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Abstract
Background  This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP 
nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics.

Methods  This retrospective study included 122 patients diagnosed as ccRCC after surgical resection. They were 
divided into a training set (n = 86) and a testing set(n = 36). CEUS radiographic features were extracted from CEUS 
images, and XGBoost ML models (US, CP, and MP model) with independent features at different phases were 
established. Multivariate regression analysis was performed on the characteristics of different radiomics phases to 
determine the indicators used for developing the prediction model of the combined CEUS model and establishing 
the XGBoost model. The training set was used to train the above four kinds of radiomics models, which were then 
tested in the testing set. Radiologists evaluated tumor characteristics, established a CEUS reading model, and 
compared the diagnostic efficacy of CEUS reading model with independent characteristics and combined CEUS 
model prediction models.

Results  The combined CEUS radiomics model demonstrated the best performance in the training set, with an area 
under the curve (AUC) of 0.84, accuracy of 0.779, sensitivity of 0.717, specificity of 0.879, positive predictive value (PPV) 
of 0.905, and negative predictive value (NPV) of0.659. In the testing set, the AUC was 0.811, with an accuracy of 0.784, 
sensitivity of 0.783, specificity of 0.786, PPV of 0.857, and NPV of 0.688.

Conclusions  The radiomics model based on CEUS exhibits high accuracy in non-invasive prediction of ccRCC. This 
model can be utilized for non-invasive detection of WHO/ISUP nuclear grading of ccRCC and can serve as an effective 
tool to assist clinical decision-making processes.
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Introduction
Clear cell renal cell carcinoma(ccRCC) is the most com-
mon solid lesion of the kidneys and accounts for approxi-
mately 90% of all renal malignancies [1]. Tumor nuclear 
grading is a well-known prognostic factor for ccRCC and 
is considered an independent predictor of cancer-specific 
survival [2, 3]. Currently, the widely accepted ccRCC clas-
sification system is the World Health Organization/Inter-
national Society for Urology and Pathology (WHO/ISUP) 
standard established in 2016 [4]; according to the WHO/
ISUP standard, ccRCC is classified into four grades from 
I-IV based on the increase in nucleolar protrusion and 
the presence of extreme nuclear pleomorphism and 
tumor giant cell and sarcomatoid and rhabdomyoid dif-
ferentiation. It can also be simplified into a binary classi-
fication standard, dividing nuclear grades I–II into lower 
grades and nuclear grades III–IV into higher grades. 
High-grade ccRCC is invasive, prone to metastasis, and 
has a poor prognosis. Predicting tumor grade in advance 
can help determine appropriate treatment strategies [5, 
6]. Percutaneous pathological biopsy, which often causes 
bleeding, is a commonly used method for the preopera-
tive grading of ccRCC. Moreover, owing to the heteroge-
neity of ccRCC, there are some inconsistencies between 
biopsy and resected samples in the WHO/ISUP grading 
system [7]. Therefore, there is an urgent need for a non-
invasive and effective method to determine the histologi-
cal grading of small ccRCCs.

Contrast-enhanced ultrasonography (CEUS) shows 
real-time tissue perfusion with excellent spatial and tem-
poral resolution [8]. It has been widely used in kidney 
examinations because of its unique advantages, such as 
the absence of radiation, repeatability, and convenience 
[9–11]. Zhao et al. suggested that both CEUS and DCE-
MRI can quantify tumor perfusion, blood volume, and 
capillary grade permeability, demonstrating the hemo-
dynamic characteristics of tumors and effectively dis-
tinguishing ccRCC from non-ccRCC. Therefore, CEUS 
can serve as an alternative to DCE-MRI, and the cost-
effectiveness of MRI is relatively poor compared with 
ultrasound [12]. Recent studies used CEUS to evalu-
ate the degree of ccRCC differentiation, and blood flow 
perfusion was found to be closely related to the degree 
of differentiation [13, 14]. Although CEUS can intuitively 
reveal the blood flow perfusion of renal tumors, texture 
information is present in images that the naked eye can-
not observe, and its diagnostic efficacy is still limited. 
In recent years, ultrasound radiomics has been increas-
ingly applied to image analysis. Ultrasonics uses com-
puter programming techniques to extract quantitative 
textural features and to detect high-dimensional images. 
Combining these biomarkers with machine learning 
(ML) technologies can effectively identify complex tis-
sue changes [15, 16]. However, there is no research on 

ultrasound radiomics ML models based on ultrasound 
images to predict the degree of RCC differentiation. This 
study aimed to establish a radiomics ML model based on 
renal cancer CEUS images to predict the degree of differ-
entiation before surgery.

Methods
Patients and datasets
This research was approved by the Institutional Review 
Committee of the West China School of Public Health 
and West China Fourth Hospital, and the requirement 
for informed consent was waived. CEUS images of com-
pletely resected ccRCCs from December 2017 to January 
2024 at the West China School of Public Health, West 
China Fourth Hospital, and Nanchong Central Hospital 
were used in this study. A total of 122 ccRCC patients 
were obtained from the image databases of the two hos-
pitals to form a training and testing set in a 7:3 ratio. The 
inclusion criteria were: (1) ccRCC patients who under-
went partial or radical nephrectomy. (2) Patients who 
underwent CEUS examination within two weeks before 
surgery, (3) patients with complete clinical data, and (4) 
no previous renal surgery or other treatment performed 
on suspected ccRCC lesions. The exclusion criteria were 
as follows: (1) patients who underwent anticancer ther-
apy (such as radiotherapy, chemotherapy, and ablation) 
before CEUS examination; (2) patients with a history of 
both kidney tumors and other types of tumors; and (3) 
patients with CEUS image loss or poor image quality.

CEUS image acquisition
The US instruments used to acquire the images in this 
study included IU22 and EPIQ7 (Philips, Amsterdam, 
the Netherlands) and GE LOGIQ E9 (General Elec-
tric Co., USA). First, grayscale ultrasound was used to 
examine the upper abdomen, and the scanning sound 
window, depth, gain, dynamic range, mechanical index, 
output power, and focal area of the mass were adjusted 
to obtain the optimal CEUS image. Ultrasound contrast 
agents (SonoVue; Bracco, Italy) were used, and 1.5 ml of 
the contrast agent was injected through the elbow vein. 
Subsequently, the cells were washed with 5 ml of physio-
logical saline solution. The timer began counting after the 
injection of the contrast agent. A low mechanical index 
(MI < 0.1) was used for the CEUS examination. Accord-
ing to the guidelines, CEUS examination is divided into 
a renal cortical phase (CP) 15–30 s after UCA adminis-
tration with clinical enhancement seen and a renal med-
ullary phase(MP), where both cortical enhancement and 
medullary enhancement occur 25s–4  min after UCA 
administration [8]. Gray-scale images of the patient’s 
most significant area, cortical tumor image, and medul-
lary tumor image for analysis.
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Pathological evaluation
Two pathologists evaluated all cases by observing hema-
toxylin and eosin (HE)-stained sections under a micro-
scope. All cases were classified according to the standards 
of the 2016 WHO/ISUP grading system [4]. Divide 
ccRCC tumors into low-grade (grades I and II) and high-
grade (grades III and IV) groups according to the 2016 
WHO/ISUP grading system [4]. If there was a difference 
in opinion, another senior pathologist was invited to par-
ticipate in the discussion and reach a consensus.

CEUS analysis
Ultrasound examination was retrospectively evalu-
ated by two expert radiologists (engaged in CEUS work 
for approximately 9 and 5 years) on ultrasound contrast 
images of all patients unaware of the pathological and 
clinical results. Two reviewers independently evaluated 
the following imaging features of each ccRCC: (a) size; (b) 
echogenicity(Hyper/Iso/Hypo); (c) shape(irregular/regu-
lar); (d) margin (unclear/clear); (e) CEUS enhance speed 
(when the enhancement intensity of cortical tumors is 
greater than or equal to the surrounding renal paren-
chyma, it is classified as “fast”; otherwise, it is consid-
ered as “slow”); (f ) washout (comparison of enhancement 
intensity and renal cortical echo intensity in medul-
lary stage tumors); (g) the pseudocapsule(yes/no); (h) 
necrosis(yes/no). If there was a difference in the CEUS 
results of the patient, the two people were evaluated after 
discussion.

Image segmentation and ultrasound radiomics feature 
extraction
We took the following steps in the preprocessing pro-
cess. First, we standardized the image grayscale to ensure 
consistency in the grayscale distribution in the image. 
Next, we adopted image-denoising techniques to reduce 
the possible interference of noise during feature extrac-
tion. In addition, we resampled the images using a lin-
ear interpolation algorithm to obtain a standardized 
voxel spacing of 1 × 1 × 1 mm (x, y, z). We used ITK soft-
ware(3.8.0, help://www.itksnap.org/pmwiki/pmwiki.php? 
n=Downloads.SNAP3)for manual segmentation, a widely 
used tool in medical image processing. The manual seg-
mentation process is not limited to conventional two-
dimensional ultrasound images but includes enhanced 
ultrasound cortical phase images and ultrasound med-
ullary phase images. The area of interest refers to the 
entire lesion area. During the delineation process, special 
attention is paid to ensure that the area of interest fully 
covers the lesion to obtain accurate lesion boundaries. 
In addition, to reduce errors, all manual segmentations 
were independently performed by two experienced radi-
ologists (with 10 and 7 years of experience in abdominal 
ultrasound diagnosis), and discussions and negotiations 

were conducted as needed to reach a consensus on the 
segmentation results. We used intra- and inter-class 
correlation coefficients (ICC) to evaluate feature stabil-
ity. Specifically, we randomly selected renal ultrasound 
images from 50 patients and had two radiologists cali-
brate their respective regions of interest (ROIs). Subse-
quently, Radiologist 1 repeated the same steps two weeks 
later and extracted the imaging omics features. We evalu-
ated the consistency and stability of the feature extrac-
tion by calculating the intra- and inter-group correlation 
coefficients of these three sets of features. To ensure the 
reliability of the results, we set a threshold for ICC val-
ues greater than 0.75, indicating that these features have 
good consistency and stability and are suitable for sub-
sequent quantitative analysis. The remaining images were 
independently ROI-segmented by radiologist 1, and only 
features with good correlation and stability were retained 
for subsequent analyses. This strategy is adopted to 
ensure the analysis’s accuracy and reliability while avoid-
ing potential errors caused by segmentation inconsis-
tency or feature instability. Using PyRadiomics (version 
3.0.1, https://github.com/AIM-Harvard/pyradiomics.)
extracting radiomics features from ultrasound images. 
Implemented numerous engineering-coding feature algo-
rithms. The steps for screening ultrasound omics features 
and constructing ultrasound omics models are shown in 
Fig. 1: Firstly, the features with ICC > 0.75 in the training 
set were retained. Second, a single-factor rank-sum test 
was used to screen for statistically significant feature dif-
ferences between the training set’s high- and low-grade 
groups. Subsequently, Pearson’s correlation analysis 
was performed on the remaining radiomics features to 
remove highly correlated features. Finally, the LASSO 
algorithm is used to select the optimal features, and the 
Xgboost algorithm is used to establish a radiomics model.

To overcome the “black box” nature of ML models, the 
SHAP method [17] explains each variable’s impact on 
the optimal performance model. The SHAP method is 
based on alliance game theory and calculates the SHAP 
value, which evaluates each variable’s marginal contribu-
tion to the model’s final prediction. Several cases were 
proposed to reveal how the best model generated each 
prediction. In addition, the SHAP values for each variable 
in all patients were summarized and averaged to obtain a 
queue view for global interpretation.

Statistical analysis
All statistical analyses were conducted using SPSS (ver-
sion 25.0; IBM Corp., Armonk, NY, USA) and Python 
2.7 (Python Software Foundation, Beaverton, OR, USA). 
Quantitative data with normal distribution is represented 
as standard deviation. Categorical variables are expressed 
as numbers and percentages. The chi-square test, two 
independent sample t-tests, and Mann-Whitney U-test 

http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3)fo
http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3)fo
https://github.com/AIM-Harvard/pyradiomics
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were used for univariate analysis. Logistic regression 
analysis performed univariate and multivariate analyses 
of the clinical parameters. Statistical significance was set 
at p < 0.05. significant.

The receiver operating characteristic(ROC) curve, 
area under the curve (AUC), and decision curve 

analysis(DCA) were used to evaluate the predictive per-
formance, calibration ability, and clinical practicality of 
the models. Other distinguishing indicators included 
accuracy, sensitivity, specificity, positive predictive 
value(PPV), and negative predictive value(NPV).

Results
The basic clinical characteristics of the patients are shown 
in Table  1. Among the 122 ccRCC patients included 
in the study, there were 84 males and 38 females, with 
a mean age of 57.6 ± 13.1 years (ranging from 21 to 81 
years), Among them, 75 cases (61.5%) were classified as 
low grade, while 47 cases(38.5%) were classified as high 
grade. After randomly assigning patients at a ratio of 
7:3, they were divided into a training group (n = 86) and 
a testing group (n = 36). The patient selection process is 
illustrated in Fig. 2.

Table 1  Clinical factors in the training and testing group
Training Testing

Sex(Male/Female) 56/30 28/8
Age (Years) 57.1 ± 13.1 58.9 ± 13.2
Size(mm) 48.1 ± 26.4 46.2.1 ± 22.1
Shape(Irregular / Regular) 23/63 8/28
Margin (Unclear / Clear) 60/26 27/9
Echogenicity(Hyper /Iso / Hypo) 31/27/28 19/6/11
Washin (Fast/Slow) 76/10 33/3
Washout (Yes/No) 46/40 20/16
Necrosis(Yes/No) 49/37 24/36
Pseudocapsule(Yes/No) 42/44 25/11

Fig. 1  The ultrasound radiomics flow chart of the study
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CEUS reading models
In the univariate analysis, significant statistical differ-
ences were observed between several CEUS param-
eters and the ccRCC grade, specifically “size”(P = 0.003), 
“washout”(P = 0.017) and “necrosis”(P = 0.02). Subsequent 
multiple factor analysis identified “size” (P = 0.035) and 
“washout” (P = 0.032) as independent predictive factors. 
A CEUS model was then established, and in the train-
ing set, the AUC, accuracy, sensitivity, and specificity 
of CEUS predicting the WHO/ISUP nuclear grading 
of ccRCC were 0.723, 0.698, 0.606, and 0.755, respec-
tively. In the testing set, the AUC, accuracy, sensitiv-
ity, and specificity were 0.695, 0.722, 0.929, and 0.591, 
respectively.

Feature extraction, selection, and construction of 
radiomics features
A total of 873 radiomics features were extracted from 
gray scale US images. After conducting Inter-group and 
Intra-group Correlation Coefficient(ICC), along with 
univariate correlation analysis, it was found that there 
were significant differences in 80 features between the 
two groups. These features were sequentially subjected to 
univariate rank sum test and Pearson correlation analy-
sis, followed by LASSO dimensionality reduction. Finally, 
a total of 5 optimal features were obtained, as shown in 
Fig.  3A.Similarly, a total of 873 radiomics features were 
extracted from CEUS images of CP. After ICC, as well 
as univariate correlation analysis, it was found that there 

were significant differences in 52 features between the 
two groups. These features were sequentially subjected 
to univariate rank sum test and Pearson correlation 
analysis, followed by LASSO dimensionality reduction, 
to obtain a total of 2 optimal CP radiomics features, as 
shown in Fig. 3B. A total of 873 radiomics features were 
extracted from the CEUS images of MP. After ICC, as 
well as univariate correlation analysis, 48 features were 
found to have significant differences between the two 
groups. These features were sequentially subjected to 
univariate rank sum test and Pearson correlation analy-
sis, and LASSO dimensionality reduction was performed. 
Finally, a total of 5 optimal MP radiomics features were 
obtained, as shown in Fig.  3C. The Xgboost algorithm 
was used to establish individual US, CP and MP models 
for the selected optimal radiological characteristics of 
each group. Logistic regression analysis was carried out 
on the radiomic features extracted from CP, MP and US 
ultrasound images, and a total of 10 optimal radiomic 
features were finally obtained, as shown in Fig.  3D; 
Table 2. Xgboost algorithm is also used to build the com-
bined CEUS radiomics ML model .

The results, as depicted in Fig. 4; Table 3, reveal that in 
the models of the training set and the testing set, the AUC 
value of the combined CEUS radiomics model surpasses 
that of the the individual US, CP and MP radiomics 
model, as well as the CEUS reading model. The AUC of 
the training set is 0.84, with an accuracy rate of 0.779, 
sensitivity of 0.717, and specificity of 0.879. The AUC of 

Fig. 2  Patint flowchart
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the testing set is 0.811, with an accuracy rate of 0.784, 
sensitivity of 0.783, and specificity of 0.786. Furthermore, 
DCA demonstrates that both in the training and the 
testing sets, the combined CEUS radiomics model yield 
a higher overall net income than the other four models. 
The confusion matrix of the combined models of the 
training set and the testing set was showed in Fig. 5.

As shown in Fig.  6, the importance of features was 
ranked using a Beesworm plot. In addition, two patients 
(patients A and B) were randomly selected to explain the 
individual prediction of the model using the SHAP plot 
method. As shown in the figure, the graph generated by 
SHAP (Fig. 7) shows that the red color indicates that the 
variable increases the chance of the model predicting 
patients as adverse outcomes, while the blue color indi-
cates that the variable reduces the chance of the model 
predicting patients as adverse outcomes. The impact of 
each feature on the model’s classification output can be 
seen through the scale values on the X-axis.

Discussion
In this study, a radiomics ML model was developed to 
predict ccRCC grades using CEUS. The model produced 
satisfactory predictions for the training and testing sets, 
with the AUC of ROC being 0.84 and 0.811, respectively. 
In addition, the diagnostic performance of the model was 
superior to that of the CEUS prediction model based on 
radiologists’ readings. The results demonstrate the fea-
sibility of using a CEUS radiomics model to predict the 
WHO/ISUP grading of ccRCC. This is the first study to 
use the CEUS radiomics ML model to predict the WHO/
ISUP grading of ccRCC.

Table 2  Coefficients of Selected features in the ultrasound 
radiomics model
The Features of CEUS Radiomics Coefficient OR
CP_wavelet.HLL_glrlm_RunEntropy -0.2785 0.756918
MP_wavelet.LLH_firstorder_Range -0.19001 0.826952
MP_wavelet.LHL_ngtdm_Strength -0.12568 0.881894
MP_wavelet.LHH_glszm_ZoneEntropy -0.05502 0.94647
MP_wavelet.HLH_glszm_LargeAreaHigh-
GrayLevelEmphasis

-0.0331 0.967438

US_wavelet.
HHL_gldm_HighGrayLevelEmphasis

0.006546 1.006568

US_wavelet.
HHL_gldm_LowGrayLevelEmphasis

0.113886 1.120624

US_wavelet.
HHH_gldm_SmallDependenceEmphasis

0.171702 1.187324

US_wavelet.LLL_gldm_DependenceEntropy 0.2514 1.285825
US_wavelet.
LLL_glszm_SmallAreaLowGrayLevelEmphasis

0.550671 1.734416

Fig. 3  The radiomic features of the four radiomic model.A.the US radiomic features B. The CP radiomic features C. The MP radiomic features D. The CEUS 
radiomic features
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Curative surgery is acceptable for high-grade ccRCC, 
whereas minimally invasive techniques such as neph-
ron-sparing surgery and ablation are more feasible for 
low-grade ccRCC [18]. Precise preoperative histologi-
cal grading is crucial for monitoring patient condition 
and developing personalized follow-up treatment strat-
egies. Recently, Huang collected CEUS qualitative and 
quantitative features from 69 ccRCC patients confirmed 
by surgical pathology and found a statistical difference 
between the blood flow perfusion of lesion contrast-
enhanced ultrasound and the WHO/ISUP grading of 
ccRCC. The higher the degree of enhancement, the richer 
the blood vessels, the more active the cell growth, and 
the more prominent the nucleolus [13]. In our study, 

multiple-factor analysis was conducted by radiologists to 
evaluate the CEUS features of tumors, and it was found 
that tumor size and washout were independent predic-
tive factors for preoperative ccRCC grading. Consistent 
with previous studies, washout may be caused by an 
incomplete neovascular wall leading to increased perme-
ability, disrupted vascular beds, abnormal channels, and 
the formation of a large number of arteriovenous fistu-
las; the rich internal lymphatic network and rapid reflux 
of the contrast agent lead to rapid fading of the contrast 
agent [14].

Furthermore, we established a predictive model and 
obtained results with a training group ROC of 0.723 and 
a testing group ROC of 0.695; however, the results did 

Fig. 4  A and C show the ROC and DCA curves of the five models in the training group.B and D represent the ROC and DCA curves of five models in the 
test group
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not meet clinical needs. Radiomics can reveal subtle dif-
ferences in the intensity distribution of medical images 
that the human eye cannot easily recognize, and the 
signal distribution pattern reflects the heterogeneity of 
tumors [19–21]. There is a correlation between textural 
features and pathological changes caused by diseases. 
Radiomics can extract and quantify perceptual ranges 
of high-throughput imaging biomarkers in humans. 
Radiomic indicators can serve as helpful ccRCC [22–24].

Grey-level normalization is required when radiomic 
features are extracted from US images to ensure the 
accuracy and reliability of the results [25]. After feature 
selection, we selected ten ultrasonic radiomics features 
to evaluate ccRCC and the ccRCC.The CEUS radiomics 
model was established by collecting tumor CEUS images 
of the US, CP, and MP. The results showed that the ultra-
sound imaging radiomics model has a strong process-
ing ability for high-throughput data, and the ultrasound 
radiomics model based on CEUS can effectively predict 

Table 3  Performance of four radiomics models and clinical model in the training and the testing group
Model AUC (95%CI) ACC SEN SPE PPV NPV Precision F1
Training group
CEUS Radiomics 0.84

(0.753–0.926)
77.9% 71.7% 87.9% 90.5% 65.9% 90.5% 80%

US Radiomics 0.799
(0.7-0.897)

79.1% 86.8% 66.7% 80.7% 75.9% 80.7% 83.6%

CP Radiomics 0.69
(0.578–0.803)

65.1% 56.6% 78.8% 81.1% 53.1% 81.1% 66.7%

MP Radiomics 70.3
(0.587–0.819)

70.9% 79.2% 57.6% 75% 63.3% 75% 77.1%

CEUS Reading 0.723
(0.613–0.833)

69.8% 60.6% 75.5% 60.6% 75.5% 75.5% 75.5%

Testing group
CEUS Radiomics 0.811

(0.664–0.957)
78.4% 78.3% 78.6% 85.7% 68.8% 85.7% 83.7

US Radiomics 0.756
(0.591–0.922)

78.4% 87% 64.3% 80% 75% 79.2% 82.6%

CP Radiomics 0.686
(0.499–0.874)

70.3% 73.9% 64.3% 77.3% 60% 77.3% 77.3%

MP Radiomics 0.668
(0.483–0.853)

67.6% 82.6% 42.9% 70.4% 60% 70.4% 77.6%

CEUS Reading 0.695
(0.512–0.878)

72.2% 92.9% 59.1% 59.1% 92.9% 93.9% 72.2%

AUC = area under the curve; ACC = accuracy; SEN = sensitivity; SPE = specificity; PPV = positive predictive value, NPV = negative predictive value

Fig. 5  The confusion matrix of the combined models. (A) The confusion matrix of the combined models in the training set. (B) The confusion matrix of 
the combined models in the testing set. True and predicted subtype classifications are shown on the y- and x-axes, respectively. The blue gradient color 
represents the model accuracy for detecting each subtype. The darker the blue color, the better the model performance
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ccRCC with better results than the prediction model 
based on radiologist readings. Although previous studies 
have suggested that MRI-based radiomics and machine 
learning methods can predict Fuhrman grading [26], 
CEUS is cheaper and more convenient and can better 
reflect the blood flow perfusion of tumors. To overcome 
the “black box” nature of ML models, SHAP is used to 
visualize the importance of model features. The SHAP 
value allocates the probability of the model output to 
each feature. This can help understand how much each 
feature contributes to the prediction results, making the 

ML model’s predictions more transparent and interpre-
table. It can be seen that although the US provides an 
essential contribution to the model’s performance, the 
CEUS performance in the cortical and medullary stages 
of tumors is also an indispensable contribution to the 
non-invasive diagnosis of ccRCC in the model.

This retrospective study had some limitations. First, it 
was a retrospective study with a selection bias, and the 
results depended on the composition of limited-sized 
data. Second, because of the retrospective extraction of 
images from the three stages of the tumor for analysis, 

Fig. 7  Individual prediction of the model using the SHAP plot method. A.Patient A has high-grade ccRCC B. Patient B has low-grade ccRCC

 

Fig. 6  shows the global interpretation of the SHAP Beeswarm diagram
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static images may lead to the loss of helpful informa-
tion compared with dynamic images. Third, no external 
validation was performed. This limits the assessment of 
the clinical value of the proposed model because there 
is no information on the degree of challenge posed by 
the cases or the added accuracy provided by the model. 
To verify the feasibility of our radiomics column chart, 
future carefully designed prospective longitudinal cohort 
studies must be conducted in a larger patient population 
and at multiple centers.

In summary, it has been demonstrated that ML mod-
els based on radiomics can accurately predict the WHO/
ISUP grading of ccRCC through contrast-enhanced 
ultrasound images. With further validation in more pop-
ulations in the future, the model has enormous potential 
and can be used as an essential decision-support tool in 
clinical applications.
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