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Abstract 

Background  The assessment of in vitro wound healing images is critical for determining the efficacy of the therapy-
of-interest that may influence the wound healing process. Existing methods suffer significant limitations, such as user 
dependency, time-consuming nature, and lack of sensitivity, thus paving the way for automated analysis approaches.

Methods  Hereby, three structurally different variations of U-net architectures based on convolutional neural net-
works (CNN) were implemented for the segmentation of in vitro wound healing microscopy images. The developed 
models were fed using two independent datasets after applying a novel augmentation method aimed at the more 
sensitive analysis of edges after the preprocessing. Then, predicted masks were utilized for the accurate calculation 
of wound areas. Eventually, the therapy efficacy-indicator wound areas were thoroughly compared with current well-
known tools such as ImageJ and TScratch.

Results  The average dice similarity coefficient (DSC) scores were obtained as 0.958∼0.968 for U-net-based deep 
learning models. The averaged absolute percentage errors (PE) of predicted wound areas to ground truth were 6.41%, 
3.70%, and 3.73%, respectively for U-net, U-net++, and Attention U-net, while ImageJ and TScratch had considerable 
averaged error rates of 22.59% and 33.88%, respectively.

Conclusions  Comparative analyses revealed that the developed models outperformed the conventional approaches 
in terms of analysis time and segmentation sensitivity. The developed models also hold great promise for the pre-
diction of the in vitro wound area, regardless of the therapy-of-interest, cell line, magnification of the microscope, 
or other application-dependent parameters.
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Background
The term “wound” often refers to the destruction of the 
epithelial tissue’s integrity brought on by any degree of 
violence, pressure, or other external factors [1, 2]. Wound 
healing is a dynamic process that might result in various 
infections and complications at each stage [3, 4]. These 
stages might be prolonged by any infection or necrosis 
that takes place during the process, leading to chronic 
wounds [5]. Depending on the severity of the infection, 
there is a risk of amputation in chronic wounds caused 
by diabetes [2]. Besides affecting people’s quality of life, 
wounds may lead to emotional, physical, and financial 
devastation [6]. Furthermore, additional expenses asso-
ciated with chronic wounds, such as longer hospitali-
zation and the need for specialized, expensive wound 
care products, raise medical costs [7]. Therefore, the 
treatment of wounds is essential. Traditional and novel 
therapies both have a critical role in wound healing, and 
various methods for wound treatment have been inves-
tigated comprehensively [8–12]. Despite the widespread 
usage of traditional medical therapies worldwide, novel 
therapies are becoming more crucial due to the benefits 
they provide. The novel therapies, although not limited, 
include light applications [8, 9], tissue engineering-based 
approaches [10], cold atmospheric plasma (CAP) applica-
tions [11], and nanoparticle-based treatment approaches 
[12]. In order to assess the efficacy of the methods used 
in these investigations, the wound-healing process must 
be monitored continuously [13]. Since the wound healing 
process in the human body involves a complex series of 
chemical and physical interactions happening simultane-
ously, the observation and monitoring of wounds have 
become challenging [14]. Therefore, as an initial step, the 
effectiveness of the treatment of interest must be evalu-
ated by the examination of the data obtained from the 
in vitro wound model.

Numerous in  vitro modeling techniques are used for 
different stages of wound healing, and the techniques can 
be modified to match the appropriate stage [15–17]. The 
scratch assay for 2D cell migration investigations [15], 3D 
wound healing assays [16], and Microphysiological Sys-
tems (MPS) [17] based on reconstructing a specific struc-
ture beneath 3D assays, are among the methodologies 
frequently used for wound healing migration stage mod-
eling that is the focus of this study. Although 3D wound 
healing assays are more effective for obtaining complex 
migration and signaling structures in the in vivo micro-
environment, they require expensive materials, scaffold 
fabrication, and a longer time to complete the process 
due to the complicated procedures [18]. Therefore, a vari-
ety of state-of-the-art approaches for modeling wound 
healing benefit from the 2D scratch assay method, which 
offers basic components and ease of application [15]. The 

scratch assay procedure, which is also known as the cell 
migration assay or wound healing assay, requires simple 
cell culture applications to construct 2D cell layers for 
tissue modeling [19]. The wound model is developed by 
scratching the confluent cells with a mechanical effect 
(usually through a pipette tip) and disrupting their integ-
rity [15]. The cells are exposed to therapy-of-interest, and 
the cells’ migration is monitored at different time inter-
vals. The cells migrate to the wound area over time, and 
thus the decrease in the wound area is used to evaluate 
the success of the treatment [20]. Therefore, the analysis 
of the images obtained during the in vitro wound healing 
monitoring is of great importance.

The conventional approaches rely on applying image 
processing techniques to in vitro wound healing images 
that are obtained at particular time intervals. These tech-
niques depend on plots along the wound edges and com-
puting the distance to determine the boundaries of the 
wound area [21]. However, one major drawback of man-
ual calculations is that they often consider uneven edges 
as straight lines, which does not provide accurate results. 
Moreover, the middle portion of the wound gets smaller 
as it heals, and uneven progressions on the wound bor-
ders might happen. This may lead to an even more 
inaccurate determination of wound boundaries and, 
thus, wound area. Furthermore, the number of images 
increases over time due to the images being captured 
consecutively to monitor the migration and determine 
the effectiveness of treatment. Given that the analyses 
are performed manually, this process is time-consuming 
and more prone to errors. To lessen user-induced error 
in manual approaches and to automate the analysis, a 
variety of applications, such as ImageJ, Tscratch, Multi-
CellSeg, and MATLAB® toolboxes, have been developed.

One of the most popular platforms for image process-
ing applications is MATLAB®. Two of MATLAB’s tool-
boxes that are frequently used in image segmentation 
are the Texture Segmentation Algorithm [22] and Image 
Processing [23]. In the texture segmentation algorithm, 
the density difference in 11x11 pixel frames is deter-
mined for each pixel and analyzed with the texture filter 
algorithm. High pixel densities are determined as cel-
lular regions and low pixel densities are determined as 
cell-free regions [24]. Similar principles are valid for the 
image processing toolbox. However, the map produced 
by computing the standard deviation of pixels in a mov-
ing window is used to determine the locations of cells 
and cell-free regions by applying a threshold [23]. Here, 
two windows-one large and one small-must be applied, 
and the intersection of the values calculated from these 
windows determines the wound area. With this, it is 
intended to reduce the noise and make the wound bor-
ders smoother. Automatic Invasiveness Measure (AIM), 
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developed by Cortesi et  al. [20], is a MATLAB-based 
tool that uses the local entropy difference between cell 
and cell-free regions. In this approach, the analysis was 
carried out with formulas based on gray-level prob-
abilities by converting information from neighboring 
pixels of the current pixel into numerical parameters. 
The efficiency of their model was compared with that 
of the expert’s manual calculations which consisted of 
approximating the wound area with a rectangle shape via 
ImageJ, and TScratch programs. They asserted that their 
tool aligns with TScratch in terms of wound region iden-
tification and outperforms both their manual method 
and ImageJ in analysis speed, but is slightly behind 
TScratch [20].

Previous studies in the literature and current applica-
tions have utilized various image features to segment 
in  vitro wound healing images [20, 23–25]. The majority 
of these approaches base their conclusions on assumptions 
about cell behavior, such as migration rate, movement 
direction, and cell density, which are determined through 
image processing operations. However, these methods 
often require many user-adjustable parameters, which can 
lead to variations in results and require additional time to 
determine optimal settings. As an indication, the major-
ity of those tools lack cell separation [26], and when cells 
are marked, regardless of their morphology, all cells are 
assumed to have a circular shape. Cells naturally exhibit 
spindle movements during migration [27, 28], where 
their shape appears branched due to this spindle forma-
tion. These cells were also converted into circular shapes, 
and cells with radii that were lower than the radius value 
specified by the user were not accounted as cells. Recently, 
artificial intelligence (AI)-based approaches have been 
developed to address these limitations. These approaches 
can be divided into two categories: machine learning (ML) 
and deep learning (DL). While these AI-based methods 
have the potential to improve accuracy and efficiency, 
they also have their own limitations, such as poor predic-
tion accuracy and effectiveness under certain conditions. 
For instance, in ML applications, inaccurate feature selec-
tion during feature extraction or improper feature map 
extraction may lead to low accuracy. On the other hand, 
for DL applications, problems such as low accuracy and 
high complexity are frequently reported [26, 29, 30], which 
may result from the distribution of the dataset used in the 
training phase or limited observations and may cause poor 
generalizability of the model in testing with new unseen 
data [31]. These shortcomings, which are present in both 
conventional and AI-based approaches referenced in the 
existing studies, might have a negative impact on the out-
come of the research that examines the effects of applied 
therapy on the wound healing process. Therefore, there is 
still room for a standardized, generalizable, and automated 

fast analysis approach that is not affected by the applica-
tions in the images to be analyzed, the adjustments used in 
the applications, or the user’s preferences. Based on these, 
the following goals were established for each stage of the 
wound healing investigations in the scope of this study: 

1	 To monitor wound healing regardless of the cell line, 
therapy-of-interest, wound or scratch area, and mag-
nification of the microscope,

2	 To be able to associate therapy-of-interest effective-
ness on wound healing with certain quantitative 
parameters where the concept of the specific therapy 
dose is not entirely/sensitively specified.

Considering these goals, a novel DL-based approach 
has been developed to segment the wound area accu-
rately, automatically, and with as minimal human involve-
ment as possible. More complex U-net++ and Attention 
U-net structures were also employed in addition to the 
developed model, using the 5-layer U-net structure, and 
it has been extensively investigated whether alterations in 
these deep structures affect the results and also compre-
hensively compared with image processing-based tools, 
ImageJ and TScratch.

Materials and methods
The visual workflow of the proposed methodological 
structure is presented in Fig. 1. A detailed description of 
each stage is given in the following.

Datasets
In this study, a total of 400 images with 2556x1910 pixels 
from low-level laser therapy (LLLT) and CAP treatment 
in vitro wound healing investigations were used to con-
struct the model. Out of these 400 images, 233 represent 
LLLT-treated healthy mouse fibroblast cell line (L929) 
cell line images at 40x and 100x magnification, and 167 
represent CAP-treated cell lines. In vitro wound healing 
images from LLLT investigations conducted by the Izmir 
Katip Celebi University (IKCU) Biomedical Optics and 
Laser Applications Laboratory and in vitro wound heal-
ing images from CAP treatment obtained from the IKCU 
Plasma Medicine Laboratory were utilized. Brief expla-
nations of these methodologies are given in Additional 
file  1. For the LLLT, images were obtained by using the 
scratch assay procedure on the L929 cell line irradiated by 
655 nm and 808 nm diode lasers three times, each at an 
interval of 24 hours. In vitro wound healing images were 
obtained by capturing the healing process at 12-hour 
intervals at 40x and 100x magnifications with an inverted 
microscope (Olympus CKX41). A total of 233 RGB 
images with a size of 2556x1910 pixels were obtained at 
6 different intervals between 0th and 60th hours were used 
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in this study. The in  vitro wound healing images from 
CAP treatment represent two different cell lines to evalu-
ate the migration efficacy of CAP treatment and compare 
it with healthy and cancer cell lines. The human keratino-
cyte (HS2) cell line and squamous cell carcinoma (SCC) 
cell lines were treated with CAP operated at peak-to-peak 
voltage and 1 kHz frequency at different treatment times. 
In vitro wound healing images were obtained at 24-hour 
intervals at 40x and 100x magnifications using the same 
inverted microscope (Olympus CKX41) [32]. Among the 
167 CAP-treated images, 133 were of the HS2 cell line, 
of which 67 were captured using a 40x magnification and 
66 using a 100x magnification setting. The remaining 34 
images were of the SCC cell line, with 15 captured at a 
40x magnification and 19 at a 100x magnification setting. 
The details of the collected data are provided in Table 1. 
It can be observed that the dataset is composed of 400 
images, of which 58.25% are from LLLT and 41.75% are 
from CAP treatment. Within the CAP treatment images, 
approximately 79% are microscopy images of the HS2 cell 

line at 40x and 100x magnifications, while the remaining 
21% are the SCC cell line at the same magnifications.

Labeling
An expert created handcrafted annotations using a man-
ual labeling tool, MATLAB® R2021b Image Segmenter 
Toolbox, without utilizing any automated or parame-
ter-based applications. A total of 400 RGB images were 
labeled by meticulously marking each point of the wound 
edges and cell lines, with an average processing time of 
45 min per image. Rather than using the conventional 
method of drawing a vertical line from the leading edge, 
the labeling procedure identified the migrated cells to the 
wound region based on the Region of Interest (ROI). The 
borders of cells were meticulously identified in accord-
ance with the orientation of the cell and were consid-
ered ROIs. As a result, the 400 binary masks that were 
utilized as ground truth during the model training and 
had the same dimensions as the 400 original images were 
obtained. In these binary masks, cell-containing areas, 
or ROIs, were indicated as white, while areas that were 
considered wound regions were indicated as black colors 
(Fig. 1).

Pre‑processing
A custom Python 3.7 script based on the scikit-image 
0.18.3 module was used to apply the Contrast Limited 
Adaptive Histogram Equalization (CLAHE) [33] to the 
400 RGB images in the datasets. This method was uti-
lized not only to reduce the tonal variations caused by 
the image-capturing process but also to mitigate the 
shading effect often observed in the microscopy images 

Fig. 1  The workflow of the study shows the main steps taken to develop and evaluate the DL models for in vitro wound healing image 
segmentation

Table 1  Descriptions of acquired data

Dataset Cell line Magnification Acquired 
images

Augmented 
images

LLLT L929 100x 68 272

40x 165 660

CAP HS2 100x 66 264

40x 67 268

SCC 100x 19 76

40x 15 60

Total 400 1600
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(Fig.  1). As reported by Qiu et  al. [34], CLAHE is the 
most suitable and effective image processing parameter 
for automatically determining the required contrast for 
an image. The CLAHE operation clips the pixel frequen-
cies with a predefined clip limit, which is set according 
to the visibility of the image [35]. In this study, a clip 
limit of 0.005 was set to equalize the histogram of 400 
RGB images. The histogram-equalized images were 
scaled down to 1024x768 pixels using the INTER_AREA 
interpolation function from OpenCV library [36]. This 
method employs pixel-area relations for resampling and 
is considered the best method for downscaling, as it uti-
lizes an area-based (or pixel-area relation) image scaling 
algorithm [36]. It calculates the pixel value in the down-
scaled image as a weighted average of pixels in the near-
est 2x2 neighborhood of the original image. The weights 
are determined by the areas of intersection between the 
original pixel and the pixel in the downscaled image. This 
approach ensures that the total brightness of the image is 
preserved and minimizes aliasing artifacts [36].

Data augmentation
Contemporary studies in the literature indicate that uti-
lizing a larger and more diverse dataset by expanding 
the dataset has a significant effect on the model, result-
ing in more accurate outcomes [37, 38]. To address the 
issue of heterogeneity in biomedical image datasets and 
improve the performance of the trained DL model, vari-
ous augmentation strategies such as geometric trans-
formations, scaling, and generating synthetic data using 
Generative Adversarial Networks (GANs) [39–42] were 
employed previously. In light of this, the strategy of 
dividing larger images into smaller parts [43], a similar 
method proposed by Serre et al. [44], has been adopted in 
this study. In this context, the preprocessed images along 
with their corresponding masks were spatially divided 
into four equal parts, ensuring that each part contained 
regions with both the wound and cells. This division pro-
cess aimed to increase the number of training data and 
more efficiently/sensitively detect the edges between 
cells, resulting in a total of 1600 images. This strategy also 
helps mitigate the risk of overfitting and poor prediction 
outcomes by increasing the number of images available 
for model training [45].

Data splitting
10% of the preprocessed images (40 out of 400) were ran-
domly selected as a test set. The remaining 360 preproc-
essed images were randomly divided into training and 
validation sets at a 90:10 ratio. Consequently, approxi-
mately 90% of the data (325 images) were used for train-
ing, while 10% (35 images) were reserved for validation. 
The 40 images that were randomly selected for testing 

were grouped as follows: 25 L929 cell line images under 
100x magnification were obtained from LLLT; 5 HS2 
cell line images under 100x magnification and 5 HS2 
cell line images under 40x magnification were obtained 
from CAP treatment; 3 SCC cell line images under 100x 
magnification and 2 SCC cell line images under 40x mag-
nification were obtained from CAP treatment. For the 
validation images, these groups were determined ran-
domly as 20 L929 cell line images under 100x magnifica-
tion obtained from LLLT; 5 HS2 cell line images under 
100x magnification and 5 HS2 cell line images under 40x 
magnification obtained from CAP treatment; 3 SCC cell 
line images under 100x magnification and 2 SCC cell 
line images under 40x magnification obtained from CAP 
treatment. After spatial splitting, a total of 1440 512x384 
RGB images and their corresponding masks of the same 
size were used for the training phase. The same proce-
dure was implemented for the images determined for 
testing and validation, resulting in a total of 160 images 
for testing and 140 images for validation. Before training, 
all images in digital form were converted to the float32 
format representing each pixel as a 32-bit floating-point 
number which offers a broader range of values and higher 
precision compared to the uint8 [46].

Deep learning architectures
The segmentation of biomedical images might be chal-
lenging because of constraints such as the inability to 
accurately identify the cell boundaries in the images and 
the variances brought on by the generally non-stand-
ard instruments. The U-net model proposed by Ron-
neberger et al. [47] in 2015 has had a significant impact 
on the sensitive and accurate segmentation of biomedi-
cal images. However, due to the diversity of biomedical 
images and the variety of obstacles encountered, such as 
the inherent variability in biological structures, the pres-
ence of noise in the images, class imbalance issues, and 
the challenges posed by the high dimensionality of the 
data, models were required to be developed over time, 
and studies were conducted to improve the reliability of 
the findings. Based on the developed models, we adopted 
various U-net structures including the plain U-net model 
for assuming baseline. In this model, the input image is 
downsampled and converted to a compressed represen-
tation in the encoder structure of the U-net, which is fol-
lowed by a sequence of upsampling layers. Upsampling 
layers decompress the learned feature map to the same 
dimensions as the original image. It also receives contex-
tual information from the downsampling layers via skip 
connections. The semantic value of each pixel is then 
calculated by combining local and global image infor-
mation [48]. Furthermore, structurally variated versions 
of U-net models such as U-net++ and Attention U-net 
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were also utilized without modifying model parame-
ters to investigate the effects of variations in the model 
structures on the outcome. Zhou et  al. [49] introduced 
U-net++ in 2018 to obtain more accurate outcomes in 
medical image segmentation. Unlike U-net, this version 
allows the integration of maps at various scales and offers 
higher detail retention by enhancing the feature maps 
from the encoder and decoder before combining them 
[50]. The developers stated that U-net++ is separated 
from U-net in three main ways. First, the model bridges 
the semantic gap between the encoder and decoder with 
convolution layers in skip paths. Secondly, it has dense 
skip connections that improve gradient flow. Lastly, the 
model has a deep control structure that improves prun-
ing. On the other hand, Oktay et  al. [51] developed the 
Attention U-net by integrating an attention gate (AG) 
before combining the corresponding features in the 
encoder and decoder structure and adjusting the encod-
er’s output properties. By focusing on prominent features 
transmitted through the skip connection, this structure 
makes it easier to generate the gate signal to eliminate the 
response of unnecessary and noisy ambiguity in the con-
nection [52]. The number of parameters and layers used 
for the plain U-net model is also valid for the training for 
U-net++ and Attention U-net so that only the effect of 
model structure can be fairly examined. The dense skip 
blocks in the U-net++ structure reduce the number of 
parameters significantly, while the attention module 
added to the U-net skip connections increases the num-
ber of parameters in the Attention U-net. Compared with 
the plain U-net, while this decreases the computational 
cost of the U-net++, it unlikely increases the computa-
tional cost of the Attention U-net.

We utilized the three different variations of U-net men-
tioned above along with various combinations of datasets 
to develop a well-structured model capable of accurately 
predicting wound areas. This approach also allowed us 
to assess the generalizability of the presented methodol-
ogy. However, the outcomes of the trained models need 
to be a post-process step to the predicted mask because 
all models were fed with spatially divided image datasets, 
which were utilized to increase the precision of U-net 
models and based on more sensitive detection of edges. 
The four image patches that underwent the training and 
prediction stages therefore spatially merge for subse-
quent analysis using a similar approach in the augmenta-
tion phase upon completing the model training.

Manual wound area calculation
To evaluate the results of the proposed automated 
method, additional manual analysis was conducted 
by using the most frequently used tools, ImageJ and 
TScratch, on the same validation and test sets. The 

wound area may be determined approximately and man-
ually by the user via ImageJ/Fiji, an open-source Java pro-
gram [26]. This tool has been extended with the white 
wave model. Thus, the model visualizes cell migration by 
utilizing variations in images that are collected at various 
time intervals. Using the absolute values of the pixel dif-
ferences between the images, the migratory or stationary 
cells can be established [53]. ImageJ has several built-in 
functions that can be used for wound healing analysis. An 
expert calculated wound areas by using ImageJ as follows: 
The first step is converting images to 8-bit and applying a 
bandpass filter using a fast Fourier transform. Afterward, 
the image can be thresholded and filtered using a mini-
mum filter with a radius value of 7 pixels. This process 
allows for the selection of the wound area manually and 
the measurement of the wound size as a pixel value.

On the other hand, the TScratch tool examines images 
of wound healing using a curve-based approach. It per-
forms fast discrete curve transforms, utilizing statisti-
cal and graphical outputs to distinguish between cell 
and cell-free regions. Thus, the application incorporates 
information from the original image into the coefficient 
curve encoding [54]. TScratch also includes several addi-
tional features, such as the ability to track individual 
cells and measure cell migration rates. Unlike ImageJ, 
TScratch was specifically designed for wound healing 
analysis and offers a more streamlined process. After 
loading the image into the software, the user can define 
the initial wound area by drawing a line along the edge 
of the scratch. Next, the software automatically detects 
the remaining scratch area and calculates the percentage 
of the original wound that has been closed. The user can 
then adjust the threshold and fine-tune the analysis as 
needed.

Experimental setup
Each DL model was trained from scratch, validated, and 
tested utilizing the datasets obtained for this study. In 
order to mitigate the potential imbalance caused by the 
data distribution (i.e., cell line or microscope magnifica-
tion factor), the dataset was split into two sub-datasets. 
The models were independently trained on each sub-
dataset and tested with the other, e.g., one trained with 
only LLLT images and tested with CAP data, and the 
other trained with only CAP treatment images and then 
tested on the LLLT dataset. This approach was designed 
to assess the model’s ability to generalize from one data 
source to another. This resulted in three independent 
observations: one using the LLLT images, one using the 
CAP treatment images, and one using a mixed dataset 
that combines the two subsets. To ensure a fair compari-
son among models using the mixed dataset, the valida-
tion indices from each fold in the 5-fold cross-validation 
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were stored, and these indices were then utilized for each 
model’s validation. For each dataset, networks were con-
structed using 5-layer U-net, U-net++, and Attention 
U-net models with an input image size of 512x384x3. 
The models were developed via Python 3.7-based custom 
scripts with the Keras 2.8.0 and Tensorflow 2.8.2 libraries 
at the backhand. Each layer consisted of 2D convolution, 
batch normalization, and ReLU activation. In contrast 
to these layers, the output activation was achieved using 
the sigmoid function. The output was then transferred 
to the following layer after the dimensions were reduced 
in half through the use of a 2x2 max-pooling operation. 
Additional file  2 provides a detailed summary of the 
built model. The models were trained using a 10-3 learn-
ing rate with an exponential decay rate of 0.9 and Adam 
Optimizer with a batch size of 4 and an epoch number of 
50. The dice loss function was used during the training 
process, and the training progress was monitored based 
on the dice value. The output probability maps of U-Net-
based architectures were transformed into binary values 
to generate masks. A threshold value for binarization was 
set to 0.5, with values greater than this being considered 
as 1. All these computations were performed on a com-
puter equipped with an NVIDIA GeForce RTX 3080 Ti 
with a 12 GB GPU and 64 GB of RAM. In order to fairly 
isolate the effect of the model structure on the segmen-
tation performances, the common network and training 
parameters (i.e., kernel sizes, epochs, batch sizes, etc.) 
were set to the same values, other network parameters 
(e.g., attention activations and deep supervisions) were 
set to their defaults, and operational system conditions 
were kept as constant as possible.

Performance evaluation
The DSC, accuracy (ACC), intersection over union 
(IoU), precision (PRE), recall (REC), Receiver Operating 
Characteristics-Area Under The Curve (ROC-AUC), and 
specificity (SPE) metrics [45] were calculated to evalu-
ate the model’s performance. Computation methods for 
these metrics are given as follows.

(1)DSC =

2 · TP

FP + 2 · TP + FN

(2)ACC =

TP + TN

TP + TN + FP + FN

(3)IoU =

TP

TP + FP + FN

(4)PRE =

TP

TP + FP

where TP, TN, FP, and FN indicate predicted classes as 
True Positive (image pixels that are correctly predicted 
as wound area), True Negative (image pixels correctly 
predicted as cells), False Positive (image pixels falsely 
predicted as wound area), and False Negative (image 
pixels falsely predicted as cells), respectively. Utilizing 
the pixels’ intensity in the microscopy images, the area 
of each predicted and ground truth binary label was cal-
culated. The cell region was determined using a pixel 
intensity equal to 1, and the cell-free region (wound area) 
was determined using a pixel intensity equal to 0. The 
total wound area was calculated by using the following 
formula:

where P indicates the binary image, M,N is the image 
sizes, P(m,n) denotes the pixel intensity, and WA is the 
wound area. In order to compare wound area calculation 
performance, the percentage error (PE) between pre-
dicted areas and ground truth was calculated as follows:

where WA(P) indicates the predicted wound area and 
WA(GT ) denotes the ground truth area. It should also be 
noted that PE values were calculated without their abso-
lute because to observe the directions.

Results
Internal validation and testing
U-net, Unet++, and Attention U-net models were 
trained for each dataset. The normalized elapsed times, 
which are calculated based on the lowest value of the 
training, validation, and test phases, as well as the wound 
area analysis time, are presented in Table  2. Upon ana-
lyzing the normalized times for training with both data-
sets in Table  2, it is noticeable that the training time of 
U-net++ is approximately 12% faster than that of U-net, 
while Attention U-net is nearly equivalent to U-net, 
being just 1% faster. In the comparison of testing time, 
U-net and Attention U-net took about 10% and 5% 
longer, respectively, than the U-net++ model. Regarding 
the calculation time for testing, U-net++ and Attention 
U-net are both approximately 7% slower than U-net. For 
the validation time, Attention U-net is around 6% slower 

(5)REC =

TP

TP + FN

(6)SPE =

TN

TN + FP

(7)WA =

M,N

m,n=1

P(m,n), if P(m,n) = 0

(8)% error (PE) =
WA(P) −WA(GT )

WA(GT )

x 100
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than U-net, while U-net++ is nearly equivalent to U-net. 
Finally, in terms of the calculation time for validation, 
both U-net++ and Attention U-net exhibited a minor 
reduction compared to U-net, being roughly 2% slower.

The models estimated spatially divided test and valida-
tion images, which underwent the same preprocessing 
as the training images, and then reconstructed them to 

provide prediction masks. Figure 2 presents the training 
results of the 5-layer U-net++ model and the DSC and 
loss values for each model across the 50 training epochs. 
The same figure shows the DSC and loss values across 
epochs for three different datasets. The detailed out-
comes for the sub-datasets are shown in Table  3. Each 
used dataset produced approximate performance met-
rics results across the three models. Although the CAP 
dataset size was smaller than the LLLT dataset, the DSC 
results obtained from the CAP dataset outperformed the 
LLLT dataset by approximately 4% for validation and 5% 
for test sets. The ACC score of approximately 2% for vali-
dation produced the lowest difference between the met-
rics and the IoU score of about 6% produced the highest 
difference with the superiority of the CAP dataset. Simi-
lar results were observed in the test metrics. On the other 
hand, there is no significant difference between all three 
model performances across datasets (one-way ANOVA 
[37]; p ≥ .351). The DSC value, as a result of the test data, 
was 0.939 for both U-net and U-net++, and 0.941 for the 

Table 2  Elapsed times in train, validation, and test phases, and 
wound area analysis times according to proposed models (the 
time intervals were normalized using the smallest value in each 
corresponding phase)

Metric U-net U-net++ Attention U-net

Train time 1.12 1.00 1.11

Test time 1.10 1.00 1.05

Calculation time (test) 1.00 1.07 1.07

Validation time 1.00 1.01 1.06

Calculation time (val.) 1.00 1.02 1.02

Fig. 2  DSC and DSC-loss curves during the training and validation phases of different datasets: a DSC curves during training of combined dataset, 
b DSC-loss curves during training of combined dataset; c DSC curves for the validation of combined dataset, d DSC-loss curves for the validation 
of combined dataset; e DSC curves during training of the LLLT dataset, f DSC-loss curves during training of the LLLT dataset; g DSC curves 
for the validation of the LLLT dataset, h DSC-loss curves for the validation of the LLLT dataset; i DSC curves during training of the CAP dataset, j 
DSC-loss curves during training of the CAP dataset; k DSC curves for the validation of the CAP dataset, l DSC-loss curve for the validation of the CAP 
dataset
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Attention U-net model when using the LLLT data. Mean-
while, the DSC value for the test using CAP data was 
recorded as 0.991 for both U-net and U-net++, and 0.992 
for the Attention U-net model. In the training phase with 
CAP data, it was noted that the U-net++ model fin-
ished 15% faster than the conventional U-net model and 
14% faster than the Attention U-net model. This model 
required 38% more time to train with LLLT images com-
pared to the CAP dataset. This gap widened to 59% for 
the conventional U-net and 56% for the Attention U-net 
in models trained with LLLT images. Upon internal eval-
uation, it was found that the discrepancy between the 
models trained with the LLLT dataset was 21% with the 
conventional U-net and 14% with the Attention U-net. 
The U-net++ model was observed to complete the vali-
dation and testing phases in less time compared to other 
models. However, the validation phase of the Attention 
U-net model took 3% more time in the CAP dataset and 
5% more time in the testing phase than the conventional 
U-net model. This led to an extra 8% time for the Atten-
tion U-net in the LLLT dataset validation phase and a 5% 
in the testing phase. The calculation time, which signifies 
the duration from estimating a single image to calculat-
ing its area, was shorter for U-net++ in the CAP data-
set and for the conventional U-net model in the LLLT 
dataset. The evaluation metric results and the calculation 
time for the wound area of the images were also included 

in Table  3. As a result, CAP treatment dataset results 
achieved superior performance compared to the LLLT 
dataset for all U-net-based models, but the difference was 
not significant.

Figure 3a and b present the model performance metrics 
obtained from the prediction images of mixed datasets. 
The overall ACC value was calculated as 0.961, and the 
mean DSC value of the 40 images was calculated as 0.958 
for the U-net and U-net++, and 0.960 for the Attention 
U-net, respectively. U-net++ was 1% behind the U-net 
model for the PRE score in test data, whereas the Atten-
tion-based model had 0.3% lower PRE. In regard to vali-
dation scores, these rates were determined to be 0.7% and 
0.1% behind U-net and Attention U-net, respectively. All 
models had approximately 2%-8% lower specificity scores 
compared to other metrics. For REC scores, U-net++ 
outperformed the plain U-net model by 1.2% but had the 
almost same score as Attention U-net by 0.1%. According 
to the obtained performance metrics, it can be concluded 
that all of the performance metrics were above 90%. The 
Attention U-net model produced the best overall results, 
despite the fact that the differences between the models 
were not significant (one-way ANOVA; p ≥ .999). Abso-
lute PEs for three different U-net-based models and two 
different tools are given in Fig. 3c. For validation images, 
the absolute average PEs for U-net, U-net++, Atten-
tion U-net, ImageJ, and TScratch were yielded as 5.74%, 

Table 3  Performance score comparison of LLLT and CAP treatment datasets according to test and validation phases for proposed 
models (time intervals were presented as s)

LLLT dataset CAP treatment dataset

 Phase Metric U-net U-net++ Attention U-net U-net U-net++ Attention U-net

Validation DSC 0.953 0.954 0.953 0.991 0.991 0.991

ACC​ 0.966 0.968 0.967 0.987 0.987 0.987

IoU 0.914 0.919 0.916 0.981 0.982 0.982

PRE 0.971 0.963 0.962 0.994 0.993 0.993

REC 0.936 0.949 0.947 0.987 0.989 0.989

ROC-AUC​ 0.927 0.924 0.921 0.974 0.974 0.974

SPE 0.941 0.923 0.921 0.962 0.958 0.960

Train time 1.59 1.38 1.56 1.15 1.00 1.14

Validation time 1.17 1.15 1.25 1.03 1.00 1.06

Calculation time 2.06 3.23 3.24 1.97 1.00 1.08

Test DSC 0.939 0.939 0.941 0.991 0.991 0.992

ACC​ 0.946 0.947 0.949 0.987 0.987 0.988

IoU 0.893 0.895 0.900 0.982 0.982 0.984

PRE 0.966 0.954 0.953 0.995 0.994 0.994

REC 0.918 0.930 0.937 0.987 0.988 0.990

ROC-AUC​ 0.927 0.919 0.920 0.958 0.952 0.960

SPE 0.936 0.907 0.902 0.929 0.915 0.931

Test time 1.41 1.34 1.46 1.04 1.00 1.09

Calculation time 1.12 4.00 4.02 1.66 1.00 1.04
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4.99%, 5.54%, 21.89%, and 30.52%, respectively. For test 
images, the absolute average PEs for U-net, U-net++, 
Attention U-net, ImageJ, and TScratch were yielded as 
6.41%, 3.70%, 3.73%, 22.59%, and 33.88%, respectively. 
Figure A1 in Additional file  1 includes attention maps 
derived from each layer of the Attention U-net model, 
with the layer depth increasing. Beginning with the map 
from the deepest layer, where the smallest image size is 
achieved, the model’s focus on the edges and cell arcs is 
noticeable. As it proceeds to higher layers, the maps start 
to generalize, influenced by the low- and high-level fea-
tures captured from preceding layers, and they begin to 
reflect the morphology present in the original image. It 
should be noted that, among other models, U-net++ has 
the lowest error values for validation and test images.

To highlight the impact of preprocessing and augmen-
tation steps on determining the wound area, the Unet++ 
model was retrained using images without any pre-
processing except resizing to 1024x768. This retraining 
was carried out under the same conditions and param-
eters that yielded the best results previously, but without 
applying any image-splitting or enhancement techniques. 
According to the results of the training of raw-resized 
images, the average DSC value was obtained as ≈0.942 

for both the validation and test phases. This shows there 
is no significant difference after preprocessing and aug-
mentation ( ≥0.95 DSC, t-test: p=.685). However, accord-
ing to the wound area determination results, the average 
absolute PE rates were 14.68% and 15.03% for valida-
tion and test sets, respectively. The findings highlighted 
a substantial average discrepancy of 9.69% and 11.33% 
for the validation and test sets, respectively between the 
two scenarios. This underscores the significant role that 
the preprocessing and augmentation steps play in our 
methodology.

The best and worst predicted images and their com-
parison with the masks generated from the currently 
available tools are presented in Figs.  4 and  5. The best-
case image (Fig. 4a) has a DSC value of 0.993 for U-net 
and 0.992 for U-net++ and Attention U-net models. The 
worst-case (Fig. 4b) has a DSC value of 0.833 for U-net 
and U-net++, 0.84 for Attention U-net models. More 
specifically, the result obtained from the U-net++ model, 
which produces the lowest absolute PE among the best 
and worst-case microscopy images in Fig.  4, was com-
pared with ImageJ and TScratch in Fig. 5. The best-case 
image (Fig.  5a) has a PE of 0.09% for U-net++, 0.57% 
for ImageJ, and 23.62% for TScratch. The worst-case 

Fig. 3  Performance evaluation of the developed models based on a validation scores, b test scores, and c absolute PEs in comparison 
with currently available tools
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Fig. 4  Examples of the best and worst predicted images by the developed models: a best-case scenario, and b worst-case scenario

Fig. 5  Comparison of the best and worst predicted images by U-net++ and the currently available tools for wound healing in vitro microscopy 
images: a best-case scenario, and b worst-case scenario
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image (Fig.  5b) has a PE of 6.81% for U-net++, 60.59% 
for ImageJ, and 36.92% for TScratch in the calculation of 
wound areas. The results from each validation and test 
sample per model are presented in Additional file 3 and 
Additional file  4, along with DSC values that were cal-
culated using the similarity between predicted areas and 
the actual ground truth.

The PEs within the calculated wound areas per individ-
ual sample across all U-net models and image processing-
based tools are presented in Fig. 6. The calculated areas 
were compared to the ground truth mask area to achieve 
the PE. Among test images, image #9 has the lowest PE 
for all models and tools compared to ground truth. The 
absolute PEs are as follows for U-net, U-net++, Atten-
tion U-net, ImageJ, and TScratch: 0.15%, 1.84%, 1.88%, 
1.78%, and 1.40%. Among test images, image #15 has 
the highest PE for all models and tools compared to 

ground truth. The absolute PEs for U-net, U-net++, 
Attention U-net, ImageJ, and TScratch were achieved as 
35.86%, 14.93%, 12.26%, 72.64%, and 99.94%, respectively. 
Regarding performance metrics, computation costs, and 
PE values acquired from the area calculation, it should be 
noted that the outcomes obtained from U-Net++ were 
more precise compared to not just other U-net-based 
models but also commonly used tools such as ImageJ and 
TScratch.

External testing
The effectiveness of the presented approach was assessed 
through external testing on a dataset published by Sin-
itica et  al. [55]. The dataset consists of 180 images con-
taining HuTu80 and MCF7 cell lines, along with their 
expert-labeled masks. In the test results, which included 
all 180 images, the developed model achieved an average 

Fig. 6  Individual sample-based PEs of predicted mask areas compared to ground truth for developed U-net models, ImageJ, and TScratch: a test 
and b validation samples (The absolute PE averages for U-net, U-net++, Attention U-net, ImageJ, and TScratch were 6.41%, 3.70%, 3.73%, 22.59%, 
and 33.88% for the test images and 5.74%, 4.99%, 5.54%, 21.89%, and 30.52% for the validation images, respectively.)
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DSC of 0.955, an accuracy of 0.948, an IoU of 0.927, a 
PRE of 0.966, and a REC of 0.958. Example images pre-
dicted by the developed model are shown in Fig. 7.

Discussion
Evaluating implications
The determination of the wound area is a crucial stage 
in the analysis of in  vitro wound healing investigations 
[26]. However, toolboxes currently in use in the literature 
rely on assumptions about cell behavior and image pro-
cessing operations that might be prone to errors, take a 
long time, and lack reproducibility due to their reliance 
on manual intervention [15]. The commonly used tool-
box ImageJ has several limitations, such as the inability to 
separate cells, the conversion of the cells in spindle move-
ment into circular shapes, and the fact that cells that were 
smaller than the radius value specified by the user were 
not considered cells [56]. For the white-wave model to be 
effective, experiment-long fixed images must be acquired, 
and collecting them manually exposes the application to 
the potential for errors [20]. Furthermore, results might 
differ depending on the environment, and pixel varia-
tions may be driven by cell growth [57]. Rapid analysis 
is possible in TScratch, but the curve coefficient must be 
obtained through additional processes that depend on 
the used parameters. Moreover, these methods are lim-
ited in their ability to accurately analyze small wound 
areas or adapt to different cell lines and magnifications of 
the microscope [58]. Consequently, the application shows 
inadequate robustness. They can therefore lead to inac-
curate wound area calculations, resulting in incorrect 

or insensitive determination of therapy-of-interest [59]. 
Furthermore, in images where the wounds are almost 
closed, the determined wound area is fragmented, and in 
this case, a single value cannot be obtained, so there is 
a requirement for a combination of several calculations. 
Completely closed wounds have a poor success rate for 
discrimination [60]. The drawbacks of the already avail-
able tools make the development of alternative analysis 
methods attractive. To address these challenges, recent 
studies have revealed that DL algorithms achieve remark-
ably high ACC in wound healing imaging [61]. The goal 
of this study is to address these limitations and improve 
the accuracy of wound area determination. Considering 
these constraints, a 5-layer U-net structure based on DL 
and its modified variations was developed. In order to 
ensure the model’s independence from the cell line, mag-
nification of the microscope, and therapy-of-interest, the 
dataset used for training the models was collected from 3 
different cell lines, 2 different magnifications, and 2 dif-
ferent novel treatment methods. The highly accurate per-
formance metrics obtained in both dataset combinations 
revealed that the generalizability of the proposed method 
was quite high. They also indicated the independence 
of the above-mentioned wound image generations. It 
should also be noted that the presented structure has an 
automatic detection capability of wound areas in signifi-
cantly lower calculation times, which is user-independ-
ent as well. Unlikely, the manual labeling of masks for 
images with a 40x magnification required an average of 
20 min, while images with a 100x magnification required 
60 min. While this approach is not typically employed in 

Fig. 7  Examples of predicted contours during the external testing phase, where the ground truth is indicated by blue lines and the predicted 
boundaries are indicated by red lines. Examples; a a nearly ideal DSC and b effectively illustrating the developed model’s performance in predicting 
the migrating cells within the wound area
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wound healing research, it is a widely accepted practice 
for labeling data [62] to be used in AI-based segmenta-
tion studies. However, this boundary-marking method 
is quite time-consuming. This study aims to decrease 
this time and develop an application that minimizes the 
required user involvement. However, the problem here 
was that no research involved marking cells meticulously 
by accurately annotating the ROIs; instead, they utilized 
only parallel vertical lines to calculate the wound areas 
by ignoring the cell growth across various directions 
as discussed before [20, 63]. Despite this, while manual 
annotation considering each cell characteristic in wound 
images is quite accurate, it still has a time-consuming 
nature. These drawbacks result in limited data and lead 
to two major implications: i) traditional and broadband 
manual calculation of wound areas (based on the stretch-
ing of two horizontal lines), leading to inaccurate anno-
tation; and ii) manual annotation, considering each cell’s 
characteristics, is accurate but time-consuming; however, 
it is necessary only once in the AI-based studies to accu-
rately determine labels in the training phase.

The need for the preprocessing steps to reduce glare 
and reflections caused by the camera’s shooting angle and 
thus generate a uniform histogram distribution through-
out the image demonstrated the impact on the model’s 
training performance. During the augmentation phase, 
the strategy of spatially dividing the microscopy images 
into four equal parts allowed for an expanded dataset 
size and thus enabled the maximization of detail and 
edge capture. Additionally, one of the key advantages of 
this approach lies in the fact that the masks of the images 
obtained through this method are also very different 
from each other. This allows the introduction of a greater 
variety of features into the training set since it might pro-
vide various versions of the edges and distinctive char-
acteristics of the images, thereby enhancing the learning 
capability of our model. In contrast, traditional methods 
like flip and scale often result in redundant information 
as they typically generate transformed versions of the 
same image [64]. Therefore, this division approach not 
only increases the quantity of our training data but also 
significantly improves its quality by ensuring a diverse 
range of features for our model to learn from. The his-
togram equalization and augmentation steps have a sig-
nificant impact on the model’s performance. The results 
demonstrated that the DSC value substantially increased 
after the preprocessing and augmentation steps.

According to training results, as the training pro-
gressed, it can be observed that the DCSs increased and 
stabilized towards the latter epochs, while initially show-
ing lower and fluctuating values (Fig. 2a, e,  i). The same 
trend is also applicable to other developed models. It 
could be inferred from the validation DSCs (Fig. 2c, g, k) 

that the Attention U-net structure exhibits greater fluc-
tuation. This is presumed to be caused by the attention 
block included in each layer. Conversely, the loss values, 
which started off high and fluctuating, as expected, even-
tually decreased and stabilized near the latter epochs 
for both training (Fig.  2b,  f,  j) and validation curves 
(Fig. 2d, h, l). Considering the performance scores of the 
trained models (Fig.  3), there was no significant differ-
ence among the U-net, U-net++, and Attention U-net. 
The training results for the sub-datasets were found to 
be similar to those of the main dataset and models. How-
ever, they did differ in proportion to the size of the data-
set. Despite having fewer images, it was observed that the 
metrics from the dataset for CAP treatment performed 
better compared to the dataset for LLLT. The fact that the 
cells are more branched because of the spindle formation 
and dispersed in LLLT images might be the cause. As 
the number of discrete cells increases, small differences 
occurring around the cells cause a larger deviation when 
viewed as a whole image. Furthermore, the high-perfor-
mance outcomes observed in CAP treatment images pro-
vide evidence that the model can produce highly accurate 
predictions regardless of the cell line and magnification 
of the microscope. However, it should also be noted that 
the model performances were relatively accurate ( > 0.95 
DSC) in all three datasets. This implication revealed the 
generalizability of the proposed methodology regard-
less of the various dataset combinations and therapy-
of-interest. For the LLLT and CAP treatment datasets, 
corresponding DSC, ACC, IoU, PRE, REC, SPE, and 
ROC-AUC scores were close to each other for the three 
developed models (Table 3). However, in the test of the 
LLLT data, the IoU metric demonstrated relatively lower 
results. Similarly, the SPE metric showed lower results 
for the CAP data. This could be because datasets might 
have unique characteristics that make it more challeng-
ing for certain metrics to perform well. For example, 
IoU might struggle with overlapping or closely situated 
objects, which could be more common in the LLLT data. 
Similarly, the SPE metric might be more sensitive to the 
true negative rate, which could be more prevalent in the 
CAP data. Additionally, considering the time required 
to establish a ground truth mask, it can be observed that 
all three models developed significantly reduce the com-
putational cost. In particular, the U-net++ model pro-
duces outcomes faster than those of other models. This 
is attributed to the process of dense skip blocks, which 
involves a smaller number of parameters in the model. It 
may also be noted that Unet++ underperformed in cer-
tain metrics, such as SPE and PRE.

Additionally, the DSC averages were separately 
computed for the 40x and 100x images, and then an 
unpaired nonparametric two-tailed t-test based on the 



Page 15 of 21Doğru et al. BMC Medical Imaging          (2024) 24:158 	

Mann-Whitney [65] test was conducted to determine if 
there was a statistical difference between the two groups. 
The results revealed a difference in the test data with a 
p-value less than 0.0001. Statistical significance was also 
observed in the validation data, with a p-value of 0.026. 
By filtering the results, the 40x magnification yielded 
higher average DSCs of 0.992 in the test data and 0.994 
in the validation data. Also, the model performed com-
petitively, with an average DCS exceeding 0.95 at 100x 
magnification. This was attributed to the fact that as the 
image magnification increases, more details are cap-
tured and the model predicts a larger number of features, 
resulting in slightly decreasing performance. Given the 
relatively accurate performance (DSC of 0.95) achieved 
at larger magnifications (100x), the results were in line 
with the expectation that the model would be even more 
successful at predicting images at smaller magnifications 
(DSC of 0.992 at 40x).

The best and worst scenario results (Fig.  4) demon-
strate that all models were consistent with the ground 
truth. Therefore, it can be concluded that the employed 
models have shown promising performances. The dispar-
ities here can be explained by slight boundary deviations 
brought on by the cells’ fragmented nature, resulting in 
a greater variance when the whole image is considered. 
Comparing the models, the Attention U-net captures 
the details closer to the ground truth than other models 
because of the AGs in its structure. Although boundaries 
were similar to the ground truth, hence, the DSC values 
were very close for all models, when the PE values for 
wound area calculation were compared (Fig. 6), U-net++ 
significantly outperformed the other models. Further-
more, even if the outcomes provided by the developed 
models are remarkably similar to one another, it can be 
claimed that U-net++ was superior to other models con-
sidering both the metrics, computational cost, and aver-
age absolute PE outcomes.

The best and worst scenario results (Fig.  5) revealed 
huge deviations in ImageJ and TScratch tools. Com-
pared to the ground truth, it has been observed that the 
mask produced by Tscratch produces results that neglect 
the circular structure of the cells. The scenario was the 
opposite for ImageJ. In ImageJ, cells were estimated more 
circularly, resulting in decreased precision, especially in 
cells that are in the spindle movement stage. The perfor-
mance differences become much clearer when compar-
ing the ImageJ and TScratch tools with ground truth and 
U-net++. U-net++ has almost the same borderlines as 
ground truth. This once again emphasizes the superior-
ity of the developed model in calculating the wound area 
in a specific, sensitive, and accurate way compared to the 
currently available tools. In fact, when the test and vali-
dation images are analyzed one by one and the PEs are 

obtained (Fig. 6), the individual variability in each image 
for the ImageJ and TScracth tools stands out. In addition 
to the shortcomings of these tools, their computational 
capability for different images varies greatly. However, 
when the developed U-net-based models are analyzed, 
it can be concluded that these models gave a result simi-
lar to the ground truth for each image, and there is no 
individual variability. Based on these, the developed 
models have the potential to be more accurate than the 
current tools and methodologies employed to calculate 
the wound area.

Comparison with related studies
In biomedical imaging, DL techniques have been utilized 
for various operations such as segmentation, classifica-
tion, and detection [66]. CNNs, a sub-branch of DL, have 
been utilized for semantic segmentation, where each pixel 
is classified with a specific label. While ML applications 
have their own set of challenges, such as the necessity 
for handcrafted feature extraction and potential perfor-
mance degradation in the face of high-dimensional data 
compared to DL [37, 38], research on the schematic anal-
ysis of wound healing microscopy images using ML con-
tinues to be reported. In the field of ML, MultiCellSeg is a 
tool that utilizes the statistical learning of Support Vector 
Machines (SVMs) to segment images. During the train-
ing phase of the study, basic image attributes are used to 
classify the images labeled as cellular regions and back-
grounds into regional patches [67]. This process is called 
patch classification. The model analyzes the patches in 
the region by grouping them independently, taking into 
account the image-texture information, and using the 
Graphic-segment-based segmentation application to 
determine the areas with and without cells. Furthermore, 
Glaß et  al. developed a method for area segmentation 
based on image classification that evaluates the wound 
border and area using level-set techniques before exclud-
ing non-scratch images with SVMs [68]. They employed 
an entropy-based energy function and extended non-par-
tial differential equation level sets to maintain the topol-
ogy in the level set procedures. The bottom row median 
REC value was reported as 0.88 on average and the PRE 
value as 0.87, whereas the top row median REC value was 
0.80 and the PRE value was 0.93, indicating the quanti-
tative success of the model. They claimed that the tech-
nique they developed could be implemented as an ImageJ 
plugin, required minimal input parameters, and was suit-
able for experimental evaluations.

On the DL side, Oldenburg et al. developed a platform 
for living cell research that can conduct cell- and popu-
lation-scale analyses using MATLAB-based DL tech-
niques [25]. They introduced a system that can analyze 
cell mobility at both the cell and population scales by 
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training a 3-layer U-net structure using a semi-automatic 
labeling method. In the mentioned study, they performed 
the numeric evaluation of the leading edge with a second 
DL method called edge protrusion. They reported their 
success in cell detection and segmentation with an IoU 
score of 0.8214±0.038. Ayanzadeh et al. developed a new 
architecture by utilizing an alternative feature extrac-
tor in the U-net encoder and replacing the plain blocks 
in the decoder with residual blocks [30]. These modifica-
tions were based on the shortcomings of the naive U-net 
model and aimed to improve its performance. For seg-
mentation, U-Net and a pre-trained ResNet-18 encoder 
were used. A novel skip connection was proposed to 
reduce the semantic gap between the encoder and the 
decoder, and it was determined that this skip connec-
tion improved the model accuracy across both datasets. 
In the DSB2018 and MDA-MB-231 datasets, the sug-
gested segmentation method produced Jaccard Index val-
ues of 85.0% and 89.2%, respectively. Another AI-based 
approach is the DeepScratch application, developed by 
Javer et  al., which utilizes a U-net structure to identify 
nuclear or membrane images from heterogeneous image 
data [69]. The authors used dot marking to annotate cells 
in HDLECs scratch assay images at 0 and 24 hours and 
subsequently trained the model. To segment wounds, 
cell-free regions were considered as wounds. The coor-
dinates of the cells were transformed into a mask with 
pixel-by-pixel annotations, and the cell density was 
determined by applying a uniform 13x13 pixel kernel to 
the masks. A morphological opening with a 35x35-pixel 
kernel was applied, and any black pixels were classified as 
corresponding to the wound area to construct a segmen-
tation mask. They identified all connected components 
in the wound mask, and the wound was determined as 
the object with the largest area. The performance of this 
developed method is reported as 91.7% PRE, 92.1% REC, 
and 92.5% F score for mixed sets, and 95.4% PRE, 96.2% 
REC, and 95.8% F score for mixed sets+nuclei.

Sinitca et  al. developed a segmentation application 
for the semi-automatic segmentation of images based 
on their patchiness using local edge density estimates. 
To segment and quantify the image, they initially per-
formed various image processing operations, such as 
edge detection, local edge density, and thresholding. The 
parameters in the process were optimized using pixel 
densities and regression analyses of the image. A modi-
fied U-net model (U-netR) was then trained with both 
masks created by experts and masks generated as a result 
of automatically adjusted parameters with the developed 
application interface. The success of the results obtained 
has been reported with a median ACC of 95-99%. The 
research involved the use of several cell lines and micro-
scope magnifications. Although this has an important 

value in terms of the generalizability of the application, 
it requires parameters directly controlled by the end user 
for segmentation [55]. To assess the generalizability of 
our model further, we tested 180 wound-healing images 
published by Sinitca et al. This evaluation allowed us to 
observe the models’ performance under different sce-
narios and identify potential areas for improvement. It is 
important to note that all images in this dataset were cap-
tured at a 40x microscope magnification. The obtained 
results of our model (>0.95 DSC) utilizing this external 
dataset highlight its robustness and adaptability. Despite 
significant differences in the dataset, including micro-
scope magnification, different lighting conditions, and 
the orientation of the scratch assay, our model achieved 
competitive results. This underscores the model’s abil-
ity to generalize across diverse conditions, which is a 
crucial attribute for practical applications. Additionally, 
the absence of user intervention or parameter tuning in 
our methodology simplifies the process and enhances 
reproducibility.

As explained above, there is no standard approach to 
the segmentation of wound healing microscopy images 
yet. The previous research focused on high segmentation 
performance by using a different number of input data, 
cell lines, or DL architectures. This makes the fair com-
parison of recent methods challenging, but the compari-
son of the capability of generalizability is still important. 
The summarization of the above-mentioned studies and 
current work is presented in Table 4. It can be observed 
that the majority of the metrics yielded competitive out-
comes. It is important to note that the methodologies 
employed in the referenced studies were based on their 
specific, custom datasets, which are not publicly avail-
able and involve different experimental strategies for the 
scratch assay process. Despite these differences, we strive 
to present a comprehensive framework that enables us 
to demonstrate the performance of similar studies in the 
process of wound healing segmentation. The results we 
obtained indicate that the methodology we presented 
is promising when compared to existing methods. This 
underscores the superiority of DL-based applications, 
consistent with the research discussed in previous sec-
tions. This demonstrated that DL techniques can be 
employed to analyze wound healing images and provide 
highly accurate segmentation. Moreover, our approach 
demonstrated high accuracy and robustness in their 
segmentation performance regardless of the user across 
a variety of conditions, including therapy-of-interest, 
cell lines, and magnification of the microscope, while 
most of the others had not considered these important 
experimental-related variables. It is also important to 
note that these methods depend on particular condi-
tions and require input for key parameters. Therefore, it 
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is still crucial to improve these techniques by establish-
ing standardized and generalized analysis methods that 
are independent of the particular images being exam-
ined or the application-specific alterations. This would 
make the methods more widely applicable in the field of 
wound healing research and increase the consistency and 
reliability of the obtained results. Moreover, the devel-
opment of a standard methodology would also make it 
easier to compare the outcomes across different stud-
ies and experiments, thus facilitating the advancement 
of our understanding of the wound healing process and 
the efficacy of the therapy-of-interest. Last but not least, 
it should be noted that scratch wound healing assays are 
not only used for simulating actual wound healing but 
also serve as a robust tool for evaluating cell motility and 
migration. These cellular behaviors are integral to numer-
ous biological processes, thereby extending the relevance 
of our method beyond wound healing.

Limitations
Besides the promising results, several limitations were 
encountered that could have potentially influenced the 
results. Firstly, the limited amount of data available for 
this study might have restricted the model’s ability to 
learn more complex patterns, thereby affecting its gen-
eralizability and robustness. This is a common issue in 
wound healing studies due to public dataset limitations 
and non-standard labeling, often leading to the use of 
custom datasets. Consequently, the dataset used in this 
study was retrospectively collected from previous stud-
ies within the laboratories. To the best of our knowl-
edge, the dataset, which comprises 400 different wound 
healing microscopy images, is one of the largest used in 
this context. To mitigate the impact of data limitations 
on model performance and to enhance the informa-
tion obtained from the edges, we augmented the train-
ing data using a spatial partitioning process commonly 
used in handling high-dimensional images. This process 
caused an additional preprocessing step, which could 
be another drawback. The necessity for an additional 
preprocessing step added a layer of complexity to the 
data preparation process. This might pose a challenge 
for the scaling of the study. The other limitation may 
be the presence of unusual peak outliers in the valida-
tion curves. While these peaks could be present due to 
various reasons, they were not excluded to ensure a fair 
comparison of the performances of the developed mod-
els. The peaks in the validation scores may cause a delay 
in the computational time. However, it is important to 
note that we need to maintain a consistent number of 
epochs across all runs to ensure a fair comparison in 
terms of computational time. All models are trained for 

50 epochs to avoid discrepancies that could arise from 
varying training durations or the use of early stopping 
mechanisms. Lastly, especially the performance of the 
external test samples, depends on the provided masks. 
This causes the DSC calculation to be based on the pro-
vided masks. In cases where the cell boundaries were not 
annotated well, the DSC scores will decrease even if the 
model predicts wound areas better since the similarity 
comparison is based on the ground truth (which was not 
annotated meticulously).

Conclusion
In this study, a U-net-based DL model was developed 
to provide a standardized approach for the calculation 
of wound area from in  vitro microscopy images. The 
model was trained by utilizing in  vitro wound healing 
images of three different cell lines from LLLT and CAP 
treatment investigations. The performance of the model 
was evaluated using various metrics during a robust 
and comprehensive testing phase, and a success rate of 
over 90% was achieved in all metrics. This process was 
repeated with slightly different variations of the U-net 
model. The DSC values were obtained around 0.958 for 
all 5-layer U-net, U-net++, and Attention U-net mod-
els, while U-net++ had the best wound area calculation 
performance. The deviation of the wound area calcula-
tion from the ground truth was also substantially lower 
for Unet++ (3.70%) than ImageJ (22.59%) and TScratch 
(33.88%). Although the sample size does not allow for 
extensive generalizability evaluation, the performance 
of the proposed method on the external sets was con-
sistent, as evidenced by the low variability across three 
different datasets. Overall, the developed method has 
produced satisfactory outcomes when compared to the 
most recent studies in the literature and enables fast and 
more standardized analysis.
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