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Introduction
Intracranial tumors are malignant growths that occur 
within the cranial cavity. They can be categorized into 
primary and secondary intracranial tumors according to 
their sites of origin [1]. Patients with intracranial tumors 
often experience severe central nervous system dysfunc-
tion, and typical clinical symptoms include headaches, 
vomiting, and dizziness. In some severe cases, patients 
may even suffer from stroke [2]. The primary treat-
ment modalities for intracranial tumors include surgery, 
radiation therapy, chemotherapy, targeted therapy, and 
immunotherapy. According to the NCCN guidelines [3], 
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Abstract
Background  Information complementarity can be achieved by fusing MR and CT images, and fusion images have 
abundant soft tissue and bone information, facilitating accurate auxiliary diagnosis and tumor target delineation.

Purpose  The purpose of this study was to construct high-quality fusion images based on the MR and CT images of 
intracranial tumors by using the Residual-Residual Network (Res2Net) method.

Methods  This paper proposes an MR and CT image fusion method based on Res2Net. The method comprises three 
components: feature extractor, fusion layer, and reconstructor. The feature extractor utilizes the Res2Net framework 
to extract multiscale features from source images. The fusion layer incorporates a fusion strategy based on spatial 
mean attention, adaptively adjusting fusion weights for feature maps at each position to preserve fine details from the 
source images. Finally, fused features are input into the feature reconstructor to reconstruct a fused image.

Results  Qualitative results indicate that the proposed fusion method exhibits clear boundary contours and accurate 
localization of tumor regions. Quantitative results show that the method achieves average gradient, spatial frequency, 
entropy, and visual information fidelity for fusion metrics of 4.6771, 13.2055, 1.8663, and 0.5176, respectively. 
Comprehensive experimental results demonstrate that the proposed method preserves more texture details and 
structural information in fused images than advanced fusion algorithms, reducing spectral artifacts and information 
loss and performing better in terms of visual quality and objective metrics.

Conclusion  The proposed method effectively combines MR and CT image information, allowing the precise 
localization of tumor region boundaries, assisting clinicians in clinical diagnosis.
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radiation therapy is one of the primary treatment options 
for patients with various types and stages of intracranial 
tumors. It not only targets tumors directly but also allevi-
ates intracranial symptoms, improves the quality of life, 
and extends the survival time for patients.

With the continuous advancement of medical imaging 
technology, multimodal image fusion techniques have 
become increasingly important in tumor target delinea-
tion [4]. Combining information from different modali-
ties of images allows for the precise localization of tumor 
boundary regions, aiding doctors in accurately delineat-
ing tumor target areas. The accuracy of target delineation 
often depends on image quality and the experience of the 
medical professionals. High-quality images can enhance 
the ability of less experienced doctors to identify tumors, 
thus improving the precision of target delineation.

In the CT and MR images of patients with intracra-
nial tumors, CT images primarily reflect electron density 
information of the skull and various intracranial regions. 
For structures with high electron densities, such as the 
skull, corresponding pixel values are high, resulting in 
bright regions in images. However, areas with low elec-
tron densities, such as tumors and soft tissues, have low 
pixel values, leading to dark signals. Thus, differentiating 
between lesions and surrounding normal tissues, espe-
cially small or early-stage lesions [5]. In contrast to CT, 
MR offers high resolution and rich soft tissue informa-
tion. MR pixel values reflect the relaxation times of dif-
ferent tissue regions under a magnetic field, enabling it 
to capture clearer lesion boundaries and details than CT 
[6]. In clinical practice, the delineation of target areas in 
patients with intracranial tumors typically require the 
combination of MR and CT images [7]. Given that CT 
images have lower resolutions for soft tissue imaging, 
delineating intracranial tumor target areas based solely 
on CT images is challenging and requiring doctors to 
have extensive clinical experience. Compared with CT 
images, MR images can provide better soft tissue con-
trast, aiding in determining the relationship between 
tumor edges and surrounding normal tissues. Therefore, 
MR images are often combined with CT images to assist 
in delineating tumor target areas. In existing research and 
applications, MR–CT fusion images effectively improve 
the precision of intracranial tumor target delineation, 
enhance the accuracy of radiation therapy, and reduce 
radiation damage to surrounding normal tissues [8].

Currently, methods for MR–CT image fusion mainly 
rely on deep learning approaches [9]. These methods aim 
to address the challenge of effectively fusing features with 
different distributions and scales while preventing infor-
mation loss and conflict. However, these algorithms often 
suffer from issues, such as poor texture detail in fused 
results and blurred boundaries [10]. These problems 
primarily stem from inappropriate feature extraction 

methods and fusion strategies. In many instances, feature 
extraction can lead to information loss because it focuses 
on single-scale features, such as local details and texture 
information, which have limited information representa-
tion capabilities. In medical image processing, multiscale 
features are widely used due to their strong information 
representation capabilities. They allow feature extraction 
at different scales to capture information within different 
spatial ranges [11].

Residual–Residual Network (Res2Net) is a feature 
extraction network known for its strong multiscale 
feature representation capabilities in recent years. It 
enhances model expressiveness by introducing multi-
scale attention mechanisms and utilizes residual connec-
tions to handle multiscale information, thereby avoiding 
information loss and inconsistencies between different 
branches. To improve the quality of fused images, this 
paper employs Res2Net in feature extraction to extract 
more scales and fine-grained features. Additionally, it 
proposes a spatial mean attention fusion strategy that 
generates different fusion weights for CT and MR images. 
The goal is to provide the fused image with detailed 
information and clearer boundary contours. Therefore, 
the main contributions of the proposed fusion method in 
this paper are as follows:

 	• Embedding Res2Net into the feature extractor is 
aimed at extracting finer-grained multiscale detail 
features more effectively. Additionally, employing 
Res2Net for image fusion results in fast fusion 
speeds.

 	• A fusion strategy based on spatial mean attention 
was designed, adaptively adjusting the fusion weights 
of feature maps to enhance the quality of the fused 
images.

 	• A hybrid loss function combining structural 
similarity loss and pixel loss was utilized to train 
both the feature extractor and feature reconstructor, 
aiming to preserve the texture and structure of the 
source images.

Related work
Medical image fusion
For medical image fusion, the classical fusion algorithm 
is based on multiscale transform (MST) and sparse rep-
resentation (SR). MST decomposes an original image 
into multiscale layers and uses different rules to fuse 
decomposed multiscale layers. Finally, a fusion image can 
be obtained through multiscale inverse transformation. 
MST includes wavelet fusion [12, 13], pyramid [14, 15], 
Non-Subsampled Shearlet transform, and Non-Subsam-
pled Contourlet transform [16, 17]. These algorithms can 
fully use multiscale information and select appropriate 
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fusion rules for image features. However, multiscale 
operation requires decomposition, in which the number 
of decomposition layers is difficult to determine. The goal 
of SR is to generate fusion images from an overcomplete 
dictionary learned from a set of training images com-
bined with a series of sparse coefficients. Li et al. [18] use 
SR and neighborhood energy activity operators to divide 
source images into base and detail layers and carry out 
feature fusion at different levels. This method is suitable 
for the fusion of gray level and color images. Liu et al. 
[19] proposed an image fusion method based on MST 
and SR, which combined the multiscale characteristics 
and adaptability of SR. However, the level of complex-
ity of its time and space are higher than that of the time 
and space of a single MST or SR algorithm. A traditional 
method generates the weight graph by designing fusion 
rules manually, combines weight mapping with a fusion 
strategy, and finally generates a fusion result through 
inverse transformation. However, the fusion effect is not 
ideal because the fusion rules and decomposition meth-
ods of the design are complicated and laborious and the 
application scenarios are diverse.

With the continuous advancement of deep learning, 
many deep learning-based fusion methods have been 
widely proposed in recent years to effectively address 
the shortcomings of manual feature extraction, which 
often leads to insufficient representational capacity. In 
2017, an unsupervised deep learning fusion algorithm 
called DeepFuse [20] was introduced, which significantly 
enhanced the efficiency and quality of fusion. However, it 
was primarily designed for multi-exposure image fusion. 
Li et al. [21] proposed a multimodal medical image fusion 
method based on CNN and supervised learning, enabling 
the fusion of different modalities in batch processing 
mode. Lahoud et al. [22] proposed a real-time medical 
image fusion method that utilizes a pretrained model to 
generate fused images containing features from multiple 
modal sources. However, although the fused images have 
clear textures, they contain noise that did not exist in the 
original images. Zhang et al. [23] introduced a CNN-
based end-to-end fusion framework that can be directly 
applied to fuse CT and MRI images. Xu et al. [24] pre-
sented a unified unsupervised fusion network that adap-
tively updates preserved information through feature 
extraction and information metrics. Moreover, elastic 
weight consolidation algorithms for multiple fusion tasks 
were applied during network training, adjusting param-
eters based on new tasks while not forgetting previous 
tasks. Zhang et al. [25] proposed an end-to-end multitask 
fusion framework based on gradient and intensity ratio 
preservation, unifying the image fusion problem as a 
ratio problem between source image gradients and inten-
sities. However, these models are specifically designed to 
provide a universal image fusion framework applicable to 

various tasks, thus overlooking the uniqueness of medical 
image fusion tasks, failing to fully represent the seman-
tic information and visual features of multimodal medi-
cal images, and resulting in low-quality medical image 
fusion. Ma et al. [26] proposed a dual-discriminator 
conditional generative adversarial network (DDcGAN), 
which is suitable for medical image fusion at differ-
ent resolutions. However, this model is aimed at fusing 
medical images of different resolutions and performs 
poorly on medical images of the same resolution. Owing 
to the powerful and versatile fitting capabilities of deep 
learning, it has enormous potential in the medical field, 
including applications, such as disease detection [27], 
lesion segmentation [28], disease classification [29], and 
surgical planning. Therefore, deep learning–based image 
fusion algorithms are expected to continue to emerge 
and be applied to the field of medicine.

Res2Net
In the field of image processing, the purpose of feature 
extraction in deep learning models is to map sample sets 
from high-dimensional feature spaces to low-dimensional 
feature spaces and make the mapped sample sets to have 
good separability. The detail effect of feature extraction 
directly affects the quality of a whole model algorithm. 
The extensive comparative experiments of Geiros et al. 
[30] demonstrated that CNNs effectively extract texture 
details from original images. Therefore, we introduce an 
appropriate CNN module to extract texture details from 
original images, aiming to obtain better feature repre-
sentations. In computer vision tasks, multiscale feature 
representations play a crucial role. Currently, most CNN-
based medical image fusion algorithms do not consider 
multiscale feature representations or only conduct shal-
low multiscale feature representations, leading to con-
siderable feature loss during feature extraction. Xu et 
al. [31] proposed an end-to-end fusion framework that 
incorporates unique information from different modal 
images by enforcing surface and deep constraints during 
model training. However, a single-plane fusion network 
model tends to ignore multiscale information from origi-
nal images, resulting in an inadequate representation of 
fused image details. Li et al. [32] introduced a multiscale 
enhancement fusion network (MSENet) based on unique 
feature guidance, utilizing a dense three-path dilated net-
work to enlarge the receptive field for the extraction of 
multiscale features. Song et al. [33] proposed a multiscale 
DenseNet (MSDNet), employing three filters of different 
sizes to extract multiscale features. However, MSENet 
and MSDNet acquire multiscale features by stacking 
network layers, resulting in the incomplete and inaccu-
rate representations of multiscale features; thus, they 
are unable to fully achieve true multiscale feature rep-
resentation. Therefore, at Pattern Analysis and Machine 
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Intelligence 2020, Gao et al. [34] introduced a novel CNN 
module called Res2Net to address the limitation to mul-
tiscale feature representation capability. Res2Net is a 
network structure that combines multiscale attention 
mechanisms, aiming to handle the modeling of multi-
scale information and extraction of multilevel features. 
The Res2Net module is shown in Fig. 1.

In the Res2Net module, input features first pass 
through a 1 × 1 convolution for the production of a fea-
ture map, which is divided into n groups and denoted as 
xi, i? {1,2, · · · , n} . Except xi , each set of feature maps 
undergoes 3 × 3 convolution, the convolution operation is 
called Hi(•). An Hi(•)output is denoted by yi , the spe-
cific calculation process is shown in Formula (1)

	
yi =






xii = 1
Hi (xi) i = 2

Hi(xi + yi−1)2 < i ≤ n
� (1)

The n groups of yi  are concatenated along the channel 
dimension before 1 × 1 convolution operation. In the con-
volution operation Hi(•) of group i an input contains 
multiple sets of input features. Therefore, Res2Net can 
extract fine-grained, multiscale features, effectively cap-
turing global and local features.

Methods
In this section, a detailed explanation is provided for the 
network model, fusion strategy, and loss function.

Fig. 2  Architecture of proposed method

 

Fig. 1  Res2Net structure
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Network model
DenseFuse [35] adopts the concept of dense connec-
tions to manipulate features at various scales, preserv-
ing abundant semantic information and texture details. 
By contrast, Res2Net enhances its feature extraction by 
incorporating attention mechanisms across different 
scales. This feature extraction approach captures fea-
ture information at various hierarchical levels, thereby 
enhancing the network’s capability to represent mul-
tiscale features. Consequently, the Res2Net model is 
employed for extracting multiscale features.

The input images of the model are CT and MR images, 
represented as Ict  and Imr , respectively. All input images 
are fused with pre-registration. The whole network struc-
ture includes feature extractor, fusion layer, and feature 
reconstructor. The feature extractor extracts multi-scale 
features from an input image and passes it into a 
fusion layer to obtain a multiscale feature fusion map. 
Finally, the fusion map is inputted into the reconstruc-
tor to reconstruct the image, and the fusion image If  is 
obtained. The architecture of the algorithm is defined as 
follows:

As shown in Fig. 2, the feature extractor consists of two 
3 × 3 convolution filters and a Res2Net block. After the 
input features undergo two 3 × 3 and one 1 × 1 convolu-
tion operations, an input is fed to the Res2Net module 
to extract multiscale features. The operation and specific 
formulas for the Res2Net block are described in section 
B of the related work. The multiscale features extracted 
by Res2Net are transmitted to a fusion layer through 1 × 1 
convolution. The feature reconstructor consists of four 
3 × 3 convolution filters used to reconstruct the image. As 
shown in Table 1.

Fusion layer
The main function of a fusion layer is to fuse extracted 
features (Fig.  3). Fusion strategy plays a pivotal role in 
image fusion, and the quality of fusion is closely related 

to a selected fusion strategy. The different modalities of 
images possess unique features, and suitable fusion strat-
egies should be selected for different features. For MR 
and CT medical image features, a fusion strategy based 
on spatial attention mechanism is proposed, which can 
adaptively adjusts the fusion weights of feature maps 
according to difference between the average value and 
local average value at each position. Consequently, it pre-
serves details and global structural features from source 
images.

(1)	Spatial Mean Attention Strategy.

Fusion weight is not considered in the fusion of addition 
strategy and average strategy. Thus, we propose a spatial 
attention fusion strategy based on mean operation. First, 
feature maps ∅m

i (x, y) extracted by the feature extractor 
is performed through means operation. Then, the soft-
max operation is performed to calculate the weight maps 
ω1 and ω2. The formula is defined as follows:

	
fm =

s∑

i=1

ωi∅m
i (x, y)� (2)

	
ωi(x, y) =

Q (∅m
i ( x, y ))∑s

i=1 Q (∅m
i ( x, y ))

� (3)

where, Q (∅m
i ( x, y )) represents the mean operation of 

the position (x, y) of each feature map and fm  repre-
sents the fusion feature mapping obtained by the fusion 
layer. Finally, the fusion features are decoded and recon-
structed by the fm  input feature reconstructor, and the 
final fusion image is obtained.

C. loss function
The structural similarity loss function helps maintain the 
structure and texture of an image during the generation 

Table 1  Network structure of proposed method
Layer Size Stride Input Channel Output Channel Activation

Feature Extraction Conv3 3 1 1 32 ReLU
Conv3 3 1 32 64 ReLU
Res2Net Block - - - - -

Feature Reconstructor Conv3 3 1 64 64 ReLU
Conv3 3 1 64 32 ReLU
Conv3 3 1 32 16 ReLU
Conv3 3 1 16 1 -

Res2Net Block Conv1 1 1 64 64 ReLU
- - - - - -
Conv3 × 2 3 1 16 16 ReLU
Conv3 × 2 3 1 16 16 ReLU
Conv3 × 2 3 1 16 16 ReLU
Conv1 1 1 64 64 ReLU
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process, resulting in realistic images. A pixel loss func-
tion aids in detail recovery and reconstruction, making 
the generated images closely resemble the pixel-level 
representation of real images. A hybrid loss function, 
denoted as L, which combines the structural similar-
ity loss function and pixel loss function, is used to train 
the feature extractor and feature reconstructor, achieving 
more accurate reconstruction of input images. The spe-
cific definitions of the loss functions are as follows:

	 L = Lssim + Lpixel � (4)

Lssim  and Lpixel  are defined as follows:

	 Lssim = 1 − SSIM(Ifused − I input)� (5)

	
Lpixel =

1
BCHW

|| Ifused − I input ||22� (6)

where Ifused  and I input  represent fused and input 
images, respectively, B  represents the batch size, C  rep-
resents the number of channels, and H and W represent 
the height and width of Ifused , respectively.

Experiments and results
Datasets and training details
The data set of this experiment consisted of brain image 
data of patients with nasopharyngeal carcinoma (1 MRI 
T1W sequence and CT information for each patient) col-
lected in Changzhou Second People’s Hospital Affiliated 
to Nanjing Medical University from June 2018 to March 
2021, aged 35–89 years old. MR Image obtained with a 
Philips Achieva Scanner 1.5T MR Device, T1W scan-
ning parameters: TR1 343 ms, TE 80 msFA 90, image size 

640 × 640 × 30–41, voxel spacing 0.6640 mm × 0.6640 mm 
× 5 mm. CT images were collected by GE Optima CT520 
equipment. Scanning parameters were as follows: 
tube voltage 120  kV, tube current 220  mA, image size 
512 × 512 × 101–123, voxel spacing 0.976 5  mm × 0.976 
5 mm × 3 mm.

During the training process, only the feature extractor 
and reconstructor are considered, and the fusion layer 
is not considered. The training model is shown in Fig. 4. 
When the weight parameters of the training of the feature 
extractor and reconstructor are fixed, the fusion layer is 
added to two structures, the multiscale features output-
ted by the feature extractor are fused, and fusion features 
are finally inputted to the reconstructor to generate a 
fusion image. Given that the purpose of training the net-
work is to reconstruct an image, we trained 10,000 CT 
and MR images and cropped them to 256 × 256 size. In 
the training parameter setting, learning rate is set at 10− 4, 
and batch size is set at 4. All experiments were conducted 
on an NVIDIA GeForce RTX 3060 GPU and a 2.10 GHz 
Intel(R) Core(TM) i7-12700 F CPU, using PyTorch as the 
compilation environment.

Fusion result analysis
To validate the effectiveness of the proposed method, we 
conducted both qualitative and quantitative comparisons 
with state-of-the-art methods. These methods include 
DenseFuse, RFN-Nest [36], MSDNet and DFENet [37]. 
During the evaluation, compared methods should main-
tain the same resolution as the source images for qualita-
tive and quantitative comparisons.

1)	 Qualitative Comparison: A qualitative evaluation was 
performed by using a patient’s data from the test set. 

Fig. 3  Fusion strategies
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Five pairs of images from different scanning layers 
of the patient were selected for visual assessment, 
as shown in Fig. 5. From the images, the proposed 
method in this paper has two significant advantages 
over DenseFuse, RFN-Nest, MSDNet and DFENet. 
First, the fusion results from this paper can preserve 
the high-contrast characteristics of CT images. 
This feature is particularly beneficial for diagnosing 
tumors involving bone invasion because it allows the 
accurate assessment of tumor boundaries in clinical 
diagnosis. Fusion results from this paper exhibited 

clear texture details and structural information with 
sharp boundaries and minimal information loss.

To illustrate that the fusion results from the proposed 
method aid in tumor delineation by doctors, a senior 
attending physician with extensive experience conducted 
a comparison of target delineation on three different 
scanning layers of a patient. As shown in Fig. 6, the first 
and second rows depict the delineation of a target area 
for a patient with nasopharyngeal carcinoma, and the 
third row represents the boundary delineation of lymph 

Fig. 5  Qualitative comparison: CT and MR images of the first and second columns. The following three columns show the fusion results of the compari-
son method and the method proposed in this article

 

Fig. 4  Reconstruction model
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node metastatic lesions in a patients with nasopharyn-
geal carcinoma. Validated by another senior attending 
physician, the fusion results from the proposed method 
can more accurately locate the tumor area boundaries, 
facilitating precise delineation of the target area.

2)	 Quantitative comparison: Among the many 
measurement standards, a single measurement 
method can only reflect a single feature, and thus we 
adopted eight indicators to evaluate the fusion image. 
Methods include average gradient (AG), spatial 
frequency (SF), entropy (EN), mutual information 
(MI), peak signal-to-noise ratio, structural similarity 
index measure (SSIM), visual information fidelity for 
fusion [38], and quality metric for image fusion [39].

The AG  is used to measure the clarity of a fused image. 
The higher the value of AG  is, the higher the image clar-
ity and the better the fusion quality are. Its calculation 
formula is as follows:

	

AG =
1

(M − 1)(N − 1)
M−1∑

i=1

N−1∑

j=1

√
(F (i + 1, j) − F (i, j))2 + (F (i, j + 1) − F (i, j))2

2

� (7)

Table 2  Quantitative results of 40 pairs of MR-CT images
DenseFuse RFN-Nest MSDNet DFENet Our Pa Pb Pc Pd

AG 3.6152 3.4788 4.5478 4.5792 4.6771 < 0.01 < 0.01 0.01 < 0.01
SF 10.0585 9.5649 13.0434 13.0584 13.2055 < 0.01 < 0.01 0.127 < 0.01
EN 4.3175 4.5693 4.4825 4.4163 4.6039 < 0.01 0.044 < 0.01 < 0.01
MI 1.7306 1.6189 1.8070 1.9137 1.8663 < 0.01 < 0.01 < 0.01 < 0.01
PNSR 19.9831 18.6209 20.3973 19.6427 19.6532 0.048 < 0.01 < 0.01 0.838
SSIM 0.7722 0.7431 0.7815 0.7829 0.7723 0.824 < 0.01 < 0.01 < 0.01
Qabf 0.3567 0.3276 0.5311 0.5289 0.5358 < 0.01 < 0.01 < 0.01 0.345
VIFF 0.3999 0.4509 0.4566 0.5141 0.5176 < 0.01 < 0.01 < 0.01 0.394
pa, p for DenseFuse versus Our; pb, p for RFN-Nest versus Our; pc, p for MSDNet versus Our; pd, p for DFENet versus Our

Fig. 7  Fusion metric

 

Fig. 6  Comparison of target area delineation between tumor and metastatic lymph node lesions
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where F (i, j) represents the pixel values of row i  and 
column j  in a fused image, and M  and N  represent the 
height and width of an image, respectively.

SF  mainly reflects the gray-scale rate of an image. The 
greater the spatial frequency is, that is, the larger the SF  
value is, the clearer the image, the clearer the texture and 
details, and the better the fusion quality are. The calcula-
tion formula is as follows:

	 SF =
√

RF 2 + CF 2 � (8)

RF and CF  are defined as follows:

	
RF =

√√√√ 1
MN

M∑

i=1

N∑

j=1

(F ( i, j) − F (i, j − 1 ))2 � (9)

	
CF =

√√√√ 1
MN

M∑

i=1

N∑

j=1

(F ( i, j) − F (i − 1, j ))2 � (10)

where F (i, j) represents the pixel values of row i  and 
column j  in a fused image, and M  and N  represent the 
height and width of an image, respectively.

EN  is mainly a measure of the amount of information 
contained in a fused image. The amount of information 
increases with the level of information entropy. Its calcu-
lation formula is as follows:

	
EN = −

∑N−1

n=0
pnlog

pn
2 � (11)

where N  represents the gray level of a fused image and 
pn  represents the normalized histogram of the corre-
sponding gray level in the fused image.

MI  retains the source image pair information for a 
fused image. The greater the mutual information is, the 
more the fused image retains the source image informa-
tion and the better the fusion quality. The calculation for-
mula is as follows:

	 MI = EN (I1) + EN (I2) − EN(I1, I2)� (12)

where EN(•) denotes the information entropy of a com-
puted image, and EN(I1, I2) denotes the joint informa-
tion entropy of the image.

PSNR  [26] reflects the degree of image distortion by 
the ratio of the peak power to the noise power of a fusion 
image. Fusion quality increases with PSNR  value, the 
better the fusion quality. The calculation formula is as 
follows:

	 PSNR = 10lg
r2

MSE � (13)

where r  represents the peak value of the fused image and 
MSE  is the mean square error of the difference between 
a fused image and a source image. MSE  is defined as 
follows:

	
MSE(x, y) =

1
MN

M∑

i=1

N∑

j=1

(x( i, j) − y(i, j ))2� (14)

	
MSE =

1
2

(MSE( I1, If) + MSE(I2, If )) � (15)

where I1and I2 represents the source image, and If  rep-
resents the fusion image of I1 and I2.

SSIM  [26] evaluates the fusion image from three 
aspects: brightness, contrast, and structure. Structure 
similarity and fusion quality improves with increasing 
SSIM . The calculation formula is as follows:

	

SSIM(x, y) =
(2µxµy+c1) (2σxy + c2)(σxy + c3)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) (σxσy+c3)
� (16)

	
SSIM =

1
2

(SSIM( I1, If ) + SSIM(I2, If )) � (17)

where µx  and µy  represent the mean values of x  and y , 
respectively, σx  and σy  represent the standard deviations 
of x  and y , and σxy  represents the covariance of x  and 
y , respectively, c1 , c2 , and c3  are constants that make the 
algorithm stable. I1and I2  represents the source image, 
and If  represent the fusion image of I1  and I2 .

V IFF  [38] is an index to measure the quality of fused 
images based on visual fidelity, and fusion Qabf  [39] is 
used to measure the performance of significant informa-
tion of source images in fused images, which can be used 
in comparing the performance of different image fusion 
algorithms. The quality of a fused image improves with 
increasing V IFF  and Qabf .

To further validate the fusion method proposed in this 
paper, 40 image pairs were selected for quantitative com-
parison in different scanning layers of patients. SSIM , 
Qabf , and V IFF  all belong to the category of visual per-
ception. The larger the value is, the better the visual effect 
is compared with the method (Fig. 7). The result of quan-
titative comparison is the average value of 40 images for 
each indicator. The specific data are as follows:

Table 2 shows that the proposed method outperforms 
DenseFuse, RFN-Nest, MSDNet, and DFENet in objec-
tive metrics such as AG, SF, EN, while only slightly 
lagging behind DFENet in the MI metric. However, con-
cerning the SSIM metric, the proposed method slightly 
trails MSDNet and DFENet. These metrics reflect that 
the proposed method can preserve gradient information, 
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edge information, and texture details to the maximum 
extent, reducing spectral distortion and information 
loss. In terms of visual perceptual evaluation standards, 
Qabf and VIFF also outperform DenseFuse, RFN-Nest, 
MSDNet, and DFENet, especially exceeding MSDNet 
by 0.4% and 6.1% in specific metrics, indicating higher 
contrast in visual perception categories. Pairwise t-tests 
were conducted between our method and other methods 
based on quantitative metrics for a more objective evalu-
ation. From Table 2, it can be inferred that the proposed 
method exhibits significant differences from the current 
state-of-the-art methods, with statistical significance.

Discussion
The imaging signal of CT images for tumors and soft tis-
sues is dark, and distinguishing between lesions and sur-
rounding normal tissues is difficult. MR Images have high 
resolution and rich soft tissue information, and abun-
dant tumor boundaries and details are greater than those 
observed in CT images. The fusion of MR and CT images 
can complement each other’s information, especially 
for tumors involving bone destruction, such as tumors 
invading soft tissue and bone at the same time. The 
observation is more intuitive and accurate, and it helps 
doctors to quantify, evaluate, and locate pathological tis-
sues clearly [40] and outline the tumor target areas. In a 
recent study [41], global-local feature extraction strate-
gies and air-frequency fusion strategies are introduced 
to preserve complete texture details and global contour 
information. A study [42] proposed a dual-scale zero-
learning medical image fusion method based on Res2Net 
and adaptive guided filtering, utilizing Res2Net to extract 
deep features. Another study [37] introduced an image 
fusion method based on a CNN and Transformer, using 
Res2Net as the backbone framework of the CNN module 
to enhance local feature extraction. The proposed mod-
els utilize Res2Net to capture features at different levels, 
effectively preserving significant information from source 
images through multiscale representation. Additionally, 
a spatial mean attention fusion strategy was designed to 
adaptively adjust fusion weights for each pixel position, 
thereby preserving boundary and detail information from 
source images.

The proposed method was compared qualitatively and 
quantitatively with the current state-of-the-art methods. 
Qualitatively, the compared methods exhibited distor-
tions in the fused images, especially evident in DenseFuse 
and RFN-Nest, where the complete bone information of 
CT images was not retained, as shown in Fig.  5. While 
MSDNet and DFENet yielded slightly better results by 
preserving the soft tissue information of MR images and 
bone information of CT images, the distinctive features 
were not prominent upon visual inspection of the fused 
images. Additionally, it was observed that the fusion 

results of RFN-Nest were unstable, exhibiting significant 
artifacts and indistinct features, as highlighted in the 
fourth column of Fig.  5. Through perceptual compari-
son, the proposed method was capable of maintaining 
high contrast in CT images while displaying the soft tis-
sue information of MR images. Compared to DenseFuse, 
RFN-Nest, MSDNet, and DFENet deep learning meth-
ods, the fusion results of our method contained more 
complete, stable, and prominent feature information. As 
shown in Fig. 5, the texture details were clearer, and the 
boundaries were sharper, maximizing the retention of 
information from the source images and reducing infor-
mation loss. Furthermore, to demonstrate the superior-
ity of the proposed method, the fusion results of patients 
at three different scanning layers were delineated. Tumor 
positions and lymph node metastases of nasopharyngeal 
carcinoma patients were delineated, as shown in Fig.  6. 
The first and second rows depict delineations of tumor 
positions, while the third row illustrates delineations of 
lymph node metastases. From the delineation results, it 
can be observed that the delineation results of MSDNet, 
DFENet, and the proposed method are very close. How-
ever, after validation by two senior attending physicians, 
it was concluded that the delineation results of the pro-
posed method for fused images were the best, enabling 
more accurate localization of tumor boundaries and 
facilitating precise delineation of target areas, thus aiding 
clinicians in providing comprehensive diagnoses.

Quantitatively, to objectively validate the effectiveness 
of the proposed method, several metrics were selected to 
evaluate its fused images, as shown in Table 2. From the 
table, it can be seen that the proposed method performs 
best in AG, SF, EN, Qabf, and VIFF metrics. Compared 
to the best-performing method, DFENet, the proposed 
method exhibits improvements of 9.79%, 14.71%, 18.76%, 
0.69%, and 0.35%, respectively. This indicates that the 
proposed method can maximize the retention of gradi-
ent information, edge information, and texture details 
from the source images, thereby reducing spectral loss 
and information loss. MI and PSNR performance are sec-
ond best, while SSIM ranks third, indicating that the pro-
posed method retains more structural information from 
the source images. Furthermore, compared to MSDNet, 
which also extracts multiscale features, the proposed 
method outperforms MSDNet in AG, SF, EN, MI, Qabf, 
and VIFF metrics, with only slightly lower scores in 
PSNR and SSIM. This suggests that the proposed method 
can extract finer-grained features, making it more advan-
tageous for medical image fusion tasks.

While this study has demonstrated the potential and 
advantages of medical image fusion, it is important to 
acknowledge some limitations. For example: (1) The 
network architecture used in this study is based on fus-
ing single image scan layers rather than addressing the 
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fusion of three-dimensional MR and CT images. This 
implies that while fusion results for individual scan lay-
ers can be obtained, there may be issues of accuracy loss 
when translating them into overall three-dimensional 
effects. This limitation could potentially affect the accu-
rate interpretation and diagnosis of medical images. (2) 
The fusion strategy in this study is specifically designed 
for the characteristics of intracranial tumor MR and CT 
images, considering the mean of feature maps. However, 
this strategy is only applicable to MR and CT images, 
and may not be sufficiently generalizable to other types 
of medical images. Therefore, when applied to other dis-
eases or anatomical sites, it may be necessary to redesign 
or adjust the fusion strategy to accommodate different 
image features and clinical requirements.

Therefore, in future research, emphasis can be placed 
on optimizing fusion strategies, including optimiz-
ing medical image fusion strategies for different clinical 
applications. Specific fusion strategies can be designed 
based on the characteristics of different organs or lesions 
to improve fusion effectiveness and accuracy in spe-
cific target areas. Additionally, a fusion network frame-
work can be designed to fuse original three-dimensional 
images to further enhance fusion image quality and apply 
it to clinical practice.

Conclusion
According to the imaging characteristics of CT and MR 
images, some fusion methods are ineffective in texture 
details, boundary contours, and visual quality. An end-
to-end MR–CT fusion method based on deep learning 
is proposed. To retain the significant information of a 
source image, the feature extractor of the method adopts 
the Res2Net module to extract multiscale features to 
ensure the fine granularity of the source image. In addi-
tion, the fusion strategy based on spatial mean attention 
(pixel-level fusion strategy) adopts appropriate fusion 
weight for each pixel, which can better reflect the effect 
in details and boundaries. Compared with similar meth-
ods, the proposed method achieves the best integration 
performance in visual subjective evaluation and objective 
evaluation.
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