesting prospectus in telemedicine applications, 
particularly in low-resourced hospitals with inadequate 
number of experts available for diagnosis.
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