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Abstract
Background Preoperative discrimination between non-muscle-invasive bladder cancer (NMIBC) and the muscle 
invasive bladder cancer (MIBC) is a determinant of management. The purpose of this research is to employ radiomics 
to evaluate the diagnostic value in determining muscle invasiveness of compressed sensing (CS) accelerated 3D 
T2-weighted-SPACE sequence with high resolution and short acquisition time.

Methods This prospective study involved 108 participants who underwent preoperative 3D-CS-T2-weighted-
SPACE, 3D-T2-weighted-SPACE and T2-weighted sequences. The cohort was divided into training and validation 
cohorts in a 7:3 ratio. In the training cohort, a Rad-score was constructed based on radiomic features selected by 
intraclass correlation coefficients, pearson correlation coefficient and least absolute shrinkage and selection operator 
. Multivariate logistic regression was used to develop a nomogram combined radiomics and clinical indices. In the 
validation cohort, the performances of the models were evaluated by ROC, calibration, and decision curves.

Results In the validation cohort, the area under ROC curve of 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and 
T2-weighted models were 0.87(95% confidence interval (CI):0.73-1.00), 0.79(95%CI:0.63–0.96) and 0.77(95%CI:0.60–
0.93), respectively. The differences in signal-to-noise ratio and contrast-to-noise ratio between 3D-CS-T2-weighted-
SPACE and 3D-T2-weighted-SPACE sequences were not statistically significant(p > 0.05). While the clinical model 
composed of three clinical indices was 0.74(95%CI:0.55–0.94) and the radiomics-clinical nomogram model was 
0.88(95%CI:0.75-1.00). The calibration curves confirmed high goodness of fit, and the decision curve also showed that 
the radiomics model and combined nomogram model yielded higher net benefits than the clinical model.

Conclusion The radiomics model based on compressed sensing 3D T2WI sequence, which was acquired within a 
shorter acquisition time, showed superior diagnostic efficacy in muscle invasion of bladder cancer. Additionally, the 
nomogram model could enhance the diagnostic performance.
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Introduction
Bladder cancer (BCa) is a disease with a high rate of inci-
dence, recurrence and mortality, and one of the most 
common malignant tumors of the urinary system in 
elderly men [1–3]. The majority of tumors are urothelial 
cell carcinomas, which can be categorized based on mus-
cle invasiveness into non-muscle invasive bladder cancer 
(NMIBC) and muscle invasive bladder cancer (MIBC). 
Additionally, they can be classified into low- and high-
grade lesions based on histology [4, 5]. The muscle inva-
siveness is the major consideration for treatment decision 
of BCa. NMIBC generally is treated with transurethral 
resection (TURBT), and has a supplement of chemother-
apy. While MIBC need intensive treatment like the radi-
cal cystectomy (RC) due to the aggressive tumor [6–9]. 
Recent studied have proved that adjuvant chemotherapy 
had great performance in increasing overall survival of 
MIBC [10, 11].

MRI plays an important role in the preoperative diag-
nosis of BCa. The T2-weighted sequence is an essen-
tial component of multiparametric MRI protocols for 
evaluation muscle invasiveness in BCa [12]. Compared 
to the conventional T2-weighted sequence, the 3D-T2-
weighted-SPACE sequence has higher resolution for 
imaging anatomical structure of female pelvis, so that it 
can reflect muscle invasiveness of tumor better [13, 14]. 
And what’s more, the high-resolution image contain-
ing tiny voxels and elaborate grayscales could provide 
more comprehensive information for quantitative analy-
sis of radiomics [15]. But the scanning time of 3D-T2-
weighted-SPACE is still too long for clinical practice. 
Adequate bladder distension is necessary for clearly 
imaging the bladder wall but also causes discomfort to 
patients. However, due to bowel peristalsis, motion and 
susceptibility artifacts are often observed in bladder 
MR images. Therefore, shortening acquisition times had 
benefits in decreasing patients’ discomfort and improv-
ing image quality [16]. Through k-space undersampling, 
compressed sensing (CS) technology reduces redun-
dant scanning data and accelerate acquisition [17]. Thus, 
3D-CS-T2-weighted-SPACE sequence could maintain 
the image quality under an acceptable acquisition time.

At present, the gold standard for clinical determination 
of muscular invasiveness of BCa is cystoscopy biopsy, but 
due to the spatiotemporal heterogeneity of tumors, dif-
ferences in transurethral biopsy techniques may lead to 
misdiagnosis [10, 18]. It was reported that 20–80% of 
lesions were incorrectly staged compared with postop-
erative pathological staging because of variations in per-
forming cystoscopy biopsy [19–21]. Therefore, there is 
quite necessary to find a noninvasive diagnostic tool to 
achieve accurate discrimination between NMIBC and 
MIBC in clinical practice. Radiomics, a method involving 
the extraction of extensive quantitative image features 

from medical imaging, has become increasingly promi-
nent in cancer research in recent years [22–24]. Unlike 
traditional subjective evaluations of imaging character-
istics, radiomics offers an objective approach and can 
capture high-dimensional imaging features that may 
correlate with intratumor heterogeneity [25, 26]. Previ-
ous studies have utilized CT/MRI-based radiomics sig-
natures to predict various biological behaviors in BCa, 
such as muscle-invasive status, lymph node metastasis, 
tumor stage, prognosis, and treatment response [26–29]. 
The high-resolution thin-section 3D-SPACE sequence 
possesses the capability to capture a wealth of tumor 
information, facilitating a comprehensive and objective 
portrayal of tumor heterogeneity.

Therefore, the purpose of our study is to explore 
whether the model extracted from 3D-CS-T2-weighted-
SPACE sequence still has good diagnostic value for 
detecting muscle invasion of bladder cancer while reduc-
ing time.

Methods
This prospective research was approved by our institu-
tional review board, and informed consent was obtained 
from all subjects.

Patients
A total of 108 patients (including 89 males and 19 
females, aged 20–86 years [65 ± 11]) with pathological 
confirmed BCa were prospectively analyzed between 
June 10, 2022, and March 20, 2023, at the First Hospital 
of Shanxi Medical University. Their clinical and imaging 
data were collected.

The inclusion criteria included the following: (1) 
Patients with suspicious bladder lesions were identified 
using multimodal magnetic resonance imaging before 
surgery; (2) Transurethral resection or radical resection 
of bladder cancer was performed within 1 month, con-
firming the diagnosis of bladder cancer.

The exclusion criteria included the following: (1) 
Patients had received chemotherapy or radiotherapy 
prior to surgery; (2) Lesions with poor image quality and 
serious motion artifacts; (3) Missing or incomplete clini-
copathological data. (4) Lesions on MRI < 5 mm (Fig. 1).

MR Image acquisition
All patients were scanned by a 3.0T MR scanner (MAG-
NETOM Vida: Siemens, Erlangen, Germany). The scan-
ning range covered the pelvis (bladder), and the scanning 
sequence included conventional axial T2-weighted 
FSE sequences, 3D-T2-weighted-SPACE and 3D-CS-
T2-weighted-SPACE (with acceleration factor 6.0). 
T2-weighted image scanning parameters were: repetition 
time (TR) = 4170 msec; echo time (TE) = 106 msec; slice 
thickness = 6 mm; matrix 384 × 384, FOV = 370 × 370 mm, 
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Conventional axial, sagittal and coronal T2 TSE [6-mm 
section thickness] required acquisition times of 1  min 
53 s, 1 min 42 s and 1 min 48 s, respectively (total 5 min 
23  s). 3D-T2-weighted-SPACE image scanning param-
eters were: TR = 1700 msec; TE = 100 msec, slice thick-
ness = 1 mm; matrix was 448 × 448, FOV = 224 × 224 mm, 
Acquisition time 4  min 08  s. 3D-CS-T2-weighted-
SPACE scanning parameters were: TR = 1600 msec; 
TE = 95 msec; slice thickness = 0.9 mm; matrix 512 × 512, 
FOV = 230 × 230  mm, Acquisition time 3  min 58  s. Fig-
ures  2 and 3 shows the imaging performance of two 
patients with bladder cancer on MRI.

Region of interest (ROI) delineation
Figure  4 shows the radiomics workflow. One radiolo-
gist (Y.L. with over 7 years of experience in bladder MRI 
reading), who was blinded to the pathological results, 
segmented the region of interest (ROI). For each BCa 
patient, the boundaries of the tumor were drawn on 

T2-weighted axial image slices using ITK-SNAP soft-
ware (version 3.8.0; http://itk-snap.org) to obtain the vol-
ume of interest (VOI) of the bladder tumor. The areas of 
tumor stalk, blood vessels, and necrosis were excluded. 
Multiple lesions, based on VI-RADS, the highest scor-
ing lesion was selected as the index-lesion. After 30 days, 
the VOIs of bladder tumors from 30 randomly selected 
patients were repeatedly drawn by the same radiologist 
and another radiologist (Y.F.W with 6 years of experience 
in body MR) to calculate the intraclass correlation coef-
ficients (ICC). For feature extraction, ICC values greater 
than 0.75 were considered to indicate good consistency.

Radiomics feature extraction
We categorized the imaging features into four classes, 
namely shape and size-based features, image inten-
sity features (first-order features), textural features, 
and advanced features. A total of 5343 radiomics 
features were extracted from axial T2-weighted, 

Fig. 1 The patient deletion flow chart
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3D-T2-weighted-SPACE, and 3D-CS-T2-weighted-
SPACE sequences, with 1781 features per sequence. 
Before feature screening, each feature was normalized 
using a Z-score. The open-source software FAE (http://
github.com/salan668/FAE, accessed on 20 September 
2020), based on the Pyradiomics package (https://github.
com/Radiomics/Pyradiomics, accessed on 20 September 
2020), was used for extracting radiomic features.

Radiomics feature selection and radiomics model 
construction
First, features with ICC ≥ 0.75 were utilized for subse-
quent feature selection. Pearson correlation coefficients 
(PCC) were then employed for dimensionality reduction, 
with a threshold set at 0.90. If the coefficient exceeded 
0.90, one of the features was randomly eliminated. The 
synthetic minority oversampling technique (SMOTE) 

method addressed the imbalance between positive 
and negative samples. Subsequently, the least absolute 
shrinkage and selection operator (LASSO) algorithm was 
employed for feature selection using 5-fold cross-valida-
tion. The process is depicted in Supporting Information 
Fig. S1. Using the same method, optimal radiomics fea-
tures were identified from two other sequences. We built 
the radiomics model using logistic regression, wherein 
the radiomics score (Rad-score) was obtained by sum-
ming the selected features weighted by their coefficients 
in the best model. All differentiation classifiers were 
developed on the training cohort and validated on the 
validation cohort.

Clinical model and Nomogram Development
In the training cohort, clinical and imaging charac-
teristics were included in the univariate analysis and 

Fig. 3 (a-h) display a bladder tumor located in the right wall of the bladder, pathologically diagnosed as muscle invasion. Axial T2WI (a), T2-weighted-
SPACE (b), CS-T2-weighted-SPACE (c), DWI (d), ADC (e), arterial phase (f), intravenous phase (g) and delayed phase (h)

 

Fig. 2 (a-h) display a bladder tumor located at the right ureteral orifice, pathologically diagnosed as non-muscle invasion. Axial T2WI (a), T2-weighted-
SPACE (b), CS-T2-weighted-SPACE (c), DWI (d), ADC (e), arterial phase (f), intravenous phase (g), and delayed phase (h)
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multivariate logistic regression analysis to identify major 
clinical risk factors predictive of MIBC and to construct a 
clinical model (Table 1). Multivariate Logistic regression 
was performed on the independent clinical risk indices 
and Rad-score to construct a radiomic-clinical nomo-
gram [9].

Model validation and evaluation
The model’s performance was evaluated using the area 
under the receiver operating characteristic (ROC) curve 
(AUC), which served as the primary performance met-
ric for predicting MIBC. Accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 

value (NPV) were calculated based on the maximum 
Youden index threshold. Decision curve analysis (DCA) 
and calibration curves were employed to evaluate the 
performance of the nomogram.

Statistical analysis
Statistical analysis was performed using R version 4.1.3 
(https://www.r-project.org/) or SPSS 26.0. The mea-
surement data were tested for normality, and those that 
conformed to a normal distribution were expressed 
as (mean ± standard deviation), while those not con-
formed to a normal distribution were expressed as the 
median (upper and lower quartiles). Comparisons of 

Table 1 Results of Univariable and Multivariable Analysis of Clinic-Radiological Characteristics
Clinical and Radiological Characteristics Univariable Analysis Multivariable Analysis

OR 95%CI P OR 95%CI P
Age 1 0.96–1.04 0.97 - - -
BMI 1 0.89–1.13 0.944 - - -
Gender 0.86 0.29–2.56 0.78 - - -
Smoke 0.92 0.43–2.01 0.843 - - -
Tumor size 0.17 0.07–0.41 < 0.001 0.22 0.08–0.56 0.002
Multiple lesions 0.28 0.12–0.65 0.003 0.35 0.14–0.89 0.028
Total cholesterol 1.12 0.72–1.73 0.627 - - -
Triglyceride 1.05 0.62–1.8 0.844 - - -
High-density lipoprotein 2.65 0.58–12.21 0.21 - - -
Low-density lipoprotein 0.87 0.5–1.53 0.628 - - -
Frequent urination 1.31 0.47–3.65 0.604 - - -
Urinary urgency 1.11 0.46–2.67 0.822 - - -
Odynuria 0.79 0.31–2.04 0.631 - - -
Urinary incontinence 1 0.27–3.69 1 - - -
Hematuria 0.06 0.01–0.47 0.007 0.08 0.01–0.68 0.021
NOTE: BMI, Body Mass Index; CI, confidence interval

Fig. 4 Radiomics workflow
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measurement data were performed using the inde-
pendent samples t-test (for normally distributed and 
chi-squared) or the Mann-Whitney U test (for skewed 
distribution or chi-squared). The count data were 
expressed as examples, and the χ2 test was used for group 
comparisons. P values < 0.05 were regarded as statistically 
significant. The DeLong test was used to compare the 
AUC of different models.

Quantitative analysis of the images
The ROI location was selected on the tumor and fat of 
the 3D-T2-weighted-SPACE sequence and then repro-
duced on the 3D-CS-T2-weighted-SPACE sequence. The 
formulas for calculating the signal-to-noise ratio (SNR) 
and contrast-to-noise ratio (CNR) are as follows:

 
SNR = SItissue/SDtissue, CNR

= | (SItissu1 − SItissue2) /
√

(SDtissue12 + SDtissue22)|

Here, SI and SD represent the average signal intensity and 
signal standard deviation of the region of interest (ROI) 
in the tumor and fat region. In our calculations, we uti-
lized the tissue standard deviation instead of background 
noise as the background standard deviation, aiming to 
avoid inconsistencies in accelerated sparse regions. SNR 
and CNR for images were compared using the Wilcoxon 
signed-rank sum test.

Results
Patient population
In this study, 108 patients with BCa were randomly 
divided into two groups: the training cohort (75 cases) 
and the validation cohort (33 cases). The clinical charac-
teristics of the training and validation cohorts, including 
age, sex, smoking status, tumor size, number of tumors, 
BMI value, total cholesterol levels, triglyceride levels, 
high-density lipoprotein levels, low-density lipoprotein 
levels, T staging based on MRI images, etc., were listed in 
Table 2. There were no significant differences in clinical 
characteristics between the two cohorts, indicating that 
the allocation of patients were reasonable and had no sig-
nificant effect on the subsequent radiomics analysis.

Construction and evaluation of Radiomics Model
Firstly, we extracted 1781 features from each sequence. 
After ICC consistency analysis, we selected features with 
ICC ≥ 0.75 for the three sequences, namely T2-weighted 
1495, 3D-T2-weighted-SPACE 1571, and 3D-CS-T2-
weighted-SPACE 1608. Then, to remove redundant 
features, after PCC analysis, we left 320, 252 and 247 fea-
tures. Finally, the T2-weighted, 3D-T2-weighted-SPACE 
and 3D-CS-T2-weighted-SPACE models were con-
structed using the LASSO logistic regression algorithm, 
after feature screening, we retained 3, 3 and 5 features, 

respectively. The specific characteristics, corresponding 
coefficients, and intercept are reported in Supporting 
Information Table S1.

The accuracy, sensitivity, specificity, and AUC analysis 
results from the three sequences are shown and com-
pared in Table  3. The model based on the 3D-CS-T2-
weighted-SPACE obtained the highest AUC (0.87, 95%CI: 
0.73-1.00) among the three different sequence mod-
els. The AUC of the model based on 3D-T2-weighted-
SPACE was similar to the model based on conventional 
T2-weighted and slightly better than the T2-weighted 
model (AUC = 0.79, AUC = 0.77). The ROC curves are 
shown in Fig. 5.

Clinical nomogram with radiomics model and clinical 
Model
In the validation cohort, the data showed that the 
Radiomics-Clinical nomogram could better assess pre-
operative BCa muscle invasion compared to the clini-
cal model alone (AUC = 0.88, AUC = 0.74, P = 0.252), but 
only showed marginal improvement compared to the 
radiomics model (AUC = 0.88, AUC = 0.87, P = 0.853). 
A comparison of the ROC curves of these three models 
is shown in Fig.  5. Additionally, the Radiomics-Clinical 
nomogram exhibited good calibration and favorable clin-
ical net benefit, suggesting it has the potential to become 
a promising and noninvasive clinical tool for predicting 
muscle-invasive status (Fig. 6).

Quantitative analysis of image quality
The results showed that there were no statistically signifi-
cant differences in SNR and CNR between the 3D-CS-
T2-weighted-SPACE and 3D-CS-T2-weighted-SPACE 
sequences (P > 0.05) (Table 4).

Discussion
In this study, we developed and validated three sequence 
models: the 3D-CS-T2-weighted SPACE sequence 
model, the 3D-T2-weighted SPACE sequence model, 
and the T2-weighted sequence model, for the preop-
erative prediction of muscle infiltration in bladder can-
cer. In recent years, several radiomic models have been 
developed to assess the muscular infiltration of bladder 
cancer [12, 20, 29], but most of these models rely on 
conventional T2WI sequence, which typically feature 
thicker slices. To our knowledge, this is the first time that 
CS-SPACE and SPACE have been utilized to construct 
a radiomics model for evaluating the muscular infiltra-
tion of bladder cancer. Our research showed the 3D-CS-
T2-weighted-SPACE model exhibited higher AUC value 
and accuracy compared to the 3D-T2-weighted-SPACE 
model and conventional T2-weighted model. Moreover, 
after comparing the SNR and CNR 3D-CS-T2-weighted-
SPACE sequence achieved the similar image quality, as 
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Table 2 Baseline Demographics of the BCa Patients
Clinical and Radiological Characteristics Training cohort (n = 75) Validation cohort (n = 33) P value
Age (years) 65士11 67士11 0.335
Gender (No (%)) 0.229
 Male 64 (85.3) 25 (75.8)
 Female 11 (14.7) 8 (24.2)
Smoke (No (%)) 0.05
 Yes 38 (50.7) 10 (30.3)
 No 37 (49.3) 23 (69.7)
Size (No (%)) 0.919
 <3 cm 53 (70.7) 23 (69.7)
 ≥3 cm 22 (29.3) 10 (30.3)
Multiple (No (%)) 0.892
 Yes 24(32) 11(33.3)
 No 51(68) 22(66.7)
BMI value (kg/m2) 23.80士3.16 23.72士3.46 0.908
Total cholesterol (mmol/L) 4.32土0.94 4.24士0.86 0.673
Triglyceride (mmol/L) 1.23 (0.88–1.67) 1.24 (0.91–1.68) 0.952
High-density lipoprotein (mmol/L) 1.11 (0.92–1.28) 1.11 (0.97–1.21) 0.971
Low-density lipoprotein (mmol/L) 2.76 (2 16 − 3 32) 2.83 (2.12–3.25) 0.603
Frequent urination (No (%)) 0.314
 Yes 14 (18.7) 9 (27.3)
 No 61 (81.3) 24 (72.7)
Urinary urgency (No (%)) 0.938
 Yes 21 (28) 9 (27.3)
 No 54 (72) 24 (72.7)
Odynuria (No (%)) 0.455
 Yes 16 (21.3) 5 (15.2)
 No 59 (78.7) 28 (84.8)
Urinary incontinence (No (%)) 0.719
 Yes 7 (9.3) 2 (6.1)
 No 68 (90.7) 31 (93.9)
Hematuria (No (%)) 0.135
 Yes 60 (80) 22 (66.7)
 No 15 (20) 11 (33.3)
Pathologic stage (No (%)) 0.658
 T < 2 51 (68) 21 (63.6)
 T ≥ 2 24 (32) 12 (36.4)

Table 3 Performance of clinical and radiomics models
AUC (95% CI) accuracy (95% CI) specificity (95% CI) sensitivity (95% CI) npv (95% CI) ppv (95% CI)

Training cohort
T2-weighted 0.87 (0.77–0.95) 0.81 (0.72–0.89) 0.76 (0.73–0.86) 0.92 (0.79–0.98) 0.95 (0.90–0.99) 0.65 (0.51–0.75)
3D-T2-weighted-SPACE 0.87 (0.78–0.95) 0.80 (0.71–0.87) 0.78 (0.65–0.87) 0.83 (0.70–0.93) 0.91 (0.79–0.97) 0.65 (0.51–0.76)
3D-CS-T2-weighted-SPACE 0.89 (0.79–0.96) 0.84 (0.75–0.92) 0.90 (0.76–0.97) 0.71 (0.57–0.82) 0.87 (0.73–0.95) 0.77 (0.67–0.90)
Clinical model 0.80 (0.72–0.89) 0.77 (0.58–0.85) 0.73 (0.58–0.84) 0.82 (0.69–0.91) 0.80 (0.66–0.91) 0.75 (0.62–0.86)
R-C nomogram model 0.95 (0.91–0.99) 0.90 (0.83–0.95) 0.92 (0.81–0.98) 0.88 (0.77–0.96) 0.89 (0.77–0.96) 0.92 (0.80–0.98)
Validation cohort
T2-weighted 0.77 (0.60–0.93) 0.76 (0.58–0.89) 0.74 (0.52–0.90) 0.80 (0.64–0.90) 0.89 (0.64–0.97) 0.57 (0.31–0.83)
3D-T2-weighted-SPACE 0.79 (0.63–0.96) 0.79 (0.63–0.92) 0.87 (0.76–0.97) 0.60 (0.48–0.83) 0.83 (0.56–0.95) 0.67 (0.37–0.91)
3D-CS-T2-weighted-SPACE 0.87 (0.73-1.00) 0.82 (0.74–0.90) 0.83 (0.74–0.91) 0.80 (0.58–0.90) 0.90 (0.65–0.96) 0.67 (0.37–0.90)
Clinical model 0.74 (0.55–0.94) 0.76 (0.58–0.90) 0.76 (0.52–0.92) 0.75 (0.45–0.95) 0.84 (0.56–0.94) 0.64 (0.35–0.86)
R-C nomogram model 0.88 (0.75-1.00) 0.82 (0.65–0.93) 0.78 (0.56–0.93) 0.90 (0.55-1.00) 0.95 (0.74-1.00) 0.64 (0.35–0.87)
NOTE: npv, negative predictive value; ppv, positive predictive value
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3D-T2-weighted-SPACE sequence while reducing the 
acquisition time. This indicated that the 3D-CS-T2-
weighted-SPACE can provide a more reliable and non-
invasive tool for evaluating the depth of bladder tumor 
invasion preoperatively.

In our study, the 3D-CS-T2-weighted-SPACE model we 
constructed provided us with rich information extracted 
from radiomic features, including various features related 
to wavelet transform and gray-level co-occurrence 
matrix (GLCM), such as Kurtosis and Skewness under 
wavelet transform, and the Imc1 feature under GLCM. 
These features not only offer a deep understanding of 
image structure and characteristics but also furnish cru-
cial information regarding texture, informativeness, and 
grayscale distribution during image analysis. Particularly 
noteworthy is the significant value of these higher-order 
features in predicting muscular invasion of bladder can-
cer. By capturing local image features, informativeness, 
and the skewness of grayscale distribution, these features 
can more accurately reflect tissue heterogeneity changes 
caused by muscular invasion of bladder cancer. Com-
pared to first-order features of traditional imaging, these 
higher-order features provide richer and more detailed 
image information, thus possessing stronger diagnostic 
and predictive capabilities, offering robust support for 
the diagnosis and treatment of muscular invasion of blad-
der cancer [9, 20].

After the selection based on clinical radiological fea-
tures, we ultimately included a clinical model composed 
of three independent risk factors: tumor size, multiple 
lesions and hematuria. As seen in the selected clinically 
independent predictors, we found that the maximum 

tumor diameter size of NMIBC was significantly smaller 
than that of MIBC (P < 0.001), which may suggest that 
tumors with larger size was more inclined to be MIBC, 
this clinical factor was similar to that proposed by Zheng 
et al. [8].

The T2-weighted sequence in bladder examination 
plays a crucial role in the evaluation of bladder cancer. 
Standard MRI protocols typically involve acquiring three 
sets of T2 images in three orthogonal planes perpendic-
ular to the long axis of the bladder. However, obtaining 
T2-weighted images in three separate planes requires 
a significant amount of magnet time. The 3D SPACE 
sequence offers several advantages over its 2D counter-
part. Firstly, the 3D SPACE sequence enables acquisi-
tion at much higher spatial resolution, especially along 
the slice direction and without any slice gaps, Qi et al. 
found that delineating 3D radiomics features of tumors is 
superior to delineating 2D features, as 3D volume ROIs 
contain more comprehensive information, thus lead-
ing to better diagnostic performance [30]. Secondly, the 
3D SPACE sequence produces images that can be eas-
ily transferred to the treatment planning system, and 
the high-resolution images can be reconstructed into 
any plane without an additional acquisition, making the 
clinical workflow highly efficient [31, 32]. In our study, 
because multiplanar reconstruction of coronal and sag-
ittal images is possible, 3D-T2-SPACE can shorten the 
scan time by approximately 1 min 15 s compared to con-
ventional three-plane T2WI, by incorporating CS tech-
nology, the scanning time can be further reduced.

CS is a technique that significantly reduces image 
acquisition time by under-sampling the k-space. Since 

Fig. 5 ROC curves of 3 radiomics models (a) and using Clinical model, Radiomics model and Radiomics-Clinical combined model (b) to predicting the 
MIBC in the validation cohorts
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its introduction, CS has successfully reduced scan times 
in various clinical imaging applications [33, 34]. How-
ever, before widespread clinical application, there is an 
important technical challenge to address. Accelerating 
the image acquisition speed will inevitably affect image 
quality, and there is no rule to determine to what extent 
the acquisition speed can be increased without compro-
mising image quality. The optimal acceleration factor 
required varies for different examination sites, making 
it difficult to predict the appropriate acceleration fac-
tor to be used. Therefore, clinical testing is necessary for 

Table 4 Comparison of SNR and CNR of 3D-T2-weighted-SPACE 
and 3D-CS-T2-weighted-SPACE sequence images (x ± s)
Finding 3D-T2-weighted-SPACE 3D-CS-T2-weighted-

SPACE
P

Tumor-
SNR

15.6 ± 7.9 14.9 ± 6.3 0.731

Fat-SNR 22.2 ± 12.5 26.0 ± 29.3 0.105
CNR 3.8 ± 3.0 4.1 ± 4.6 0.679
NOTE: SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio

Fig. 6 The MRI-based radiomics nomogram for MIBC prediction in patients with BCa (a); Calibration curve of the nomogram in the training (b) and vali-
dation (c) cohorts. DCA for Clinical, Radiomics and Radiomics-Clinical nomogram in the training (d) and validation (e) cohorts. The y-axis represents the 
net benefit. The red line represents the radiomics nomogram. The grey line represents the hypothesis that all patients had MIBC
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validation across various body regions to obtain the opti-
mal acceleration factor.

In our study, to maintain similar image quality between 
the CS-SPACE and the traditional SPACE sequences, we 
adjusted multiple parameters of the CS-SPACE, includ-
ing layer thickness, matrix, and FOV, further reducing 
the image layer thickness to 0.9 mm. However, the thin-
ner images resulted in an increase in overall data vol-
ume and scanning time, offsetting the reduction in data 
acquisition time achieved by CS technology. Therefore, 
the effect on reducing the overall scanning time was not 
significant.

Currently, research on bladder cancer predominantly 
employs a multi-sequence modality consisting of con-
ventional T2 sequences, along with DWI, ADC, and 
others [35–37]. Our study’s results demonstrate that 3D 
T2 sequences with high-resolution thin-slice scanning 
are superior for diagnosing muscular invasion of blad-
der cancer compared to conventional T2 sequences. 
Therefore, incorporating 3D T2WI sequences into the 
aforementioned multi-sequence modality may provide 
better diagnostic efficacy for predicting muscular inva-
sion of bladder cancer compared to conventional T2WI 
sequences alone. Additionally, combining CS can over-
come the longer scanning time associated with 3D T2WI 
scans without compromising image quality. Recent stud-
ies have also shown that combining CS with deep learn-
ing can further reduce scanning time while achieving 
better image quality [38]. Khanfari et al. proposed a novel 
approach called multi-flavored feature extraction or ten-
sor, which suggested that deep features may be more 
effective than radiomics features alone [39]. The com-
bination of these techniques can offer more significant 
value for preoperatively predicting muscular invasion of 
bladder cancer.

However, our study had several limitations. Firstly, the 
number of cases was insufficient; further research will 
be conducted with increased sample size. This study was 
conducted at a single center with internal validation only. 
Future efforts will involve multicenter studies and exter-
nal validation. Secondly, we employed the SMOTE tech-
nique to equalize the distribution of positive and negative 
samples, a step that could potentially influence the out-
come. Thirdly, we manually outlined the VOI for each 
tumor region; however, inaccurate manual segmentation 
might compromise the consistency of feature extraction.

Conclusions
the 3D-T2-weighted-SPACE sequence incorporation of 
CS showed better performance for diagnosing muscle 
invasiveness in BCa and can reducing scanning time. 
By integrating the Rad-score and clinical indices, the 
proposed nomogram could enhance the diagnostic 
performance.
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