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Abstract 

In this study, we propose a novel method for quantifying tortuosity in 3D voxelized objects. As a shape characteris‑
tic, tortuosity has been widely recognized as a valuable feature in image analysis, particularly in the field of medical 
imaging. Our proposed method extends the two-dimensional approach of the Slope Chain Code (SCC) which creates 
a one-dimensional representation of curves. The utility of 3D tortuosity ( τ3D ) as a shape descriptor was investigated 
by characterizing brain structures. The results of the τ3D computation on the central sulcus and the main lobes 
revealed significant differences between Alzheimer’s disease (AD) patients and control subjects, suggesting its poten‑
tial as a biomarker for AD. We found a p < 0.05 for the left central sulcus and the four brain lobes.
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Introduction
The representation of three-dimensional data, objects, 
and images in digital form is a fundamental element in a 
wide range of fields, such as manufacturing, architecture, 
video games, medicine, geography, and biology. One of 
the major benefits of using these digital representations 
is the ability to measure and compare different character-
istics and properties of the objects, as noted for example 
by [1] and [2]. As a result, researchers have shown a great 

deal of interest in modeling and quantifying the shape of 
three-dimensional images, as evidenced by studies such 
as those by [3] and [4]. This interest is particularly rele-
vant in medical imaging, where automatic segmentation 
of different body structures is an area of focus, and the 
morphological characteristics of the images are valuable. 
For instance, [5] used fractal dimension analysis to exam-
ine the shape of the cerebellum, which led to a deeper 
comprehension of Chiari malformation type I.

Tortuosity, a morphological property that reflects the 
complexity of objects and that is defined in the Merriam-
Webster dictionary as “tortuos” as “full of twists, turns; 
crooked” [6], is one such property that has been measured 
in diverse fields. Its applications include detecting certain 
conditions in retinal images [7], characterizing and mod-
eling rivers [8], quantifying morphological changes of 
blood vessels [9], and in airborne ultrasound to measure 
tortuosity in aluminum foams [10].

Measuring the tortuosity of vessels is a common 
practice, and the classical method widely used for 
this purpose is to calculate the ratio between the arc 
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length of the curve (C) and the length of the underly-
ing chord (L), denoted as τ = C/L , according to Lotmar 
[11]. One drawback of the arc length to chord length 
ratio approach is that it fails to fully capture the shape 
of curves. As an example, consider Fig. 1, which shows 
two curves with different shapes and turns, but the 
same length of curve and underlying chord, resulting in 
the same tortuosity value. However, curve (a) has sig-
nificantly more twists and turns than curve (b), making 
it more tortuous. As a result, this definition does not 
account for these morphological differences, highlight-
ing the limitations of this approach.

Several methods have been proposed to measure tor-
tuosity in 2D structures, including approaches based on 
angle changes at discrete steps [12], curvature by seg-
ments [13], integration of all direction changes [14], eval-
uation of the number of inflection points to distinguish 
smoothly curved vessels from those with abrupt changes 
in direction [9], a novel automatic grading method for 
retinal vessel tortuosity [15], and more recently, Bribi-
esca [16] proposed a tortuosity measure for 2D curves 
represented by means of the Slope Chain Code (SCC).

The use of SCC as a representation for 2D curves pro-
vides important advantages for computing tortuosity, 
as it is independent of translation, rotation, and scaling. 
Moreover, this approach has shown promising results in 
high-definition contour shapes, as demonstrated in [17], 
and the application of grammatical techniques simplifies 
the tortuosity computation process. For a review of tech-
niques used to measure the tortuosity of retinal blood 
vessels, please refer to [18].

Extending the measurement of tortuosity from the 2D 
to 3D domain is critical as it has significant applications 

in studying the morphology of surfaces and 3D objects. 
Additionally, incorporating tortuosity as an extra prop-
erty can facilitate the classification of these types of 
structures. However, only a few authors have attempted 
to measure 3D tortuosity, making it an area with consid-
erable scope for research.

For example, Nemati et  al. [19] used a stochastic 
approach to predict tortuosity in porous media through 
pore network modeling. Lala [20] developed a method for 
estimating tortuosity in reservoir rocks, while Ylyasova 
[21] presented several techniques for evaluating 3D fea-
tures of blood vessels. Malek et  al. [22] investigated the 
impact of retinal vascular tortuosity on retinal circulation, 
and Ramachandran [23] introduced U-COSFIRE filters 
for quantifying vessel tortuosity. Zhang and Nagy [24] 
proposed three measures of tortuosity to analyze cracks 
in concrete, but their results only show that the measure-
ments can differentiate surfaces without explaining which 
one better represents the morphological changes. Zhang 
and Nagy [24] proposed three measures of tortuosity to 
analyze cracks in concrete: 1) the average angle between 
surface normals, 2) the average principal curvatures, and 
3) the standard deviations of principal curvatures. While 
their work demonstrated that these tortuosity measures 
can effectively differentiate surfaces, they did not provide 
insight into which measure is best suited to capture mor-
phological changes. Finally, W. Xiao et  al. [25] explored 
the combined impact of tortuosity and surface roughness 
on the estimation of flow rate through a single rough joint. 
Their study analyzed how fluid flow through rock joints is 
significantly influenced by both factors. However, in order 
to carry out this analysis, it is necessary to obtain the 3D 
object meshes through data interpolation.

Fig. 1  Two curves with identical arc length and underlying chord, but with different morphological characteristics. Despite having the same 
tortuosity value, curve (a) has more twists and turns than curve (b), demonstrating the limitations of using the arc length to chord length ratio 
approach to capture the morphological differences of shapes
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More recently, a measure of tortuosity for enclosing 
surfaces was proposed [26]. This measure is based on the 
relation between three surfaces: the enclosing surface 
area (A), defined as the sum of areas of the external plane 
faces of the voxels forming the visible faces of the solid; 
the contact surface area ( Ac ), which is the sum of the areas 
of the contact surfaces which are common to two voxels; 
and the total surface area ( At ), defined as the sum of all 
the surface areas of the faces of all voxels of the solid. This 
measure of tortuosity is related to compactness, another 
discrete measure to describe surfaces, and is not meant to 
characterize the shape of the voxelized objects.

In this paper, we introduce a novel approach to 
measure the tortuosity of 3D voxelized objects, which 
extends the two-dimensional SCC proposal by Bribi-
esca [16] into three dimensions. The proposed method 
can effectively describe and characterize a wide vari-
ety of voxelized objects, such as tumors, organs, brain 
structures, archaeological artifacts, and bones, while 
also offering the advantage of utilizing data directly 
extracted from the voxelized objects, without requiring 
interpolation. Our goal is to provide a straightforward 
approach for capturing and measuring morphologi-
cal features of different 3D objects. Some of the main 
advantages of this proposal are its simplicity and the 
amount of time it takes to compute tortuosity com-
pared to surface-based descriptors. A first attempt to 
compute the three-dimensional tortuosity by our group 
is presented [27]. Here we present a full description 
of the method, its validation, and more examples of 
its potential use as a biomarker for neurodegenerative 
diseases.

Concepts and definitions
In this section, we present key concepts and definitions 
that are relevant for describing our proposed method for 
measuring the tortuosity of voxelized objects.

Curvature
A curve is a fundamental mathematical concept that is 
defined as a continuous function that maps a one-dimen-
sional space to an n-dimensional space. The representa-
tion of the boundaries of real-world planar objects using 
a category of planar curves and arcs was introduced by 
Latecki and Rosenfeld [28]. Curvature is another essen-
tial concept that allows the characterization of curves. It 
is defined by James and James [29] as “the absolute value 
of the rate of change of the angle of inclination of the 
tangent line with respect to distance along the curve”. In 
other words, curvature provides a measure of the amount 
of bending in a curve. For example, in the case of a circle, 
the curvature is the reciprocal of the radius, which is a 
well-known property of this geometric figure.

The ratio between the angle of contingency α and the 
length of an arc EF (see Fig.  2a) represents the average 
curvature Kav of the arc. This average curvature is equiv-
alent to the geodesic distance between the points of the 
arc EF, as shown in Eq. 1.

The curvature KE of a line at a given point E is the limit 
of the average curvature of arc EF, when the length of this 
arc approaches zero (that is, when point F approaches 
point E) and is defined as follows:

Discrete curvature
When dealing with curves in a discrete space, we can make 
certain assumptions about their geometry. For instance, we 
can assume that the arc EF is constant and straight, as in 
the notation of the SCC [16]. This assumption simplifies 

(1)Kav =
α

EF

(2)KE = lim
F→E

Kav = lim
EF→0

α

EF

Fig. 2  Curvature: a continuous curvature; b the range of slope changes [0, 1) and [ 0,−1)
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the calculation of the average curvature Kav . To be more 
specific, if we set EF equal to 1 in Eq. 1, then:

Therefore, the curvature of a discrete curve located at 
the center point G is defined as the angle of contingency 
α , or the slope change between contiguous straight-line 
segments at that point. This is known as the discrete cur-
vature of the curve. To keep the values within a range of 
( −1, 1 ), the slope change is normalized. Extreme values of 
1 or −1 are not taken into consideration for practical pur-
poses. The interval [0, 1) and [ 0,−1 ) that define the range 
of slope changes is depicted in Fig. 2b.

Slope chain code
The chain code is a contour-based representation that 
captures the boundaries of a region and results in lossless 
data reduction of the image. It is determined by select-
ing a starting pixel and encoding the sequence of moves 
along the boundary to reach the next pixel [30].

According to [16], a chain denoted as A can be 
described as a sequence of n ordered elements, which is 
expressed using Eq. 4

The Slope Chain Code (SCC) is a type of chain where 
the element an represents the slope change between con-
tiguous straight-line segments of the curve in that ele-
ment position. It is important to note that the range of 
slope changes in SCC is between -1 and 1.

2D Tortuosity
The degree of turns or detours in objects can be meas-
ured using tortuosity τ , which is a metric for calculating 
deformations in different objects. In this study, the SCC 
(Eq. 5) is used as the basis for this shape measurement, 
where τ is determined by summing up all the absolute 
values of the chain elements an and N represents the total 
number of elements [16].

Methods
In this section, we describe the proposed methods for 
measuring tortuosity using a voxelized representation of 
a three-dimensional object as input.

Measure of tortuosity for 3D objects
The proposed method consists of four sequential steps 
for measuring tortuosity: 

(3)KE = α.

(4)A = a1a2 . . . an

(5)τ =

N

n=1

|an|

1	 Obtain the voxelized representation of the object of 
interest.

2	 Track contours for every slice i,  j, k, for each corre-
sponding direction X, Y, Z

3	 Filter the stair-stepping artifact.

•	Downsample the contours.
•	Apply the Digital Straight Segment (DSS) algorithm 

[31].

4	 Tortuosity measure for 3D objects ( τ3D).

Voxelized representation
A discrete representation of three-dimensional objects 
can be obtained either by voxelization or 3D recon-
struction from multiple 2D images, where the voxel 
serves as the basic volume unit. Voxelization is the pro-
cess of approximating continuous geometric data struc-
tures by a set of voxels. This results in the data of the 
object being stored in a regular, discrete 3D grid [32]. 
On the other hand, 3D reconstruction from multiple 
2D images is a mathematical process that generates vol-
umetric models or “3D images”. The specific 3D recon-
struction techniques used depend on the acquisition 
methods employed. The use of this type of represen-
tation has become essential for a wide range of appli-
cations in various fields, including medicine (such as 
Magnetic Resonance Imaging, Computerized Tomogra-
phy, and Positron Emission Tomography), video games, 
robotics, augmented reality, computer vision, and many 
others [33].

Contour tracking
After obtaining the voxelized representation of the 
object of interest, the next step is to approximate its 
boundary by using straight-line segments for each 
slice si in the X, Y, and Z directions. This is achieved 
through a process called contour tracking, which traces 
the complete border of the object to obtain a sequence 
of boundary points without vertex repetition. Two dis-
tinct approaches for contour tracking are described in 
[34] and [35].

Filtering the stair‑stepping artifact
A significant drawback of utilizing voxelized repre-
sentations is the existence of artifacts caused by stair-
stepping. These artifacts affect the measurement of 
tridimensional tortuosity τ3D as they make it challeng-
ing to obtain accurate slope changes that correspond to 
the object’s morphology.
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Figure  3a illustrates the stair-stepping problem. It 
shows a straight line represented in a voxelized format, 
viewed from two distinct angles along with its corre-
sponding contour. When the angle of the line deviates 
from 0 or 90 degrees, as demonstrated in Fig. 3b, a stair-
stepping error becomes apparent.

In order to minimize the contribution of the stair-step-
ping artifact and obtain an accurate depiction of the vox-
elized object’s morphology, we designed a two-step filter. 
The first step involves downsampling the contour verti-
ces, followed by the application of a DSS algorithm.

•	 Downsampling contours. To mitigate the error 
caused by stair-stepping artifacts, this step involves 
decreasing the sampling frequency of the tracked 
contours by a factor of ten. The choice of downsam-
pling factor (DSF) is influenced by the size of the ana-
lyzed objects and is used to balance the reduction of 
the artifact with the preservation of relevant details 
in the morphology of the voxelized object.

•	 Digital straight segment algorithm. Once the con-
tours have been downsampled, a DSS-algorithm 
is applied to select the vertices that define different 
straight segments. DSS-algorithms use a polygo-
nal approximation to curves [36]. For this work, the 
Kovalevsky method [37] has been selected, which is 
based on calculating the narrowest strip defined by 
the nearest support below and above.

Tortuosity measure for 3D objects
The proposed 3D tortuosity measure extends the 2D 
measurement based on SCC by summing up all the slope 
changes in each contour across the three directions.

The following equations, expressed below as Eq. 6, rep-
resent the 3D adaptation of the chain element (as seen in 
Eq. 4). In these equations, N denotes the total number of 

chain elements, and SX , SY  , and SZ denote the number of 
slices in each direction.

The relationship between 2D tortuosity and 3D tortu-
osity computed per slice (i, j, k) is presented in Eq. 7. To 
compute τ3D , the proposed equation is presented in Eq. 8, 
where Ni,Mj , Lk refer to the number of chain elements 
and slope changes for each slice and direction.

The proposed equation to compute τ3D is presented in 
Eq. 8, where Ni,Mj , Lk , are the number of chain elements, 
and slope change for each slice, and direction.

Validation and error estimation
Based on Bribiesca’s proposal, the tortuosity τ value for 
simple convex closed curves always equals 2 [16], extend-
ing it to surfaces the value of τ3D for convex closed sur-
faces is always 6. This theoretical framework also implies 
that the tortuosity measurement is invariant under scal-
ing. All of which allows the validation of the proposed 
method and its error estimation. For this purpose, a 
group of voxelized spheres (convex, closed surfaces) was 
generated at different angles and with different radii.

The τ3D value was measured for each sphere to deter-
mine the accuracy and the absolute error ( �x ). In Eq. 9, 

(6)

Xi = x1ix2i . . . xNi , contour(s)in slice i, direction X , i = 1, . . . , SX

Yj = y1jy2j . . . yMj , contour(s)in slice j, direction Y , j = 1, . . . , SY

Zk = z1k z2k . . . zLk , contour(s)in slice k , direction Z, k = 1, . . . , SZ

(7)
Ni∑

n=1

| an |→

Ni∑

n=1

| xni |,

Mj∑

m=1

| ymj |,

Lk∑

l=1

| zlk |

(8)

τ3D =

SX∑
i=1

Ni∑
n=1

| xni |

SX
+

SY∑
j=1

Mj∑
m=1

| ymj |

SY
+

SZ∑
k=1

Lk∑
l=1

| zlk |

SZ

Fig. 3  Example of the stair-stepping artifact. a Voxelized representation of a straight line in a 90 degree angle and the corresponding contour. b 
Voxelized representation of a straight line in a 45 degrees angle and the corresponding contour
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xi represents each obtained value of τ3D , while x rep-
resents the theoretical value (for a sphere, τ3D = 6 ). 
Figure  4 presents the �x of the computed values of 
tortuosity as the radius and angle change. The X-axis 
represents the different angles at which the sphere is 
generated, ranging from 0 to 360 degrees, while the 
Y-axis shows various spheres radii, ranging from 10 to 
80 voxels. The color bar indicates the absolute error of 
τ3D . It is noteworthy that the tortuosity can be com-
puted with an error of ± 1 for objects with r ∈ [10, 70] 
voxels. As the radius of the voxelized sphere increases, 
the relationship between the voxel size and the sphere’s 
curvature undergoes a significant change. Due to the 
constant downsampling factor used in these experi-
ments, the downsampling process becomes insufficient 
in filtering out stair-stepping artifacts for larger spheres 
radii. Thus, these artifacts can introduce inaccuracies 
in the voxelized representation, contributing to the 
observed increase in error ( �x ). These results suggest 
that the proposed method for computing tortuosity is, 
to some extent, invariant under scaling for a downsam-
pling factor of 10 (as shown in Fig. 4). It is important to 
note that the computation of τ3D is extremely sensitive 
to the definition of chain elements; thus, the filtering 
process is essential to achieve an accurate estimation.

(9)�x = |xi − x|

Results: brain morphometry applications of τ3D  
To appreciate the potential and possible applications of 
the 3D tortuosity to quantify the shape of different brain 
structures, we measure the τ3D of the brain in two differ-
ent scenarios.

Pial surface
The first application consisted in using the proposed 
method to measure the τ3D of the brain’s pial surface 
employing different levels of smoothing filters. Here, 
a morphological closing operation was performed on 
a binary image I using a structuring element B as the 
smoothing filter, as defined in Eq. 10. The dilation opera-
tor ⊕ and the erosion operator ⊖ are used to fill holes, 
reduce concavities, and smooth rough features.

Thus, it is expected that the tortuosity of the voxelized 
pial surface of the brain will decrease as the structural ele-
ment B increases during the smoothing process. To eval-
uate whether the proposed method behaves as expected, 
a discrete sphere with various radii ( r ∈ 2, 4, 6, 8 ) was 
used as the structuring element B in the morphological 
closing operation applied to the original structure.

In Fig. 5, we can observe a loss of surface details (in the 
gyri and the sulci) as the radius of the structuring ele-
ment B increases. We can also appreciate, as expected, 
that the tortuosity τ3D decreases with the increasing size 
of B. The last two volumes exhibit no statistically signifi-
cant difference in tortuosity values. The sensitivity of τ3D 
becomes apparent in these results.

(10)(I ⊕ B)⊖ B

Fig. 4  Tortuosity error for different radii and angles. The Y-axis shows different radius sizes (voxels), X-axis, and generating angle; the color-scale 
shows the absolute error of measured tortuosity. The darker the color the less absolute error
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Alzheimer’s disease brain morphological changes: brain 
lobes
Alzheimer’s disease is a neurodegenerative disorder that 
is known to cause significant grey matter loss in various 
brain regions [38, 39]. This loss is expected to result in 
morphological changes in the pial surface of the brain. 
To assess these changes, our group previously proposed a 
method to estimate the sulcal width [40], which revealed 
that the mean sulcal width is typically greater for Alzhei-
mer’s patients across most brain sulci.

In this section, the goal is to investigate whether the 
proposed method can detect and quantify the aforemen-
tioned morphological changes. To this end, we utilized 
images from the Minimal Interval Resonance Imaging 
in Alzheimer’s Disease (MIRIAD) database, compris-
ing high-resolution MRI scans of 69 subjects. Given the 
sensitivity of 3D to both image quality and segmenta-
tion accuracy, a visual inspection was conducted. This 
involved a thorough inspection of the initial T1-weighted 
(T1w) images and the resultant brain extractions. 

Fig. 5  Brain volumes after applying the mathematical morphology operator of “closing” (Eq. 5) with five structuring elements: a sphere 
with increasing radii, and the corresponding computed values of 3D tortuosity

Fig. 6  Brain surface divided into the temporal, parietal, occipital, and temporal lobes
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Table 1  τ3D values for each brain lobe

ID Diagnosis Frontal lobe Occipital lobe Parietal lobe Temporal lobe

1 AD 67.4 31.8 59.7 36.6

2 AD 67.1 26.5 59.3 37.7

3 AD 67.7 30.1 54.5 38.0

4 Control 66.5 28.6 56.1 39.9

5 AD 63.8 35.0 55.9 36.6

6 Control 70.2 38.9 58.9 35.9

7 Control 68.5 33.3 59.0 43.1

8 AD 62.8 35.9 57.7 34.1

9 Control 75.3 34.8 60.7 40.2

10 AD 72.8 30.7 59.1 35.1

11 AD 68.6 30.2 54.8 36.4

12 AD 75.8 35.8 62.5 39.2

13 AD 67.2 30.1 57.0 38.7

14 AD 63.9 32.2 45.2 35.9

15 AD 67.0 32.0 57.1 36.7

16 AD 62.2 30.4 47.0 32.6

17 AD 69.1 34.6 64.2 40.5

18 AD 74.7 31.0 63.7 42.9

19 AD 58.2 32.5 55.5 38.4

20 AD 72.3 32.5 62.9 39.4

21 AD 70.4 35.2 62.0 39.9

22 AD 59.2 32.1 54.4 34.3

23 Control 73.3 32.2 63.1 39.9

24 Control 77.0 34.4 62.1 42.4

25 AD 77.3 33.7 63.4 40.8

26 Control 64.6 36.9 64.0 39.8

27 AD 63.4 35.4 60.4 36.4

28 Control 63.4 35.4 60.4 36.4

29 Control 63.4 35.4 60.4 36.4

30 AD 69.2 33.7 61.6 40.7

31 AD 53.8 39.8 61.0 30.9

32 Control 66.6 34.2 68.5 35.9

33 AD 69.9 33.6 63.0 38.2

34 Control 74.4 34.7 59.8 47.8

35 Control 69.2 34.7 65.5 43.7

36 Control 76.2 41.3 70.0 44.7

37 Control 72.4 36.8 64.3 47.4

38 AD 78.9 36.1 63.4 45.0

39 Control 70.9 38.5 67.7 41.2

40 AD 70.9 38.5 67.7 41.2

41 AD 52.6 29.8 45.8 34.9

42 Control 65.8 32.1 61.4 50.1

43 AD 68.4 34.5 55.5 46.9

44 AD 68.4 34.5 55.5 46.9

45 Control 86.7 35.1 73.2 49.8

46 AD 69.9 41.5 65.7 47.0

47 Control 70.6 32.3 62.4 47.8

48 AD 63.0 36.6 62.1 39.8

49 Control 67.0 37.5 68.8 45.2
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Subsequently, nine subjects were identified as not meet-
ing the criteria. As a result, our study focused on a sub-
set of 60 subjects, including 37 patients diagnosed with 
Alzheimer’s Disease (AD) and 23 control subjects. In our 
previous work [27] the τ3D values were measured for the 
central sulcus and the results showed that the values were 
significantly greater, with a z-value of 2.32, for the AD 
patients ( p < 0.05 ) for the left hemisphere. In contrast, 
the tortuosity values obtained for the central sulci on the 
right hemisphere cannot be differentiated between AD 
patients and control subjects. In this work, we segmented 
the frontal, temporal, parietal, and occipital lobes of the 

brain, and τ3D was calculated for each of them. An exam-
ple of the segmentation result in one of the subjects is 
presented in Fig. 6.

Table 1 presents the τ3D values calculated for all lobes 
and patients. Afterward, we used a Wilcoxon test to com-
pare the differences between Alzheimer’s patients and 
control subjects. The results showed that there were sta-
tistically significant differences in the 3D tortuosity val-
ues for all four lobes between the two populations. The 
positive z-score values indicated that the values were 
higher for control subjects than for Alzheimer’s patients 
(see Table 2).

To address the potential confounding effects of age 
and sex on morphometric brain measures we performed 
additional linear regression analyses, incorporating these 
chacteristics as covariates for each lobe. The results 
showed a statistically significant association between the 
diagnosis (AD or control) and tortuosity values for three 
out of the four lobes: frontal, parietal, and temporal. 
However, the association was not statistically significant 
for the occipital lobe after adjusting for age and sex, see 
Table 3.

We obtained the median (M) and standard devia-
tion (std) τ3D values for each population and each lobe. 
For the frontal lobe M= 68 with std=6 for AD patients, 
M= 71 with std=5 for control subjects. For the parietal 
lobe, M= 33 with std= 3 for AD patients, while M= 35 
with std= 2. In the case of the occipital lobe M=59 with 
std= 5 for AD, and M= 62 with std= 4 for the control 
subjects. Finally, for the temporal lobe M=39 with std=4 
for AD patients M= 43 with std=4 for control subject 
(see Table  1). After conducting the Wilcoxon test to 
analyze the differences in tortuosity values for the cen-
tral sulcus between AD and control subjects, the results 
of this analysis are presented in Table 4. In this case the 
tortuosity values for the central sulcus of the left hemi-
sphere resulted statistically significant p = 0.021 . When 

Table 1  (continued)

ID Diagnosis Frontal lobe Occipital lobe Parietal lobe Temporal lobe

50 AD 69.0 34.1 63.0 45.1

51 Control 70.7 33.6 62.5 45.9

52 Control 74.0 32.4 62.2 46.0

53 Control 69.2 36.7 64.1 42.6

54 AD 59.4 35.1 58.3 39.6

55 Control 74.6 33.3 58.7 41.9

56 AD 74.6 33.3 58.7 41.9

57 AD 61.2 31.3 55.1 40.0

58 AD 67.1 30.1 53.9 39.6

59 AD 57.3 27.4 45.5 35.9

60 AD 70.4 32.9 63.3 46.3

Table 2  Wilcoxon test results for brain lobes

Control-AD 
patients

Frontal lobe Parietal lobe Occipital 
lobe

Temporal 
lobe

p-values 0.0286 0.031 0.002 0.003

z-values 2.190 2.160 3.117 2.996

Table 3  Effect of diagnosis on tortuosity values by lobe after 
accounting for age and sex

Lobe p-value for 
Diagnosis

Frontal 0.0171

Occipital 0.0648

Parietal 0.0013

Temporal 0.0056

Table 4  Wilcoxon test results for the central sulcus

AD patients-Control Left hemisphere Right-
hemisphere

p-values 0.021 0.21

z-values 2.32 1.26
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performing the linear regression analysis and accounting 
for age and sex again the tortuosity values for the central 
sulcus of the left hemisphere remain significant p < 0.05 . 
An example showcasing the 3D voxelized representation 
of the central sulcus is shown in Fig. 7.

Discussion
Although other methods are available for measuring the 
tortuosity of 3D objects, they are designed for specific 
phenomena and are not meant to describe the 3D mor-
phological changes of volumetric objects. These methods 
focus on capturing changes in 3D trajectories, whereas 
our approach is specifically designed to measure the 3D 
morphological variations of volumetric objects. Con-
sequently, our method cannot be compared with these 
other methods, establishing our proposal as the first one 
to measure the tortuosity of voxelized objects.

For example, Peyrega, Pardo-Alonso, and Gommes 
proposed a three-dimensional tortuosity measure to 
analyze porous media [41–43]. In [41], tortuosity is 
defined as the ratio between the geodesic distance from 
each voxel to two different subsets of the object and 
the Euclidean distance between them. This method cal-
culates a tortuosity value for each voxel by connecting 
them through a geodesic path. However, it was specifi-
cally designed for 3D images of fibrous materials where 
entry and exit points are well-defined. Therefore, its 
applicability is limited to this type of volumetric object 
and cannot be extended to others. In [42] a comparison 
of four different methods for computing the geometri-
cal tortuosity in infiltrated aluminum cellular materi-
als is presented. The estimation methods compared 
were all based on the ratio between geodesic distance 

and Euclidean distance to define tortuosity. The differ-
ence among these methods was in the definition of the 
paths through the material. Gommes Cedric et  al. [43] 
suggested measuring the tortuosity of porous materials 
using binary or grayscale reconstructions. They pro-
posed two methods: the first approach involves directly 
comparing the geodesic and Euclidean distances calcu-
lated from any pore pixel to any limit of the tomogram. 
The second method is based on the geodesic recon-
struction of the tomogram pore space, starting from any 
limits and taking into account its intensity variations.

The extension of the 2D SCC-based approach to 3D 
objects aimed to capture and quantify the variations in 
morphology that are indicative of the complexity of vox-
elized objects. The advantages of using the SCC-based 
approach for measuring and quantifying the morphologi-
cal changes of volumetric objects are numerous. Firstly, 
the SCC is generated directly from the voxels, reduc-
ing sources of uncertainty and improving computation 
speed. Secondly, this approach can be applied to any vox-
elized object, making it widely applicable in various fields. 
Finally, the presented applications demonstrate possible 
methods for estimating τ3D , which can contribute to a 
more detailed description of different brain structures.

This work presents a novel to quantify the morphologi-
cal changes in the brain’s folding structure attributable 
to Alzheimer’s disease (AD). Previous studies primarily 
focused on variations in sulcal width and cortical thin-
ning as key descriptors of AD-related morphological 
changes. In contrast, our study introduces tortuosity as a 
descriptor that offers a different way to understand these 
variations. By estimating tortuosity across different brain 
lobes and the central sulcus, we demonstrate its poten-
tial in differentiating between AD patients and control 

Fig. 7  Two different central sulci of different subjects, both from the left hemisphere. Right, the voxelized volume of a patient with AD 
and the maximum value of tortuosity. Left, the voxelized volume of a control subject with the minimum value of tortuosity
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subjects. Our findings reveal that tortuosity values (3D) 
are generally higher in control subjects, suggesting a 
decrease in the complexity of brain surface folding in AD 
patients.

These changes in tortuosity provide insights beyond 
traditional measures such as cortical thickness or volume 
loss. They reflect the non-isotropic nature of neurode-
generative changes in AD, where certain brain regions 
exhibit more pronounced morphological alterations. The 
decrease in tortuosity observed in AD patients aligns 
with the known phenomena of cortical thinning and wid-
ening of sulci. Our findings suggest that alterations in 
tortuosity capture the essence of how AD impacts brain 
morphology. This new understanding of tortuosity’s rela-
tionship with AD mechanisms underscores its potential 
value in early detection and monitoring of the disease’s 
progression.

Conclusions
We introduced a new method to describe the shape of 3D 
voxelized objects, called τ3D . This method is based on the 
SCC approach originally proposed by Bribiesca for 2D 
curves [16]. τ3D is computed as the normalized sum of 
all the slope chain elements for each filtered contour in 
every slice, and in the X, Y, and Z directions (Eq. 8).

To ensure that the computed tortuosity value corre-
sponds more closely to the actual theoretical value, we 
filtered out the effect of the stair-stepping artifact on 
the 3D tortuosity measure. Also, we conducted a thor-
ough methodological validation of the τ3D with a series 
of controlled experiments. This validation establishes 
the accuracy and scale invariance of τ3D . However, 
validating τ3D in a clinical scenario presents signifi-
cant challenges. These challenges stem mainly from the 
practical difficulties associated with directly accessing 
brain structures.

The new τ3D measure proposed in this study enables a 
quantitative characterization and comparison of the mor-
phology of brain structures such as gray matter and cen-
tral sulci. When analyzing the subjects of the MIRIAD 
database, the study found that the values of τ3D obtained 
for the central sulci have the potential to serve as a bio-
marker for Alzheimer’s disease. Specifically, measuring 
the 3D tortuosity for the left central sulci showed statisti-
cally significant differences between patients and control 
subjects.

The potential applications of the proposed morpho-
logical feature are vast, particularly in medical imaging, 
where irregular shapes often hold important informa-
tion. Our primary contribution is the extension of the 
two-dimensional tortuosity definition to three-dimen-
sional space and the promising results it yields as a bio-
marker for neurodegenerative diseases. Future research 

should extend these findings to other databases con-
taining neurodegenerative diseases and explore longi-
tudinal studies.
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