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Introduction
The brain, which serves as the central command centre 
of the body, controls bodily functions and plays a vital 
role in maintaining general health. Brain tumours and 
other anomalies can present substantial hazards. Malig-
nant tumours, which are characterised by the rapid and 
aggressive proliferation of cells, provide significant chal-
lenges in terms of management due to their fast growth. 
Conversely, benign tumours, although less menacing, can 
nonetheless lead to difficulties [1]. Accurate diagnosis 
and treatment planning require a thorough understand-
ing of the distinction between malignant and benign 
tumours. Progress in medical technology and research 
is constantly enhancing the effectiveness of therapies for 
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Abstract
Diagnosing brain tumors is a complex and time-consuming process that relies heavily on radiologists’ expertise and 
interpretive skills. However, the advent of deep learning methodologies has revolutionized the field, offering more 
accurate and efficient assessments. Attention-based models have emerged as promising tools, focusing on salient 
features within complex medical imaging data. However, the precise impact of different attention mechanisms, 
such as channel-wise, spatial, or combined attention within the Channel-wise Attention Mode (CWAM), for brain 
tumor classification remains relatively unexplored. This study aims to address this gap by leveraging the power 
of ResNet101 coupled with CWAM (ResNet101-CWAM) for brain tumor classification. The results show that 
ResNet101-CWAM surpassed conventional deep learning classification methods like ConvNet, achieving exceptional 
performance metrics of 99.83% accuracy, 99.21% recall, 99.01% precision, 99.27% F1-score and 99.16% AUC on 
the same dataset. This enhanced capability holds significant implications for clinical decision-making, as accurate 
and efficient brain tumor classification is crucial for guiding treatment strategies and improving patient outcomes. 
Integrating ResNet101-CWAM into existing brain classification software platforms is a crucial step towards 
enhancing diagnostic accuracy and streamlining clinical workflows for physicians.
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brain tumours, leading to better results for patients [2]. 
The World Health Organisation (WHO) has devised a 
classification system for brain tumours, categorising 
them into four groups. Tumours classified as Grade I and 
II are considered lower-grade and have a more favourable 
prognosis. Tumours classified as Grade III and IV are 
characterised by a more severe nature, displaying aggres-
sive behaviour and resulting in poorer outcomes [3]. 
Comprehending these grades is essential for clinicians to 
customise treatment methods and offer precise prognosis 
information. This technique enables healthcare practi-
tioners to categorise individuals according to the sever-
ity of their tumours, so improving the effectiveness of 
treatment and the outcomes for patients. Brain tumours 
present a substantial risk to life, and precise diagnosis is 
essential for successful treatment. Magnetic Resonance 
Imaging (MRI) and Computed Tomography (CT) scans, 
in conjunction with biopsy procedures and pathologi-
cal examinations, are employed to validate diagnosis [4]. 
MRI is favoured since it is non-invasive. Nevertheless, 
manual examination poses difficulties and inaccuracies. 
Computer-Aided Diagnosis (CAD) approaches have 
transformed the discipline by employing artificial intel-
ligence and machine learning. These algorithms aid 
neuro-oncologists in the identification, classification, 
and grading of tumours, improving diagnostic precision 
and optimising workflows [5]. This method enhances 
patient outcomes in the intricate realm of brain tumour 
identification and therapy. The application of deep learn-
ing techniques has greatly enhanced computer-assisted 
medical diagnosis, specifically in the detection and clas-
sification of brain tumours. Transfer learning, a branch 
of artificial intelligence, has demonstrated promise in 
tasks such as visual categorization, object identification, 
and image classification [6]. Neuro-oncology researchers 
have employed pre-trained networks to extract charac-
teristics from brain MRI scans, resulting in a remarkable 
accuracy rate of 98.58%. Convolutional neural network 
architectures such as AlexNet and Shuffle-Net have been 
assessed for their ability to extract features and classify 
data [7]. Convolutional neural networks (CNNs) are cru-
cial in the prediction of brain tumours, as they extract 
diverse features using convolution and pooling layers. 
Nevertheless, there is a limited availability of attention-
based models for the categorization of brain tumours. 
The predominant approach in current models is the utili-
sation of Convolutional Neural Networks (CNNs) and 
transfer learning approaches [8]. Several research have 
employed 3D-CNNs with innovative network structures 
for the categorization of multi-channel data, resulting 
in an accuracy rate of 89.9%. Prior research has con-
centrated on dividing brain tumours in MRI imaging by 
utilising fully convolutional neural networks [9]. Recent 
advancements have combined traditional architectural 

elements with CNN principles, such as correlation 
learning mechanisms (CLM) for deep neural network 
architectures in CT brain tumor detection, achieving an 
accuracy rate of 96% [10]. Research in brain tumor image 
classification has also explored the effectiveness of archi-
tectures like AlexNet, GoogLeNet, and ResNet50. The 
study presents two deep learning models for brain tumor 
classification, ResNet50 and VGG16. ResNet50 has the 
highest accuracy rate at 85.71%, indicating its poten-
tial for brain tumor classification [11]. The models were 
trained on a comprehensive dataset of 3,064 and 152 MRI 
images, sourced from publicly available datasets. The 
VGG16 architecture achieved classification accuracies of 
approximately 97.8% and 100% for binary and multiclass 
brain tumor detection, respectively [12].

Nevertheless, additional enhancements are required. 
The objective of the work is to incorporate an attention 
mechanism into the brain tumour classification task, 
since it has been demonstrated to improve the detec-
tion of important characteristics in intricate datasets. 
This integration has the potential to enhance accuracy 
rates and minimise misclassifications, resulting in more 
precise diagnoses and better patient outcomes [13]. The 
work offers a potential path for improving and perfect-
ing algorithms used to classify brain tumours. The author 
employed the recurrent attention mechanism (RAM) 
model and channel attention mechanism to enhance the 
classification accuracy of biomedical images. According 
to [14], the RAM model demonstrated superior perfor-
mance compared to typical CNNs when dealing with dif-
ficulties in imaging data.

The channel attention mechanism, which focuses on 
brain tissue spatial distribution, was also integrated into 
the classification process. This approach improved the 
accuracy of identifying and categorizing brain tumors 
based on their spatial characteristics. These techniques 
offer promising avenues for medical image analysis, lead-
ing to more accurate diagnoses and improved patient 
outcomes [15]. This proposed study presents a novel 
approach to brain tumor classification by combining 
deep learning techniques with channel-wise attention 
mechanisms. The study focuses on enhancing the accu-
racy and efficiency of brain tumor classification, crucial 
for effective diagnosis and treatment planning. Through 
the fusion of deep learning models and attention mech-
anisms, the proposed method aims to improve feature 
extraction and classification accuracy. The paper outlines 
the methodology, experimental results, and discusses the 
implications of the findings for future research and clini-
cal applications. Overall, the study contributes to advanc-
ing the field of medical image analysis and underscores 
the importance of integrating innovative techniques for 
improved brain tumor classification. The research contri-
bution of this study is as follows,
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 	• Utilization of Channel-wise Attention Mechanism: 
The proposed approach leverages the Channel-wise 
Attention mechanism to accurately classify different 
types of MRI images of the brain, including glioma, 
meningioma, no tumor, and pituitary classes. This 
mechanism allows the model to focus on relevant 
features within the images, thereby improving 
classification accuracy.

 	• Effective Data Preprocessing: The study emphasizes 
the importance of effective data preprocessing 
techniques, which likely contributed to the 
high accuracy of the proposed method. Proper 
preprocessing helps ensure that the input data is 
clean, standardized, and well-suited for training deep 
learning models.

 	• Integration into Clinical Decision-Making: Given the 
impressive performance of the proposed method, 
the authors advocate for its integration into software 
platforms used by physicians. This integration has 
the potential to enhance clinical decision-making 
and ultimately improve patient care by providing 
more accurate and efficient diagnosis of brain 
tumors.

 	• Future Research Directions: The study outlines 
future research directions, including the utilization 
of additional brain tumor datasets and exploration 
of different deep learning techniques to further 
enhance brain tumor diagnosis. This highlights the 
researchers’ commitment to ongoing improvement 
and innovation in the field.

 	• Identification of Computational Complexity: The 
study also identifies the computational complexity 
associated with the proposed model, particularly 
due to the addition of CWAM attention modules 
to the ResNet101 architecture. Understanding and 
acknowledging these limitations are essential for 
guiding future research efforts and optimizing model 
development processes.

The structure of this paper is as follows: Chap.  2 dis-
cusses about the recent state-of-the-art methods and its 
outcomes. Chapter  3 provides details about the dataset 
utilized in this study and outlines the complete structure 
of the proposed classification algorithm. Chapter 4 pres-
ents the experimental results obtained through the meth-
odology. Chapter 5 discusses the conclusions drawn from 
the study and outlines avenues for future research con-
cerning the proposed model.

Related work
Palash Ghosal et al. (2019) [16] brain tumors pose a sig-
nificant threat to life and socio-economic consequences. 
Accurate diagnosis using MRI data is crucial for radi-
ologists and minimizing risks. This research introduces 

an automated tool for classifying brain tumors using 
a Squeeze and Excitation ResNet model based on Con-
vNet. Preprocessing techniques like zero-centering and 
intensity normalization are used, resulting in an accuracy 
rate of 93.83%. This approach shows promising advance-
ments in sensitivity and specificity compared to current 
methods. Wenna Chen et al. (2024) [17] brain tumor 
classification is crucial for physicians to develop tailored 
treatment plans and save lives. An innovative approach 
called deep feature fusion uses convolutional neural net-
works to enhance accuracy and reliability. Pre-trained 
models are standardized, fine-tuned, and combined to 
classify tumors. Experimental results show that combin-
ing ResNet101 and DenseNet121 features achieves clas-
sification accuracies of 99.18% and 97.24% on Figshare 
and Kaggle datasets, respectively. Muhannad Faleh Ala-
nazi et al. (2022) [18] presents a transfer learning model 
for early identification of brain tumors using magnetic 
resonance imaging (MRI). The model uses convolutional 
neural network (CNN) models to assess their efficacy 
with MRI images. A 22-layer binary classification CNN 
model is then fine-tuned using transfer learning to cat-
egorize brain MRI images into tumor subclasses. The 
model achieves an impressive accuracy of 95.75% when 
tested on the same imaging machine. It also shows a high 
accuracy of 96.89% on an unseen brain MRI dataset, indi-
cating its potential for real-time clinical use.

Hanan Aljuaid et al. (2022) [19] breast cancer is a 
global issue, with increasing frequency due to insuffi-
cient awareness and delayed diagnoses. Convolutional 
neural networks can expedite cancer detection and 
classification, aiding less experienced medical practi-
tioners. The proposed methodology achieves top-tier 
accuracy rates in binary and multi-class classification, 
with ResNet, InceptionV3Net, and ShuffleNet achieving 
99.7%, 97.66%, and 96.94% respectively. Nazik Alturki et 
al. (2023) [20] brain tumors are among the top ten dead-
liest illnesses, and early detection is crucial for success-
ful treatment. A study uses a voting classifier combining 
logistic regression and stochastic gradient descent to dis-
tinguish between cases with tumors and those without. 
Deep convolutional features from primary and secondary 
tumor attributes enhance precision. The voting classifier 
achieves an accuracy of 99.9%, outperforming cutting-
edge methods.

Ginni Arora et al. (2022) [21] this study focuses on 
evaluating the effectiveness of deep learning networks 
in categorizing skin lesion images. The research uses a 
dataset of approximately 10,154 images from ISIC 2018, 
and the results show that DenseNet201 achieves the 
highest accuracy of 0.825, improving skin lesion classi-
fication across multiple diseases. The study contributes 
to the development of an efficient automated classifica-
tion model for multiple skin lesions by presenting various 
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parameters and their accuracy. Jun Cheng et al. (2015) 
[22] this study focuses on classifying three types of brain 
tumors in T1-weighted contrast-enhanced MRI (CE-
MRI) images using Spatial Pyramid Matching (SPM). 
The method uses an augmented tumor region generated 
through image dilation as the ROI, which is then parti-
tioned into fine ring-form subregions. The efficacy of 
the approach is evaluated using three feature extraction 
methods: intensity histogram, gray level co-occurrence 
matrix (GLCM), and bag-of-words (BoW) model. The 
results show substantial improvements in accuracies 
compared to the tumor region, with ring-form partition-
ing further enhancing accuracies. These results highlight 
the feasibility and effectiveness of the proposed method 
for classifying brain tumors in T1-weighted CE-MRI 
scans. Deepak et al. (2021) [23] automated tumor charac-
terization is crucial for computer-aided diagnosis (CAD) 
systems, especially in identifying brain tumors using MRI 
scans. However, the limited availability of large-scale 
medical image databases limits the training data for deep 
neural networks. A proposed solution is combining con-
volutional neural network (CNN) features with support 
vector machine (SVM) for medical image classification. 
The fully automated system, evaluated using the Figshare 
open dataset, achieved an overall classification accuracy 
of 95.82%, surpassing state-of-the-art methods. Experi-
ments on additional brain MRI datasets validated the 
enhanced performance, with the SVM classifier showing 
superior performance in scenarios with limited training 
data. Fatih Demir et al. (2022) [24] brain tumors pose a 
global threat, and Magnetic Resonance Imaging (MRI) 
is a widely used diagnostic tool. This study presents an 
innovative deep learning approach for automated brain 
tumor detection using MRI images. Deep features are 
extracted through convolutional layers, and a new multi-
level feature selection algorithm called L1NSR is applied. 
Superior classification performance is achieved using 
the Support Vector Machine (SVM) algorithm with a 
Gaussian kernel. The methodology achieves 98.8% and 
96.6% classification accuracies, respectively. Navid Ghas-
semi et al. (2020) [25] this paper presents a deep learn-
ing method for classifying tumors in MR images. The 
method starts with pre-training a deep neural network 
using diverse datasets. The network then fine-tunes to 
distinguish between three tumor classes using six layers 
and 1.7 million weight parameters. Techniques like data 
augmentation and dropout are used to mitigate overfit-
ting. The method outperforms state-of-the-art tech-
niques in 5-fold cross-validation. Shahriar Hossain et al. 
(2023) [26] this study focuses on multiclass classification 
of brain tumors using deep learning architectures like 
VGG16, InceptionV3, VGG19, ResNet50, Inception-
ResNetV2, and Xception. It proposes a transfer learning-
based model, IVX16, which combines insights from top 

three models. Experimentation yields peak accuracies 
of 95.11%, 93.88%, 94.19%, 93.88%, 93.58%, 94.5%, and 
96.94% for VGG16, InceptionV3, VGG19, ResNet50, 
InceptionResNetV2, Xception, and IVX16. Explainable 
AI is used to assess model performance and reliability. 
Lokesh Kumar et al. (2021) [27] the increasing number of 
brain tumor cases necessitates the development of auto-
mated detection and diagnosis methods. Deep neural 
networks are being explored for multi-tumor brain image 
classification. However, these networks face challenges 
like vanishing gradient problems and overfitting. A deep 
network model using ResNet-50 and global average pool-
ing is proposed, which outperforms existing models in 
classification accuracy, with mean accuracies of 97.08% 
and 97.48%, respectively. Nirmalapriya et al. (2023) [28] 
brain tumors pose a significant health risk, and manual 
classification is complicated by MRI data. An innovative 
optimization-driven model is proposed for classifying 
brain tumors using a hybrid segmentation approach. This 
model merges U-Net and Channel-wise Feature Pyra-
mid Network for Medicine (CFPNet-M) models, using 
Tanimoto similarity. The model accurately segments and 
classifies both benign and malignant tumor samples. The 
SqueezeNet model is trained into four grades, and the 
model weights are optimized using Fractional Aquila Spi-
der Monkey Optimization (FASMO). The model achieves 
92.2% testing accuracy, 94.3% sensitivity, 90.8% specific-
ity, and 0.089 prediction error.

The proposed ResNet101 coupled with CWAM (Chan-
nel-wise Attention Mechanism) aims to address the 
demerits and research gaps identified in previous stud-
ies regarding brain tumor classification using MRI data. 
These include challenges such as limited classification 
accuracy, overfitting, and the need for more effective 
feature extraction methods. ResNet101, known for its 
strong performance in image classification tasks, serves 
as the backbone network to extract high-level features 
from MRI images with greater accuracy, thus improv-
ing classification performance. Additionally, the CWAM 
technique helps mitigate overfitting by selectively attend-
ing to informative channels in the feature maps, reducing 
noise and enhancing the model’s ability to generalize to 
new data. By focusing on relevant channels in the feature 
maps, CWAM enhances the feature extraction process, 
enabling the model to capture more meaningful informa-
tion from MRI images and leading to improved classifi-
cation accuracy. Table 1 illustrates the addressed various 
limitation of the state-of-the-art methods.

Materials and methods
Deep learning models play a vital role in classifying brain 
scans, detecting intricate patterns for accurate diagnosis. 
Integrating the ResNet101-CWAM fusion technique fur-
ther enhances diagnostic precision by capturing nuanced 



Page 5 of 17A.G et al. BMC Medical Imaging          (2024) 24:147 

brain image features. This methodology enriches the 
model’s understanding of brain conditions, ensur-
ing accurate detection and classification. The process 
involves meticulous data gathering, preprocessing, model 
selection, and rigorous training and testing to ensure 
optimal functionality in real-world scenarios.

Material and pre-processing
This study uses a dataset of 7,023 brain MR images cat-
egorized into four classes: glioma, meningioma, no 
tumor, and pituitary [29]. The dataset is pre-processed to 
ensure uniformity and compatibility, with a standardized 
dimension of 256 × 256 pixels for seamless integration 
into the model architecture. The min-max normaliza-
tion technique is employed to mitigate overfitting and 
improve computational efficiency. The dataset is then 
enhanced through the Fuzzy dynamic histogram equal-
ization (FDHE) algorithm [30], which improves contrast 
and overall quality of medical images. This algorithm 
enhances the visual fidelity of brain MR images, improv-
ing the effectiveness and reliability of subsequent analysis 
and classification tasks. The dataset preparation process 
involves a series of steps to optimize the dataset’s utility 

and maximize the model’s performance in accurately 
classifying brain conditions from MR images.

The FDHE algorithm contributes to the overall effec-
tiveness and reliability of subsequent analysis and classifi-
cation tasks. Table 2 illustrates dataset summary. Figure 1 
depicts the dataset distribution towards the training and 
testing phase. The dataset, as detailed in the table, exhib-
its a breakdown of the brain MR images across different 
grades, distinguishing between benign tumors, gliomas, 
meningiomas, and pituitary tumors. Within the training 
set, which constitutes 70% of the total dataset, there are 
1407 benign images, 1135 glioma images, 1153 menin-
gioma images, and 1230 pituitary images. On the other 
hand, the test set, comprising 30% of the total dataset, 
contains 603 benign images, 487 glioma images, 493 
meningioma images, and 526 pituitary images. Sum-
ming up the training and test sets, the dataset totals 2010 
benign images, 1622 glioma images, 1646 meningioma 
images, and 1756 pituitary images. This detailed break-
down provides valuable insights into the distribution of 
images across different tumor types, facilitating effective 
training and evaluation of the deep learning model on a 
diverse range of data samples.

Proposed method
Deep learning models are crucial for classifying brain 
scans into various tumor types. These models can 
detect intricate patterns in raw image data, enabling 
high accuracy and efficiency in diagnosis and treat-
ment planning. To further refine diagnostic precision, 

Table 1  Limitation of state-of-the-art-methods
Author Year Dataset Method Limitation
 [16] 2019 BRATS CNN The text underscores the CNN model’s success in brain tumor classification from MRI data but 

overlooks potential limitations or challenges, indicating the importance of comprehensive 
research.

 [17] 2024 FigShare, 
Kaggle

ResNet101, 
DenseNet121, and 
EfficientNetB0

The proposed method’s limitations include its reliance on pre-trained models, which may 
not capture all unique features of brain tumor images, potentially limiting its adaptability and 
flexibility.

 [18] 2022 Kaggle CNN The proposed deep-learning framework, while achieving high accuracy on the same ma-
chine, may not be robust enough to handle MRI images from different machines or protocols.

 [19] 2022 BreakHis ShuffleNet, 
Inception-V3Net

The proposed method’s limitations include its reliance on the BreakHis dataset, which may 
introduce bias and limit its generalizability beyond the BreakHis dataset.

 [20] 2023 Kaggle DCNN The summary critiques the proposed approach for brain tumor classification due to its lack of 
specificity, suggesting its clinical applicability may be limited.

 [21] 2020 HER, PACS CAD, DCNN Computer-aided diagnosis (CAD) systems, while promising for early-stage breast cancer 
detection, may increase recall rate and reading time without proper validation, requiring 
rigorous training and understanding.

 [22] 2015 CE-MRI GLCM, BoW The study’s limitations include its limited exploration of augmentation techniques and parti-
tion schemes, and its exclusive focus on T1-weighted CE-MRI brain tumors, highlighting the 
need for further investigation.

 [23] 2021 FigShare CNN The study’s limitations include limited medical image databases, limiting the generalizability 
of the CNN-SVM classification approach, and necessitating further research on larger datasets.

 [24] 2022 FigShare RCNN The study highlights the importance of understanding false positives and negatives in clas-
sification results, despite high accuracies, to assess the model’s practical utility and suitability 
for clinical applications.

Table 2  Dataset image split-up description
Grade Train (70%) Test (30%) Total
Benign 1407 603 2010
Glioma 1135 487 1622
Meningioma 1153 493 1646
Pituitary 1230 526 1756
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the ResNet101-CWAM fusion technique is integrated, 
focusing on capturing the nuances of brain images and 
their contextual relationships. This fusion methodol-
ogy enriches the model’s understanding of various brain 
conditions, enhancing its ability to accurately detect 
and classify them. The process involves meticulous data 
gathering, preprocessing, model selection, and rigorous 
training and testing. Data is assembled to ensure repre-
sentative samples, and preprocessing refines and stan-
dardizes the collected data for training. Model selection 
involves careful consideration of various architectures 
and techniques, and the model undergoes rigorous test-
ing to ensure optimal functionality and reliability in real-
world scenarios. Good contrast is essential for clear and 
impactful visual content, making it easier to understand 
messages. Techniques like FDHE help improve contrast 
by adjusting overly bright or dark images, making details 
stand out more. The study focused on fixing brightness 
issues and making visual details clearer, making the 
viewing experience better. The transformation of data-
set classes before and after FDHE was demonstrated in 
Fig. 2, demonstrating the efficacy of the technique in revi-
talizing visual content. To ensure optimal performance, 
preprocessing steps were taken, including resizing, nor-
malization, and histogram equalization. The model was 
trained using a curated training set and underwent itera-
tive refinement. After training, the model was tested 
using dedicated testing sets to evaluate its efficacy in 
accurately interpreting and analyzing the visual data. This 
systematic approach showcases the transformative power 
of contrast enhancement techniques and underscores 
their pivotal role in unlocking the true potential of visual 
content, enabling it to be scrutinized and interpreted 
with precision and clarity.

The procedure involves breaking down a low-contrast 
image into sub-histograms based on its median value, 
using a histogram-based methodology. This involves 
meticulous examination of every pixel within the image 
and delineating clusters based on prominent peaks. This 
process persists until no additional clusters appear, indi-
cating completion. Histogram-based equalization has an 
inherent advantage as it requires only a singular pass for 
each individual pixel. Dynamic Histogram Equalization 
(DHE) starts by smoothing each histogram, then identi-
fies local maxima points by comparing histogram values 
with neighboring pixels. The algorithm calculates the 
histogram’s length, ensuring a balanced enhancement 
distance. The novelty of the approach lies in the integra-
tion of the Channel-wise Attention Mechanism (CWAM) 
with the ResNet101 architecture for the classification of 
MRI brain images, which represents a significant innova-
tion in the field of medical image analysis. This combi-
nation enhances the model’s ability to focus on pertinent 
features within the images, thereby improving classifica-
tion accuracy for various brain tumor types, including 
glioma, meningioma, no tumor, and pituitary classes. 
Furthermore, the study’s meticulous data preprocess-
ing techniques ensure high-quality input for training the 
deep learning model, contributing to its impressive per-
formance. By proposing this advanced method and advo-
cating for its integration into clinical decision-making 
software, the research not only demonstrates immediate 
practical applicability but also sets the stage for future 
advancements through the identification of computa-
tional complexities and suggestions for further research.

Fig. 1  Distribution of dataset for training and testing
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Smoothing
Noise infiltrates high-frequency elements of an image, 
introducing jagged artifacts that can disrupt the view-
ing experience and obscure important details. To coun-
teract these effects, a smoothing technique is employed 
by adjusting the intensity levels of individual pixels, pre-
serving crucial details while reducing the prominence of 
noise-induced artifacts. The Gaussian function is central 
to this process, which dynamically alters the intensity of 
pixels to achieve a more uniform and visually appealing 
result [31]. Each pixel undergoes a transformation tar-
geting the removal of blur, a common consequence of 
noise interference. This transformation adheres to the 
principles of the normal distribution, ensuring adjust-
ments are statistically coherent and consistent with nat-
ural visual perception. Applying this transformation to 
every pixel enhances the overall clarity and fidelity of the 
image, resulting in a more visually pleasing and informa-
tive representation.

	
X (a, b) =

1
2πσ2e

−a2+b2

2σ2 � (1)

Here, ‘a’ represents the distance between the origins of 
the horizontal axes, ‘b’ denotes the distance between the 
origins of the vertical axes, and ‘σ’ signifies the standard 
deviation. Consequently, the smoothed image gains flex-
ibility for Contrast Enhancement (CE). This function 

effectively eliminates redundant, minimal, and maximal 
noisy peaks, thereby enhancing the image’s quality. Fol-
lowing this smoothing process, the maximum points on 
the Receiver Operating Characteristic (ROC) curve are 
identified, facilitating the separation of the darkest and 
brightest points within the region.

Finding local maxima
Local maxima in a histogram are points where the inten-
sity value peaks above its neighboring values, indicating 
significant features in the image. They serve as reference 
points for identifying the darkest and brightest areas [32]. 
To locate these local maxima and minima, the histogram 
of the smoothed image is analyzed, tracing the highest 
and lowest intensity values. Intensity 0 represents the 
lowest, and 255 the highest. Partitioning the image based 
on these extreme values divides it into segments. This 
segmentation relies on histograms to define boundaries 
between regions, using a histogram-based method for 
accuracy. In this context, the median is determined from 
the image histogram. The median is computed by,

	
Kmeidan = Im +

[
N
2 Em−1

em

]
B � (2)

Fig. 2  Representation of images (a) prior FDHE, (b) post FDHE
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where, Im  is the lowest value of median, N is the num-
ber of observations, Em−1  is a Cumulative frequency, em  
is the frequency of each image and B is a median value. 
The image is divided into segments using this median 
value. The intervals between successive local maxima are 
termed as intervals. Partitioning is necessary to group 
related pixel values together, facilitating ease of analysis.

Proposed resNet101-CWAM approach
In this study, we utilized ResNet101 as our primary 
model architecture, leveraging pre-trained weights from 
the ImageNet dataset. This allowed for the extraction of 
intricate features from our meticulously pre-processed 
images, establishing a strong foundation for subse-
quent analysis. To maintain model stability, we froze 
the weights of convolutional and max-pooling layers 
during training, ensuring the preservation of valuable 
knowledge [33]. ResNet was chosen for its exceptional 
performance across various computer vision tasks and 
its ability to address the vanishing gradient problem. By 
harnessing ResNet’s strengths and pre-trained weights 
from ImageNet, we aimed to equip our model with the 
capabilities necessary for effective task handling, ulti-
mately striving for optimal performance and insight-
ful outcomes. Features from ResNet101 were extracted 
and input into CWAM, a framework integrating spatial 
and channel-wise attention mechanisms [34]. Channel 

attention evaluates individual channel importance by 
adjusting weights, enhancing the model’s focus on signifi-
cant features. Spatial attention directs focus to specific 
spatial locations, enabling detailed analysis. Despite their 
distinct roles, these mechanisms synergize, maximizing 
the model’s ability to extract relevant information from 
data. CWAM’s collaborative approach ensures nuanced 
pattern recognition, leading to accurate insights. Figure 3 
depicts the detailed architecture of the brain tumor clas-
sification model.

The feature extraction process uses ResNet101 archi-
tecture’s layers to generate a feature map with dimensions 
C representing the number of channels and H and W 
representing the spatial dimensions. This map provides 
a comprehensive understanding of the spatial structure 
and content encoded within the extracted features, high-
lighting the richness of information captured within each 
channel. The Channel-wise Attention Module (CWAM) 
integrates spatial and channel-wise attention mecha-
nisms to enhance feature refinement. The input feature 
map undergoes transformations such as max pooling and 
average pooling layers to condense spatial dimensional-
ity. The global average pooling layer computes the mean 
value for each channel across spatial dimensions, while 
the global max pooling layer identifies maximum values 
per channel. The Channel Attention Map (CAM) is com-
puted through dense layers to reveal the significance of 

Fig. 3  Proposed model detailed architecture
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each channel, facilitating channel-specific refinement. 
The CAM is then multiplied element-wise with the 
original feature map F, resulting in a refined feature map 
denoted as R. Each element in R is weighted according 
to its channel’s importance, enhancing the discriminative 
power of the features for subsequent stages of analysis. 
Table  3 demonstrates the building block for proposed 
ResNet101 model.

The model employs a meticulously crafted feature 
map to delve into the essence of crucial features resid-
ing within each channel. At the heart of this pursuit 
lies the spatial attention module, which orchestrates 
the compression of the channel-refined feature map 
through operations such as maximum and average 
pooling. This transformation results in two distinct 2D 

representations, each providing insights into the spatial 
intricacies ingrained within the data. Within this frame-
work, the attention map serves as a conduit between spa-
tial and channel-wise dimensions. Integrated seamlessly 
with the channel-refined feature map R, this amalgama-
tion provides a nuanced understanding of both spatial 
context and channel-specific significance, enriching the 
model’s comprehension of the data landscape. As the 
journey progresses, the CWAM module emerges as a 
cohesive force, merging spatial and channel-wise atten-
tion to refine features comprehensively. This amalgam-
ated output encapsulates the core of feature refinement, 
ready to reveal hidden truths within the data. Through 
global average pooling, the model engages in a collective 
contemplation of the statistical attributes of the feature 
space, delving deeper into the essence of the data. Finally, 
as the fully connected layer activates with SoftMax, the 
model’s insights are refined and ready for action, enabling 
it to navigate the intricate data terrain with confidence, 
extracting valuable insights and informing strategic 
decisions.

Performance metric parameters
The evaluation of the performance of the suggested 
model has been completely comprehensive, taking into 
account a wide range of important characteristics to 
determine how successful it is. A few examples of these 
parameters are as follows: accuracy (Acc), which is a 
measurement of the proportion of instances that have 
been correctly classified out of the total number of 
instances; precision (Pr), which evaluates the accuracy of 
positive predictions; F1-score, which is a harmonic mean 
of precision and recall that provides a balanced assess-
ment of the model’s performance; and recall, which eval-
uates the proportion of true positive instances that were 
correctly identified by the model. By taking into account 
these many characteristics, we are able to get a full pic-
ture of the capabilities and limits of the model in relation 
to various elements of classification accuracy and predic-
tion performance.

	
Acc =

T.positive + T.negative

T.positive + T.negative + F.positive + F.negative
� (3)

Table 3  Building blocks of proposed reseNet101 architecture
Layer Output 101-layers
conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56 3 × 3 max pool, stride 2



1 × 1, 64
3 × 3, 64
1 × 1, 256



 × 3

conv3_x 28 × 28



1 × 1, 128
3 × 3, 256
1 × 1, 512



 × 4

conv4_x 14 × 14



1 × 1, 256
3 × 3, 256
1 × 1, 1024



 × 23

conv5_x 7 × 7



1 × 1, 512
3 × 3, 512
1 × 1, 2048



 × 3

1 × 1 3 × 3 average pool, 1000-d fully connected

Table 4  Hyperparameters in the ResNet101-CWAM model
Parameters Model-I Model-II
Rate of learning 0.001 0.001
Size of batches 32 16
Optimizing method Adam SGD
No. of epochs 25 25

Table 5  Performance metric evaluation of the proposed ResNet101-CWAM
Dataset split Training test Five-fold cross validation test

Model-I Model-II

Performance metric Model-I (%) Model-II (%) Avg (%) Mean (%) Std_deviation (%) Mean (%) Std_deviation (%)
F1-score 99.27 97.08 98.175 98.82 0.02 97.88 0.013
Re-call 99.21 97.11 98.16 98.83 0.024 97.12 0.022
Accuracy 99.83 98.77 99.30 99.41 0.008 98.98 0.013
Precision 99.06 98.05 98.555 99.02 0.015 98.06 0.016
AUC 99.33 98.13 98.73 99.12 0.014 97.95 0.014
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Pr =

T.positive

T.positive + F.positive
� (4)

	
Recall =

T.positive

T.positive + F.negative
� (5)

	
F1score =

2 ∗ pr ∗ recall

pr + recall
� (6)

Experimental results and discussion
To ensure robustness and reliability in the performance 
assessment of the ResNet101-CWAM model, a rigor-
ous approach was used throughout the training and 
evaluation phases of the performed research. The key 
component of this strategy was the use of a five-fold 
cross-validation methodology, which is a well-known 
machine learning technique for reducing bias and vari-
ance problems related to model training and assessment. 
The dataset was first divided into two parts: 30% of the 
data was put aside for validation and 70% of the data was 
used for training. This partitioning strategy was devel-
oped to provide for a thorough evaluation of the model’s 
generalizability by keeping a distinct set for independent 
validation and supplying the model with enough data for 
learning. As a crucial litmus test for assessing the model’s 
efficacy outside of the training data, the testing dataset 
was also kept outside from the training and validation 
sets. Because of this division, the model’s performance 
was examined on hypothetical data, yielding insightful 
information about how applicable it would be in prac-
tice. In order to do a rigorous analysis of the model’s 
durability and adaptability, the dataset was carefully split 
into five sets, which each functioned as a separate fold 
during the cross-validation technique. These sets were 
then subjected to iterative cycles of training and valida-
tion, enabling a thorough investigation of the model’s 
behaviour over a range of data configurations. A range 
of performance parameters, including as accuracy, pre-
cision, recall, and the area under the receiver operating 
characteristic (ROC) curve (AUC), were used to evalu-
ate the model’s performance. These measures offered 
complex insights into many facets of the model’s predic-
tive power, facilitating a more nuanced comprehension 
of its advantages and disadvantages. The study ensured 
a fair and accurate evaluation of the ResNet101-CWAM 
model’s performance through a comprehensive evalu-
ation method. This approach provided valuable insights 
into the model’s strengths and weaknesses, contributing 
to both scientific rigor and our knowledge of computa-
tional biology and machine learning.

In the function of an extensive library, Table 4 explains 
the intricate hyperparameters that are carefully defined 
within the network architectural design. In the process 

of looking for optimisation, several different types of 
optimizers were carefully examined. As the table illus-
trates, Adam and Stochastic Gradient Descent (SGD) 
emerged as significant rivals among these optimizers. 
Model-I superior adaptive learning rate mechanism 
had a role in the decision to choose Adam as the opti-
mizer. This dynamic characteristic enables the model to 
adapt to nonstationary gradients and navigate complex 
loss landscapes with success. Adam’s flexibility allows 
him to quickly converge and become more broadly ori-
ented, making him particularly good at overcoming the 
many challenges that come with complex tasks. However, 
there were additional practical considerations that led to 
the decision to use SGD as the optimizer for Model-II. 
The design of Model-II benefited from SGD’s inherent 
simplicity and demonstrated performance across a vari-
ety of domains, since it satisfied the exact requirements 
and architectural constraints. Moreover, SGD’s resource-
efficient feature aligns well with the computational 
constraints encountered in real-world deployment sce-
narios, making it a logical choice for maximising model 
performance.

In conclusion, a sophisticated approach to hyperpa-
rameter tuning is highlighted by the deliberate selection 
of optimizers that are appropriate for the unique qualities 
and demands of each model. The goal of this approach is 
to maximise effectiveness and performance in a variety of 
settings and applications. The table provides a compre-
hensive overview of the key hyperparameters configured 
for Model I and Model II. In Model I, the learning rate 
was set at 0.001, enabling the model to adjust its weights 
gradually during training to minimize the loss function. 
The batch size for Model I was determined to be 32, 
indicating that 32 samples were processed simultane-
ously before updating the model’s parameters. Adam was 
selected as the optimizing method for Model I, leveraging 
its adaptive learning rate feature to navigate complex loss 
landscapes effectively. The number of epochs for Model I 
was established at 25, signifying the number of times the 
entire dataset was passed forward and backward through 
the neural network during training. Conversely, Model II 
maintained a similar learning rate of 0.001 but opted for 
a smaller batch size of 16, potentially enhancing the mod-
el’s sensitivity to subtle patterns within the data. SGD was 
chosen as the optimizing method for Model II due to its 
simplicity, resource efficiency, and proven effectiveness 
in numerous applications. Like Model I, Model II was 
trained for 25 epochs, ensuring thorough exploration of 
the dataset while mitigating the risk of overfitting.

The provided Table  5 demonstrates a detailed break-
down of performance metrics for Model I and Model 
II across various dataset splits, encompassing both the 
training set and the results of five-fold cross-validation 
tests. For Model I, notable achievements include an 
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impressive F1-score of 99.27%, recall of 99.21%, accuracy 
of 99.83%, precision of 99.06%, and AUC of 99.33% on 
the training dataset. During cross-validation, the model 
sustained high performance, with an average F1-score of 
98.82%, recall of 98.83%, accuracy of 99.41%, precision 
of 99.02%, and AUC of 99.12%, exhibiting minimal stan-
dard deviation across these metrics. Conversely, Model 
II demonstrated slightly lower performance metrics on 
the training dataset, with an F1-score of 97.08%, recall 
of 97.11%, accuracy of 98.77%, precision of 98.05%, and 
AUC of 98.13%. Throughout cross-validation, Model 
II maintained consistency with an average F1-score of 
97.88%, recall of 97.12%, accuracy of 98.98%, precision 
of 98.06%, and AUC of 97.95%, indicating a marginally 
higher standard deviation across these metrics compared 
to Model I. Figure  4 depicts the performance metric 
comparison of two models.

The patterns that can be seen in the models’ accuracy 
and loss graphs correspond to the well-established char-
acteristics of the Adam (I) and SGD (II) optimisation 
techniques. Not only does Adam employ adaptive learn-
ing rates to effectively navigate complex loss landscapes, 
but it is also highly respected for its ability to fast reach 
early convergence. However, since Adam’s optimisation 
process is dynamic, fluctuations may sometimes disrupt 
this rapid convergence in the early training stages. This 

might have something to do with Adam’s dynamic opti-
mising process. SGD, on the other hand, often exhib-
its a convergence trajectory that is more gradual and is 
marked by modest advancement and a kinder descent 
towards optimal solutions. Despite these modifications, 
the models’ resilience and robustness may be deduced 
from the significant stability and consistency shown in 
performance metrics for both optimizers. Regardless of 
the optimisation method used, the models’ capacity to 
provide consistent performance is shown by the small-
est standard deviation displayed in these metrics. Conse-
quently, confidence in the models’ reliability and efficacy 
for real-world applications is reinforced. Figure  5 illus-
trates the training and testing accuracy and loss curves 
for two models.

The receiver operating characteristic (ROC) curve 
plots are shown in detail in Fig.  6, which also offers 
insights into how well the models perform over a range 
of categorization criteria. A thorough evaluation of 
the models’ discriminatory capacity is made possible 
by the way each curve illustrates the trade-off between 
the true positive rate (sensitivity) and the false positive 
rate (1 - specificity). Additionally, the models’ classifi-
cation performance is quantified by the accompanying 
area under the curve (AUC) score for each class, which 
provides a detailed knowledge of the models’ capacity 

Fig. 4  Evaluating the performance of ResNet101-CWAM for brain tumor classification
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to discriminate between various classes. This thorough 
visualisation makes it easier to make decisions about how 
well the models work for certain categorization tasks, 
which improves the assessment findings’ interpretability 
and usefulness. We have conducted a meticulous process 
of visualising the feature maps, shown in Fig. 7 (a) – (c), 
to assess the models’ ability to comprehend the primary 
visual attributes of the images and the contextual rela-
tionships among them. The model consists of three lev-
els: the beginning, intermediate, and final layers. These 
layers are visually represented by feature maps employed 
in the model.

After doing a thorough analysis of the feature maps 
obtained from the first three layers, it becomes evident 
that they possess the capability to accurately capture 
fundamental characteristics such as edges, textures, and 
basic shapes. Furthermore, this capability emphasises the 

crucial role that these layers have in identifying under-
lying patterns in the incoming data, thereby creating a 
foundation for further hierarchical processing within the 
neural network’s architecture. Looking at Fig.  7 (b) and 
(c), we can see that the feature maps get more abstract 
as the model goes deeper. This indicates their ability to 
capture more intricate features within brain MRIs. Fig-
ure 7 (b) is important because it shows how the CWAM 
module highlights specific parts in the feature maps. This 
shows us where important stuff is in terms of space and 
channels. We hope this helps make the important areas 
and channels clearer, which should make predictions 
more accurate. Simultaneously, less significant aspects 
of the data may not stand out as prominently. This pri-
oritization enables us to concentrate on the critical 
details essential for sorting and analyzing the data effec-
tively. Our method was meticulously compared with 

Fig. 5  The train and test accuracy of (a) model-I, (b) model-II
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top-performing techniques in the field, all utilizing the 
same dataset. This comparative analysis was conducted 
due to the exceptional performance of our approach. Our 
ResNet101-CWAM model did better than the others, as 
we found out from this comparison. The details of this 

comparison are shown in Table 6, which helps us under-
stand how well different methods work. It’s important to 
mention that we used the same training and testing meth-
ods from previous studies to test our ResNet101-CWAM 
model, as explained in Table 6. This ensures fairness and 

Fig. 7  Feature maps of (a) first layer, (b) middle layer, (c) final layer

 

Fig. 6  ROC curves for (a) model-I, (b) model-II
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makes it easier to compare the different methods, which 
makes our results more believable and trustworthy.

In Table  6, evaluating various models’ performance, 
several authors contributed their findings. Remzan et al. 
employed EfficientNetB1 and ResNet50 models, achiev-
ing an accuracy of 95.98%, with corresponding preci-
sion, recall, and F1-score metrics hovering around the 
same high level. Tahiry K et al. introduced a Hybrid 
CNN model, which demonstrated commendable perfor-
mance across all metrics, particularly with an accuracy of 
95.65% and consistent precision, recall, and F1-score val-
ues. Zhang Z et al. explored the VGG16 model, achiev-
ing a slightly lower accuracy of 94.55% but with a higher 

precision score of 96.5%. Dewan JH et al. presented 
results from their VGG19 model, boasting an accuracy 
of 97.02% and notably high F1-score of 97.11%. Sheng M 
et al. introduced a CNN model with impressive accuracy 
at 98.40% and precision at 97.17%. Lastly, the proposed 
model, ResNet101 + CWAM, exhibited exceptional per-
formance, achieving the highest accuracy of 99.83% and 
F1-score of 99.27%, indicating its robustness in classifi-
cation tasks. Figure  8 represents the performance met-
ric parameter outcome of proposed and state-of-the-art 
methods.

Ablation study
Furthermore, researchers carried out a study on the 
model, using specific settings for how it works and divid-
ing the data into parts, with 70% used for training the 
model and 30% for testing it. They put together all the 
findings in Table  7. In the preprocessing stage, crucial 

Table 6  Performance metric comparison of proposed and other 
state-of-the-art methods
Authors Models Performance metric 

parameters
Ac-
curacy 
(%)

Preci-
sion 
(%)

Re-
call 
(%)

F1-
score 
(%)

Remzan et al. EfficientNetB1, 
ResNet50

95.98 95.98 96.03 95.98

Tahiry K et al. Hybrid CNN 95.65 95.65 95.67 95.65
Zhang Z et al. VGG16 94.55 96.5 96.01 96.02
Dewan JH et al. VGG19 97.02 96.10 97.01 97.11
Sheng M et al. CNN 98.40 97.17 96.75 96.75
Proposed 
model

ResNet101 + CWAM 99.83 99.06 99.21 99.27

Table 7  Proposed model for brain tumor classification ablation 
study
Models Accuracy 

(%)
Precision 
(%)

F1-score 
(%)

Re-
call 
(%)

ResNet101 98.91 98.12 97.98 98.02
ResNet101 + CA 99.29 98.88 98.64 98.54
ResNet101 + SA 98.96 97.91 97.85 97.71
Proposed model 99.83 99.06 99.27 99.21

Fig. 8  Performance metric outcome comparison of proposed and other existing models
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steps optimized the model’s performance. Initially, resiz-
ing images to 256 × 256 pixels ensured uniformity and 
compatibility, easing input. Min-max normalization 
prevented overfitting by scaling pixel values. Dynamic 
histogram equalization (DHE) further enhanced medi-
cal image quality, preserving diagnostic details. These 
techniques collectively bolstered the model’s perfor-
mance, enabling better generalization and more reliable 
diagnostic outcomes. When they took out each piece of 
the model, it made the predictions for brain tumors less 
accurate. However, when they used all the parts together, 
their recommended method worked better than any 
other. This highlights how essential it is to include all 
the parts when trying to predict brain tumors accurately. 
Based on our research, Model-I performed better than 
Model-II both during data analysis and cross-valida-
tion. This suggests that Model-I was able to learn more 
effectively. One possible reason for this is that we used a 
technique called the Adam optimizer with Model-I. The 
Adam optimizer adjusts the learning speed for different 
parts of the model, which is useful for complex tasks. In 
contrast, Model-II used a different technique called SGD, 
which makes everything learn at the same speed. When 
dealing with brain tumors, there are many factors to con-
sider, and some might require more careful attention.

The Adam optimizer helps by adapting the learning 
speed for different aspects of the brain tumor problem 
while training the model. To improve performance, it 

might be worth exploring methods such as teaching the 
model fewer things at once or using a different approach 
to training. The investigation on ablation provided valu-
able insights into the model’s functionality. It highlighted 
the effectiveness of the model’s attention processes in 
highlighting important features while minimizing irrel-
evant noise, which greatly contributes to its high perfor-
mance. What’s particularly intriguing is the comparison 
between two types of attention mechanisms - Channel 
attention (CA) and Spatial attention (SA). The results 
showed that ResNet101 with Channel attention outper-
formed ResNet101 with Spatial attention. This suggests 
that, when dealing with brain tumor classification, focus-
ing on specific features within the data may be more 
beneficial than considering spatial arrangements. This 
underscores the importance of carefully selecting and 
fine-tuning attention mechanisms based on the unique 
characteristics of the problem at hand. It’s important 
to mention that although ResNet101 didn’t achieve the 
highest performance in our experiments, it still outper-
formed some of the methods discussed in Table  6. This 
study focused on using the ResNet101-CWAM model to 
classify brain tumors in MR images, particularly aiming 
at multiclass classification. The results of our experiments 
show that our approach performs better than the current 
best ConvNet models in terms of accuracy. Additionally, 
MRI images have unique features and are captured using 
various techniques, which can make it challenging for 

Fig. 9  Performance metrics of models in ablation study
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pretrained models, commonly used in previous studies, 
to accurately capture the relevant medical properties of 
brain MRI images. By incorporating an attention mecha-
nism into the CWAM module, we effectively addressed 
this challenge by highlighting important aspects of the 
images, as illustrated in Fig. 7(a)-(c), leading to improved 
model performance. Table 7 illustrates the ablation study 
of proposed brain tumor classification models.

The Table  7 presents the performance metrics of dif-
ferent models in classifying brain tumors, including 
accuracy, precision, F1-score, and recall. The results 
indicate that the proposed model achieved the highest 
accuracy at 99.83%, with impressive precision, F1-score, 
and recall rates of 99.06%, 99.27%, and 99.21% respec-
tively. This suggests that the proposed model excels in 
accurately identifying brain tumors with minimal false 
positives and negatives. Following closely behind is the 
ResNet101 + CA model, which demonstrates high accu-
racy and precision at 99.29% and 98.88%, respectively. 
However, the proposed model outperforms it in terms of 
F1-score and recall, indicating a better balance between 
precision and recall. The ResNet101 and ResNet101 + SA 
models also perform well, with accuracy rates above 98% 
and respectable precision, F1-score, and recall values. 
These findings underscore the effectiveness of the pro-
posed model in enhancing the accuracy and reliability 
of brain tumor classification. Figure 9 depicts the perfor-
mance metric comparison of ResNet models in ablation 
study.

Our research suggests that using the ResNet101-
CWAM model in real clinical settings could enhance the 
accuracy and speed of diagnosing brain tumors. This is 
particularly crucial when quick identification is neces-
sary for planning treatments and predicting patient out-
comes. Healthcare providers can leverage the improved 
performance of the model to refine diagnostic practices 
and enhance overall patient care. However, when deploy-
ing such models in real clinical settings, concerns arise 
regarding understanding how the model makes decisions 
and protecting patient data confidentiality. Medical pro-
fessionals need insight into the model’s decision-making 
process, underscoring the importance of subsequent clin-
ical validation to ensure effectiveness, reliability, and eth-
ical integrity. To enhance the model’s applicability across 
diverse patient groups and address data privacy concerns, 
further evaluation and the utilization of federated learn-
ing methods are vital. In future research, exploring expla-
nation strategies that aren’t limited to one specific model, 
as well as considering alternative attention methods and 
data preparation techniques, could advance the develop-
ment of brain tumor classification models. Additionally, 
extending this research to include 3D MRI images using 
volumetric attention processes could offer opportunities 
for more comprehensive and detailed feature extraction.

Conclusion
In this study, we developed a deep learning-based 
method for accurately classifying brain tumors in medi-
cal images. Our approach effectively categorizes various 
types of brain MRI scans, including glioma, meningi-
oma, no tumor, and pituitary classes. The experimen-
tal results demonstrate the outstanding effectiveness of 
the Channel-wise Attention mechanism framework in 
tumor classification, achieving an impressive accuracy 
of 99.83%, surpassing baseline methods. This highlights 
its effectiveness in precisely identifying and categorizing 
brain tumors. The high accuracy of our proposed tech-
nique can be attributed to the careful preprocessing of 
data, utilization of deep learning, and incorporation of 
an attention mechanism. Given the remarkable perfor-
mance observed in this study, we recommend integrating 
our method into the software platforms used by medical 
professionals to enhance clinical decision-making and 
ultimately improve patient care. However, one limitation 
of our current model is its computational complexity. 
The incorporation of CWAM attention modules into the 
ResNet101 architecture introduces additional parameters 
and increases the model size, requiring more memory 
for model development. Furthermore, CWAM modules 
involve operations such as global pooling, convolution, 
and element-wise multiplication, which lead to higher 
computing demands. Therefore, it would be interest-
ing for future studies to develop a more compact deep 
learning model integrated with attention mechanisms 
for brain tumor classification. In our future research, we 
aim to broaden the scope of our study by incorporating 
additional brain tumor datasets and investigating alterna-
tive deep learning approaches to enhance the accuracy 
of brain tumor detection further. Specifically, we plan to 
explore the model’s generalizability across diverse patient 
populations and investigate the integration of multimodal 
imaging data to improve diagnostic capabilities. These 
specific recommendations for future research directions 
will contribute to advancing our understanding of brain 
tumor detection and potentially improving patient care 
outcomes. Overall, in a medical setting, the ResNet101-
CWAM model demonstrates the ability to effectively 
identify important features in brain MRI scans, enabling 
faster and more accurate diagnoses, improved treat-
ment planning, and increased chances of patient survival. 
Moreover, reducing the likelihood of incorrect positive 
and negative results could alleviate patient distress.
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