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Abstract
Background To develop and validate a peritumoral vascular and intratumoral radiomics model to improve 
pretreatment predictions for pathologic complete responses (pCRs) to neoadjuvant chemoradiotherapy (NAC) in 
patients with triple-negative breast cancer (TNBC).

Methods A total of 282 TNBC patients (93 in the primary cohort, 113 in the validation cohort, and 76 in The Cancer 
Imaging Archive [TCIA] cohort) were retrospectively included. The peritumoral vasculature on the maximum intensity 
projection (MIP) from pretreatment DCE-MRI was segmented by a Hessian matrix-based filter and then edited by a 
radiologist. Radiomics features were extracted from the tumor and peritumoral vasculature of the MIP images. The 
LASSO method was used for feature selection, and the k-nearest neighbor (k-NN) classifier was trained and validated 
to build a predictive model. The diagnostic performance was assessed using the ROC analysis.

Results One hundred of the 282 patient (35.5%) with TNBC achieved pCRs after NAC. In predicting pCRs, the 
combined peritumoral vascular and intratumoral model (fusion model) yields a maximum AUC of 0.82 (95% 
confidence interval [CI]: 0.75, 0.88) in the primary cohort, a maximum AUC of 0.67 (95% CI: 0.57, 0.76) in the internal 
validation cohort, and a maximum AUC of 0.65 (95% CI: 0.52, 0.78) in TCIA cohort. The fusion model showed improved 
performance over the intratumoral model and the peritumoral vascular model, but not significantly (p > 0.05).

Conclusion This study suggested that combined peritumoral vascular and intratumoral radiomics model could 
provide a non-invasive tool to enable prediction of pCR in TNBC patients treated with NAC.
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Introduction
Triple-negative breast cancer (TNBC) is characterized 
by the lack of the estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor 
receptor 2 (HER2). TNBC, which accounts for 12–15% 
of all mammary tumors, has a worse outcome compared 
with other breast cancer subtypes [1]. Currently, neoad-
juvant chemotherapy (NAC) is the standard method used 
to prevent systemic relapse in TNBC patients with locally 
advanced disease. A pathologic complete response (pCR) 
to NAC is considered a surrogate marker for improved 
disease-free survival and overall survival [2]. Although 
TNBC is the most chemotherapy-responsive tumor of all 
breast cancer subtypes, there is a high risk of recurrence 
and high rates of visceral and central nervous metastases 
in TNBC patients not achieving pCR [3]. To avoid the 
toxicity of ineffective treatments, it is essential to stratify 
patients into appropriate treatment groups before the 
early treatment stages.

Dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI), which depicts and characterizes 
morphologic and kinetic profiles of tumors and the dis-
organized, leaky vasculature, is the preferred imaging 
modality in the NAC setting [4]. Furthermore, radiomics 
analysis involving computer-based extraction of a large 
number of quantitative features from DCE-MRI has 
been shown to improve pCR prediction [5]. Most pre-
vious radiomics studies have focused on extracting fea-
tures from tumor [6–8]. Mazurowski et al. [9] and Wang 
et al. [10] that evaluated features extracted from tumor-
associated background parenchyma enhancement (BPE) 
in the context of NAC for breast cancer showed an asso-
ciation between this peritumoral radiomics and pCR. In 
addition, one published study showed that the radiomic 
descriptor of intratumoral and peritumoral regions on 
pretreatment DCE-MRI were associated with treatment 
responses in breast cancer [11]. These evidences indicate 
that valuable outcome-related information can be found 
outside of the tumor tissue. Angiogenesis, the biologi-
cal process in which new blood vessels grow from pre-
existing vasculature to provide oxygen and nutrients to 
tumors, plays a pivotal role in tumor responses to che-
motherapy [12]. The exceptionally variable vasculature 
(in size, shape, and architecture) generates heteroge-
neous blood flow and limited perfusion throughout the 
tumor and is essential for cancer proliferation and likely, 
treatment responses. Therefore, peritumoral vascular 
and intratumoral features may potentially predict pCR in 
breast cancer.

In the present study, we aimed to develop and validate 
a peritumoral vascular and intratumoral radiomics model 
from pretreatment DCE-MRI to predict pCR in patients 
with TNBC undergoing surgery after NAC.

Materials and methods
Patients
The retrospective study was approved by the institutional 
review board of Fudan University Shanghai Cancer Cen-
ter, and the need to obtain informed consent was waived. 
In this multicohort study, radiomics analysis was applied 
to three independent cohorts. A total of 328 women 
patients diagnosed with breast cancer histologically and 
TNBC immunohistochemically, and who received com-
plete NAC with no prior treatments, underwent breast 
MRI before the start of NAC, and underwent surgery 
after NAC, were included in this study. The exclusion 
criteria included the following: (a) patients with a prior 
history of malignance (n = 8), (b) patients without pre-
treatment MRI or post-operative pathology (n = 23), (c) 
patients with poor qualities or motion artifacts on DCE-
MRI (n = 4), (d) patients with marked BPE on DCE-MRI 
(n = 10), (e) and patients without obvious peritumoral 
vessel on DCE-MRI (n = 1) (Fig.  1). Finally, the dataset 
from our center between February 1, 2016 and May 31, 
2019 was used as the primary cohort and consisted of 
93 patients (mean age, 49 years; range 26–75 years). The 
dataset from our center between June 1, 2019 and Feb-
ruary 26, 2021 was used as the internal validation cohort 
and consisted of 113 patients (mean age, 47 years; range 
25–72 years). The other dataset from “Duke-Breast-Can-
cer-MRI” of The Cancer Imaging Archive (TCIA) [13] 
was used as the external validation cohort and consisted 
of 76 patients (mean age, 49 years; range 24–73 years).

In the primary and internal validation cohorts, ER, 
PR, HER2, Ki-67 index expression patterns, and axillary 
lymph node metastatic assessments were obtained from 
histopathologic reports of core biopsies performed before 
NAC administration. The immunohistochemical assess-
ment of ER, PR, and HER2 was performed using the 
standard methods as previously reported [14]. In those 
tumors that were classified as 2+, HER2 genetic testing 
was confirmed by fluorescence in situ hybridization.

Neoadjuvant chemotherapy regimen and response 
assessment
In the primary and internal validation cohorts, the 
chemotherapy regimens included epirubicin/cyclo-
phosphamide followed by docetaxel (EC followed by 
T), docetaxel/carboplatin (TCb), and EC. The median 
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number of NAC cycles was six (range, 4–8). The mean 
interval between the end of NAC and surgery was 10 
days (range, 3–27 days). There were no details of NAC 
regimens in TCIA cohort. pCR was determined by 
microscopic examination of the excised tumor and 
lymph nodes after the completion of NAC and defined as 
no invasive or noninvasive residual in breast or axillary 
nodes (ypT0 ypN0) [15].

MRI protocols
The detailed parameters of DCE-MRI acquisition of 
all cohorts can be found in Appendix E1 in the Supple-
mentary Material. In the primary and internal validation 
cohorts, all breast MR examinations were performed 
within 14 days before the start of NAC. DCE-MRI was 
performed using a fat-suppressed T1-weighted 3D fast 
spoiled gradient-echo sequence before and five times 
continuously. The first postcontrast phase was performed 
twenty seconds after a bolus injection of a gadolinium 
contrast agent (Magnevist, Bayer HealthCare Pharma-
ceuticals Inc.). The injections were performed with an 
automatic injector (OptiStar® Elite, Liebel-Flarsheim) at a 
dose of 0.1 mmol per kilogram of body weight and rate of 
2 ml/sec, followed by a 20 mL saline flush. The subtrac-
tion and axial MIP images were generated automatically 
after acquisition.

In TCIA dataset, the contrast agents included Gadavist, 
Magnevist, and Multihanc with the volume of 10–20 ml. 
The subtraction and axial MIP images were manually cal-
culated by the radiologist (TX, 5 years of experience).

Tumor segmentation and peritumoral vessel segmentation
All MR images were reviewed by two breast radiolo-
gists (TX, 5 years of experience; and QZ, 11 years of 
experience), who were blinded to the results of the 
treatment outcomes. For patients with multifocal or mul-
ticentric tumors, the tumors with the largest size and the 

ipsilateral vessel were segmented and analyzed on the 
basis of the axial MIP of the first postcontrast phase.

Tumor segmentation on the MIP image was conducted 
manually by the breast radiologist (TX, 5 years of expe-
rience). The region of interest (ROI) was delineated to 
include the entire tumor by using a free open-source 
software package (ITK-SNAP, version 3.8.0; http://itk-
snap.org). If there was overlap between the index tumor 
and the peritumoral vessel in the axial MIP image, the 
intersection was removed using the eraser tool. The illus-
tration for tumor segmentation can be found in Appen-
dix E2 in the Supplementary Material.

The enhancement and segmentation of peritumoral 
vessel were performed by the eigenvalue analysis of the 
multiscale Hessian-based filter, which showed simul-
taneous noise and background suppression and ves-
sel enhancement in MIP images [16]. The details of the 
multiscale Hessian-based filter method and peritumoral 
vessel segmentation by algorithm can be found in Appen-
dix E3 and E4 in the Supplementary Material. The seg-
mentation of peritumoral vessel were performed with 
the Python programming language (Scikit-image pack-
age, v. 3.6, Python Software Foundation, https://www.
python.org/). Then, the peritumoral vasculature by algo-
rithm segmentation was loaded to ITK-SNAP again, and 
a senior breast radiologist (QZ, 11 years of experience) 
performed manual editing by painting missing voxels 
and erasing incorrect voxels to get the final peritumoral 
vasculature. The manual vessel editing procedure took 
approximately 4 min per case. The flowchart and illustra-
tion for the vessel segmentation procedures are shown in 
Figs. 2 and 3.

The final peritumoral vasculature, checked and edited 
by the breast radiologist (QZ, 11 years of experience), 
represented the reference standard. To evaluate the per-
formance of vessel detection by algorithm segmentation, 
the correct-detection rate, incorrect-detection rate, and 

Fig. 1 Flowchart of the study population
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Fig. 3 An illusion of vessel segmentation. (a) The axial maximum intensity projection (MIP) image in one patient. After the anatomic breast segmenta-
tion was performed (b), the tumor laterality was segmented according to the tumor location (c). Peritumoral vessel in the MIP image were enhanced 
and segmented with a multiscale Hessian-based filter (d). After hole filling and intersection steps were performed, peritumoral vasculature by algorithm 
segmentation was identified (e). The final vessel mask was identified via manual editing (f)

 

Fig. 2 Flowchart of the tumor and peritumoral vessel segmentation procedure. Tumor and peritumoral vessel segmentations were performed on the 
axial maximum intensity projection (MIP) of the first postcontrast phase. After breast segmentation, the lateral breast index tumor was segmented ac-
cording to the tumor location. Peritumoral vessel on the MIP image was segmented using a multiscale Hessian-based filter. Additionally, the peritumoral 
vasculature by algorithm segmentation was generated via the intersection of the lateral tumor breast mask and the binary vessel segmentation region 
after reducing small gaps and filling holes. Finally, the vessel mask was identified via manual editing
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missed-detection rate were computed (Appendix E5 in 
the Supplementary Material).

Radiomic feature extraction
After tumor and peritumoral vessel were segmented, the 
shape, statistical and textural features were extracted on 
MIP images using the PyRadiomics Python package [17]. 
For the tumor and peritumoral vessel detected on the 
MIP images, we extracted radiomics features, including 
10 shape features, 19 first-order statistical features, and 
70 texture features. Furthermore, we extracted 356 wave-
let features (i.e., LL, LH, HL, HH) for each tumor. Wave-
let features provide representative transformed domain 
information regarding intensity and textural features by 
decomposing the original image in low and high frequen-
cies [18]. Finally, 455 features quantifying intratumoral 
characteristics and 99 features quantifying peritumoral 
vascular characteristics were obtained.

Radiomic feature selection and model development
All the radiomics features were scaled to a range of [0, 
1] by using a minimum-maximum scaler. Then, the least 
absolute shrinkage and selection operator (LASSO) con-
figured recursive feature elimination (RFE) method was 
applied to select features for the intratumoral model, per-
itumoral vascular model, individually. And only the train-
ing dataset was used to train the LASSO feature selector. 
The k-nearest neighbor (k-NN) classifier was used to 
train and test the radiomics models for predicting pCR to 
NAC. The k-NN (k = 5) technique was trained based on 
the primary cohort, and then tested in the internal and 
external validation cohorts.

After building the tumor features-based prediction 
model and vessel features-based prediction model, an 
information fusion method was applied to fuse the pre-
diction scores generated by the two models to improve 
the model performance [19]. The information fusion 
method included the minimum, maximum, and weight-
ing average of the fusion.

Statistical analysis
Comparisons between the patient groups were employed 
with the Chi-square test or Fisher’s test for qualita-
tive variables and the Student’s t-test or Mann-Whitney 
U test for quantitative variables. The areas under the 
receiver operating characteristic (ROC) curves (AUCs) 
were assessed and compared among the intratumoral 
model, peritumoral vascular model, and fusion model 
using the DeLong method [20]. Statistical analyses and 
radiomics analyses were performed with the Python 
programming language (v. 3.6, Python Software Foun-
dation, https://www.python.org/). In our implementa-
tion, we utilized the default parameters provided by 
the Python packages for building the machine-learning 

classifier. Regarding the min-max normalization used in 
our method, it was applied consistently to maintain the 
scale of variables across the dataset. p< 0.05 was consid-
ered statistically significant.

Results
Patients and pathologic complete responses
In total, 282 patients with TNBC were finally enrolled 
in this study. The clinical pathologic characteristics of 
patients from all cohorts are listed in Table 1.

A hundred of 282 patients (35.5%) achieved pCRs after 
NAC. The pCR rates in the primary cohort, internal vali-
dation cohort, and TCIA cohort were 36.6%, 38.9%, and 
29.0%, respectively. With regard to clinicopathologic 
characteristics, no differences between the pCR and non-
pCR groups in all cohorts were found in terms of the axil-
lary status, Ki-67 expression, rim enhancement sign, or 
chemotherapy regimen (p > 0.05). Patients who achieved 
pCR in the primary cohort had greater premenopausal 
status, and had smaller tumor sizes than those who did 
not (p = 0.012, 0.022, respectively). Meanwhile, pCR was 
found to be significantly associated with clinical stage, 
tumor size and enhancement pattern in the internal vali-
dation cohort (p = 0.042, 0.024, 0.018, respectively).

Feature extraction
The overall performance of vessel identification was eval-
uated on all cohorts (Table 2). Vessel segmentation exam-
ples of 2 representative patients are shown in Fig. 4.

Eight tumor features and nigh peritumoral vessel 
features were selected from initial feature pool were 
included for further analysis. Detailed information on 
selected features is shown in Table 3.

Performance of radiomics models
The AUCs and ROC curves of the radiomics analyses in 
all cohorts are shown in Table 4. Other relevant classifi-
cation metrics including accuracy, precision, recall, sen-
sitivity, and specificity are shown in Appendix E6 in the 
Supplementary Material.

The peritumoral vascular model resulted in an AUC 
ranging from 0.61 to 0.77: primary cohort, 0.77 (95% 
confidence interval [CI]: 0.69, 0.83); internal validation 
cohort, 0.65 (95% CI: 0.54, 0.73); TCIA cohort, 0.61 (95% 
CI: 0.47, 0.73). Meantime, the intratumoral model yielded 
an AUC ranging from 0.61 to 0.75: primary cohort, 0.75 
(95% CI: 0.66, 0.81); internal validation cohort, 0.64 (95% 
CI: 0.53, 0.73); TCIA cohort, 0.61 (95% CI: 0.47, 0.74). 
There were no statistically significant differences in each 
cohort of AUCs using intratumoral features or peritu-
moral vascular features (p > 0.05).

The fusion model yielded the highest AUC of 0.82 (95% 
CI: 0.75, 0.88) in the primary cohort, and the highest 
AUC of 0.67 (95% CI: 0.57, 0.76) in the internal cohort 

https://www.python.org/
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and the highest AUC of 0.65 (95% CI: 0.52, 0.78) in 
TCIA cohort (Table 5; Fig. 5). The fusion model showed 
improved performance over the intratumoral model and 
the peritumoral vascular model, but not significantly 
(p > 0.05).

Discussion
In this study, we developed and validated a radiomics 
model that incorporated peritumoral vascular and intra-
tumoral features extracted from pretreatment MIP 
images to predict pCRs to NAC in patients with TNBC. 
The proposed radiomics model provides new insights 

Table 1 The clinicopathologic characteristics of the patients with TNBC in the three cohorts
Characteristic Primary cohort

(n = 93)
Internal validation cohort
(n = 113)

External validation cohort
(n = 76)

pCR
(n = 34)

Non-pCR
(n = 59)

p pCR
(n = 44)

Non-pCR
(n = 69)

p pCR
(n = 22)

Non-pCR
(n = 54)

p

Age, mean ± SD, years 46.59 ± 11.42 50.90 ± 11.14 0.078 45.32 ± 9.37 48.13 ± 11.85 0.186 47.77 ± 14.17 49.83 ± 10.49 0.487
Menopausal status 0.012* 0.434 0.723
Peri or Postmenopausal 11 35 19 35 8 22
Premenopausal 23 24 25 34 14 32
Clinical stage 0.946 0.042* 0.819
I/II 25 43 32 37 17 43
III/IV 9 16 12 32 5 11
Lesion size, mean ± SD, mm 33.74 ± 15.95 43.25 ± 20.59 0.022* 36.09 ± 19.34 46.72 ± 26.68 0.024* 27.91 ± 16.94 34.30 ± 21.48 0.217
Axillary LN before NAC 0.679 0.327 0.191
Negative 9 18 11 12 13 23
Positive 25 41 33 57 9 31
Ki-67 before NAC 0.121 0.480 NA
Negative 0 4 2 6 NA NA
Positive 34 55 42 63 NA NA
Enhancement Pattern 0.083 0.018* 0.162
With nonmass enhancement 4 16 4 19 1 11
Mass only 30 43 40 50 21 43
Rim Enhancement 0.640 0.066 0.468
Negative 19 30 21 45 15 32
Positive 15 29 23 24 7 22
Chemotherapy regimen 0.616 0.430 NA
EC-T 25 42 24 29 NA NA
EC 2 7 5 10 NA NA
TCb 7 10 15 30 NA NA
EC epirubicin with cyclophosphamide; EC-T epirubicin with cyclophosphamide plus docetaxel; LN lymph node; NAC neoadjuvant chemotherapy; pCR pathologic 
complete response; SD standard deviation; TCb docetaxel with carboplatin.
*p < 0.05.

Table 2 Vessel detection algorithm performance
Correct-detection rate
(%)

Incorrect-detection rate
(%)

Missed-detection rate
(%)

Primary cohort
Range 60–100 0–45 0–40
Median 90.0 20.9 10.0
Mean (SD) 89.8 (5.2) 20.1 (6.5) 10.2 (5.2)
Internal validation cohort
Range 64–100 0-42.9 0–36
Median 86.4 25.6 13.6
Mean (SD) 85.1 (7.1) 24.9 (7.3) 14.9 (7.1)
External validation cohort
Range 58.3–100 0–40.0 0-41.7
Median 84.3 27.5 15.7
Mean (SD) 83.1 (9.1) 27.2 (8.2) 16.9 (9.1)
SD standard deviation.
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Table 3 Radiomics features extracted from the tumor and peritumoral vessel were identified after feature selection
Location Feature 

family
Feature Description

Tumor 
(wavelet-LL)

GLDM High Gray Level Emphasis Distribution of the higher gray-level values
Large Dependence Emphasis Distribution of large dependencies
Large Dependence High Gray Level Emphasis Joint distribution of large dependence with higher gray-level values
Large Dependence Low Gray Level Emphasis Joint distribution of large dependence with lower gray-level values
Low Gray Level Emphasis Distribution of low gray-level values
Small Dependence Emphasis Distribution of small dependencies
Small Dependence High Gray Level Emphasis Joint distribution of small dependence with higher gray-level values
Small Dependence Low Gray Level Emphasis Joint distribution of small dependence with lower gray-level values

Vessel GLDM Gray Level Variance Variance in grey level in the image
High Gray Level Emphasis Distribution of the higher gray-level values
Large Dependence Emphasis Distribution of large dependencies
Large Dependence High Gray Level Emphasis Joint distribution of large dependence with higher gray-level values
Large Dependence Low Gray Level Emphasis Joint distribution of large dependence with lower gray-level values
Low Gray Level Emphasis Distribution of low gray-level values
Small Dependence Emphasis Distribution of small dependencies
Small Dependence High Gray Level Emphasis Joint distribution of small dependence with higher gray-level values
Small Dependence Low Gray Level Emphasis Joint distribution of small dependence with lower gray-level values

GLDM Gray Level Dependence Matrix.

Table 4 Performance of the peritumoral vascular radiomics model and intratumoral radiomics model
Primary cohort Internal validation cohort External validation cohort
AUC 95% CI AUC 95% CI AUC 95% CI

Tumora 0.75 [0.66, 0.81] 0.64 [0.53, 0.73] 0.61 [0.47, 0.74]
Vesselb 0.77 [0.69, 0.83] 0.65 [0.54, 0.73] 0.61 [0.47, 0.73]
Tumora: prediction score generated using the intratumoral features-based model; Vesselb: prediction score generated using the peritumoral vascular features-
based model.

AUC, area under the curve; CI, confidence interval.

Fig. 4 Examples of vessel segmentation in two representative patients are shown. The upper row shows a patient with triple-negative breast cancer 
(TNBC) who did not achieve a pathologic complete response (pCR); the lower row shows a patient with TNBC who achieved a pCR. (a) and (d) are 
maximum intensity projection (MIP) images. (b) and (e) are peritumoral vessel segmented by algorithm and intratumoral segmentation. (c) and (f) are 
peritumoral vessel edited by the radiologist and intratumoral segmentation
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into the biological characteristics of TNBC and the early 
prediction of its pathologic responses to NAC.

Identifying patients not likely to benefit from NAC 
before treatment could enable tailored individual patient 
therapies, especially patients with TNBC, which has been 
known to display the highest distant metastatic rates and 
lowest overall survival of all breast cancer subtypes. Pre-
vious studies have shown that the prediction of pCRs to 
NAC varied across biological subtypes, indicating the 
need for specific radiomics models [3, 15]. A radiomics 
model dedicated to a specific biological subtype could 
create more reproducible and robust classification results 
[21].

Previous studies using intratumoral texture features 
extracted from DCE-MRI yielded AUCs of 0.64–0.68 for 
the early prediction of pCR in patients with TNBC [7, 22] 
and were in accordance with those in our study using tex-
ture features extracted from 2D MIP. The all intratumoral 
texture features selected were obtained from wavelet 
images, which are high-dimensional features that cannot 
be perceived by humans but hold more detailed informa-
tion about tumors and are more sensitive when predict-
ing pCRs [7, 23]. Although MIPs miss the proportion of 
tumor intensity, MIPs integrated with a DCE-MRI pro-
tocol can reveal not only the visualization of enhancing 
tumor but also the tumor-associated vasculature in the 
clinical scenario, and simplify the workflow to perform 
the extraction of tumor and peritumoral vasculature in 
the only one image. To the best of our knowledge, MIPs 
have never been proposed for feature extractions. The 
potential association between MIP-derived tumor fea-
tures and pCR should be further investigated in future 
studies.

Tumor angiogenesis is essential for the growth, inva-
sion, and metastasis of tumors. Overexpression of 
vascular endothelial growth factor (VEGF) has been 

extensively investigated to be a key player in the forma-
tion of tumor neovasculature with many abnormal fea-
tures [24]. Compared with ER-positive breast cancer, 
TNBC has a higher degree of VEGF, an avid stimulator 
of angiogenesis, which is closely correlated with the risk 
of distant metastases [25]. This angiogenic activity con-
stitutes the basis for the detection and differentiation of 
breast cancer using DCE-MRI. MIPs from DCE-MRI can 
assess angiogenic activity and are considered a promis-
ing noninvasive investigational tool. Studies focusing on 
the use of peritumoral vessel to evaluate the response of 
patients with breast cancer to NAC have been reported 
[26, 27]. These studies assessed quantitative differences in 
the number and volume of peritumoral vessels before and 
after NAC and showed that vessel changes could serve as 
an early indicator to predict pathologic responses.

In our study, we performed Hessian-based algorithm 
to segment the tumor-associated vessels from the axial 
MIPs of the first postcontrast phase where the greatest 
lesion conspicuity with the lowest background paren-
chymal enhancement were demonstrated, as well as the 
best “angiographic effect” for both arteries and veins [28]. 
Hessian-based algorithm showed correct-detection rates 
of 83.1-89.8%, incorrect-detection rates of 20.1-27.2%, 
and missed-detection rates of 10.2-16.9%, which are 
similar to those in previous studies with the same algo-
rithm [29, 30]. The incorrect-detection rates were mainly 
caused by linearly distributed BPE, as well as subtraction 
artifacts along the breast skin. The missed-detection rates 
were mainly due to low-signal vascular pixels identified 
by the radiologist but not detected by the algorithm. Fur-
thermore, the senior radiologist checked and edited the 
vasculature segmented by the algorithm to get the final 
peritumoral vasculature for the further radiomics feature 
extraction. The best-performing vessel features were all 
from gray level dependence matrix (GLDM) quantifying 

Table 5 A summary of the area under the curve (AUC) values obtained using different fusion methods to combine prediction scores 
generated by tumor features and peritumoral vessel features

Primary cohort Internal validation cohort External validation cohort
Model AUC 95% CI AUC 95% CI AUC 95% CI
Minimum 0.81 [0.74, 0.87] 0.65 [0.54, 0.74] 0.63 [0.49, 0.76]
Maximum 0.76 [0.68, 0.83] 0.65 [0.54, 0.74] 0.59 [0.44, 0.70]
0.9×Tumora+0.1×Vesselb 0.80 [0.72, 0.86] 0.67 [0.57, 0.76] 0.64 [0.50, 0.77]
0.8×Tumor + 0.2×Vessel 0.80 [0.72, 0.86] 0.67 [0.57, 0.76] 0.64 [0.50, 0.77]
0.7×Tumor + 0.3×Vessel 0.81 [0.73, 0.87] 0.67 [0.56, 0.75] 0.65 [0.51, 0.77]
0.6×Tumor + 0.4×Vessel 0.82 [0.75, 0.88] 0.67 [0.55, 0.75] 0.65 [0.52, 0.78]
0.5×Tumor + 0.5×Vessel 0.82 [0.74, 0.88] 0.67 [0.56, 0.76] 0.64 [0.51, 0.77]
0.4×Tumor + 0.6×Vessel 0.81 [0.73, 0.87] 0.66 [0.55, 0.75] 0.62 [0.48, 0.76]
0.3×Tumor + 0.7×Vessel 0.81 [0.73, 0.87] 0.66 [0.55, 0.75] 0.62 [0.49, 0.76]
0.2×Tumor + 0.8×Vessel 0.78 [0.70, 0.85] 0.65 [0.54, 0.74] 0.62 [0.48, 0.76]
0.1×Tumor + 0.9×Vessel 0.77 [0.68, 0.83] 0.65 [0.54, 0.74] 0.61 [0.46, 0.73]
Tumora: prediction score generated using the intratumoral features-based model; Vesselb: prediction score generated using the peritumoral vascular features-
based model.

AUC area under the curve; CI confidence interval.



Page 9 of 11Xie et al. BMC Medical Imaging          (2024) 24:136 

gray level dependencies in an image. There features may 
indicate more heterogeneous of abnormal angiogenic 
vessels surrounding tumors demonstrating non-pCRs 
[31]. A higher level of abnormal vasculature and the pos-
sibility of more discontinuities in the convoluted vascu-
lature might constrict the delivery of chemotherapeutic 
drugs to tumors, thereby resulting in worse treatment 
responses [32].

Peritumoral vascular model of TNBC on pretreatment 
MIP images demonstrated a similar classification per-
formance to that of intratumoral model. Furthermore, 
a combined peritumoral vascular and intratumoral sig-
nature resulted in improved performance, albeit the dif-
ference was not significant. These findings suggest that 
peritumoral vascular radiomics based on MIP might 
provide a preliminary success for treatment responses in 

patients with TNBC. However, the performance of our 
model in the external validation cohort was observed to 
be subpar. Factors such as differences in patient demo-
graphics and treatment protocols likely contributed 
to this discrepancy. Moving forward, in future stud-
ies, addressing these limitations and refining the model 
through additional validation steps will be paramount to 
enhancing its reliability and applicability in real-world 
clinical settings.

For this study, we acknowledge the following limita-
tions. First, the models in the retrospective study did 
not used these certain imaging-related features, such as 
tumor size and enhancement pattern, which exhibited a 
positive correlation with pCR prediction in one or two 
cohorts. Further prospective studies will explore these 
imaging-based features to enhance the performance of 

Fig. 5 Receiver operating characteristic (ROC) curves generated using the three different radiomics models in the primary (a), internal validation (b), 
and TCIA (c) cohorts. The models included one that only used peritumoral vessel features (green), one that only used tumor features (blue), and the best 
fusion model (red)
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the pCR prediction model. Second, we extracted tumor 
features from a single representative 2D MIP image, 
which might not provide a comprehensive assessment 
of whole-tumor heterogeneity. Also, the vasculature 
segmented from the 2D MIP image could give distorted 
measures. Specifically, we used the axial MIP image 
to extract peritumoral vascular and intratumoral fea-
tures because the MIP image revealed not only tumor 
enhancements but also tumor vasculature, making the 
interpretation and analysis simpler than when using full-
study DCE-MRI images. We are currently exploring 3D 
tumor (including necrosis or excluding necrosis) and 
vascular segmentation on 3D-subtracted postcontrast 
images [33]. Third, the evaluation of peritumoral vessels 
was not compared with vessels on the contralateral nor-
mal breast in our study. Further studies evaluating vessels 
of the contralateral normal breast are needed. Finally, MR 
contrast agent, MR devices, scanning parameters such 
as spatial resolution of images, and different phases of 
the menstrual cycle have effects on the segmentation of 
peritumoral vessels and so on the performance of peritu-
moral vascular radiomics analysis.

Conclusions
The peritumoral vascular and intratumoral radiomics 
based on pretreatment MIP images from DCE-MRI can 
be used to predict pCR to NAC in TNBC patients. This 
strategy of radiomics analysis could provide a potential 
approach to assist in understanding the biologic behav-
ior, pretreatment planning, and response prediction of 
TNBC.

Abbreviations
AUC  Areas under the curve
BPE  Background parenchyma ehancement
DCE-MRI  Dynamic contrast-enhanced magnetic resonance imaging
GLDM  Gray level dependence matrix
k-NN  k-nearest neighbor
LASSO  Least absolute shrinkage and selection operator
MIP  Maximum intensity projection
NAC  Neoadjuvant chemotherapy
pCR  Pathologic complete response
RFE  Recursive feature elimination
ROC  Receiver operating characteristic
TNBC  Triple-negative breast cancer

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12880-024-01311-7.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
TX and JG contributed to study design and manuscript editing. TX contributed 
to data collection and analysis. QZ contributed to imaging evaluation. SW 
contributed to clinical studies. CW contributed to manuscript editing. JG 

contributed to the study design, data analysis and manuscript editing. WP 
and YG contributed to the study design and imaging evaluation. All authors 
reviewed the manuscript.

Funding
This study has received funding by the National Natural Science Foundation 
of China (grant number, 82071878) and Shanghai Science and Technology 
Innovation Action Plan Medical Innovation Research Project (grant number, 
21Y11910200).

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
The study complied with the Declaration of Helsinki guidelines and 
declaration.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Radiology, Fudan University Shanghai Cancer Center, 
Shanghai, China
2Department of Oncology, Shanghai Medical College, Fudan University, 
Shanghai, China
3Department of Radiology, Longhua Hospital, Shanghai University of 
Traditional Chinese Medicine, Shanghai, China
4Oden Institute for Computational Engineering and Sciences, University 
of Texas at Austin, Austin, USA
5Department of Breast Surgery, Fudan University Shanghai Cancer Center, 
Shanghai, China

Received: 16 February 2024 / Accepted: 27 May 2024

References
1. Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical 

features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.
2. Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and 

long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 
2008;26:1275–81.

3. Cortazar P, Zhang L, Untch M, et al. Pathological complete response and 
long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. 
Lancet. 2014;384:164–72.

4. Dialani V, Chadashvili T, Slanetz PJ. Role of imaging in neoadjuvant therapy for 
breast cancer. Ann Surg Oncol. 2015;22:1416–24.

5. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, 
they are data. Radiology. 2016;278:563–77.

6. Park VY, Kim EK, Kim MJ, Yoon JH, Moon HJ. Perfusion parameters on breast 
dynamic contrast-enhanced MRI are Associated with Disease-specific 
survival in patients with triple-negative breast Cancer. AJR Am J Roentgenol. 
2017;208:687–94.

7. Liu Z, Li Z, Qu J, et al. Radiomics of Multiparametric MRI for Pretreatment 
Prediction of Pathologic Complete Response to neoadjuvant chemotherapy 
in breast Cancer: a Multicenter Study. Clin Cancer Res. 2019;25:3538–47.

8. Cain EH, Saha A, Harowicz MR, Marks JR, Marcom PK, Mazurowski MA. 
Multivariate machine learning models for prediction of pathologic response 
to neoadjuvant therapy in breast cancer using MRI features: a study using an 
independent validation set. Breast Cancer Res Treat. 2019;173:455–63.

9. Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI. Radiogenomic analysis 
of breast cancer: luminal B molecular subtype is associated with enhance-
ment dynamics at MR imaging. Radiology. 2014;273:365–72.

https://doi.org/10.1186/s12880-024-01311-7
https://doi.org/10.1186/s12880-024-01311-7


Page 11 of 11Xie et al. BMC Medical Imaging          (2024) 24:136 

10. Wang J, Kato F, Oyama-Manabe N, et al. Identifying Triple-negative breast 
Cancer using background parenchymal enhancement heterogeneity 
on dynamic contrast-enhanced MRI: a pilot Radiomics Study. PLoS ONE. 
2015;10:e0143308.

11. Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral 
radiomics for the pretreatment prediction of pathological complete response 
to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 
2017;19:57.

12. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angio-
genic switch during tumorigenesis. Cell. 1996;86:353–64.

13. Saha A, Harowicz MR, Grimm LJ, et al. A machine learning approach to 
radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI 
features. Br J Cancer. 2018;119:508–16.

14. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of 
women with early breast cancer: highlights of the St Gallen International 
Expert Consensus on the primary therapy of early breast Cancer 2013. Ann 
Oncol. 2013;24:2206–23.

15. von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of patho-
logic complete response on prognosis after neoadjuvant chemotherapy in 
various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796–804.

16. Vignati A, Giannini V, Carbonaro LA, et al. A new algorithm for automatic 
vascular mapping of DCE-MRI of the breast: clinical application of a potential 
new biomarker. Comput Methods Programs Biomed. 2014;117:482–8.

17. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics 
System to Decode the Radiographic phenotype. Cancer Res. 2017;77:e104–7.

18. Laine A, Fan J. Texture classification by wavelet packet signatures. IEEE Trans 
Pattern Anal Mach Intell. 1993;15:1186–91.

19. Gong J, Liu JY, Jiang YJ, Sun XW, Zheng B, Nie SD. Fusion of quantitative imag-
ing features and serum biomarkers to improve performance of computer-
aided diagnosis scheme for lung cancer: a preliminary study. Med Phys. 
2018;45:5472–81.

20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two 
or more correlated receiver operating characteristic curves: a nonparametric 
approach. Biometrics. 1988;44:837–45.

21. Granzier RWY, van Nijnatten TJA, Woodruff HC, Smidt ML, Lobbes MBI. Explor-
ing breast cancer response prediction to neoadjuvant systemic therapy using 
MRI-based radiomics: a systematic review. Eur J Radiol. 2019;121:108736.

22. Golden DI, Lipson JA, Telli ML, Ford JM, Rubin DL. Dynamic contrast-
enhanced MRI-based biomarkers of therapeutic response in triple-negative 
breast cancer. J Am Med Inf Assoc. 2013;20:1059–66.

23. Nie K, Shi L, Chen Q, et al. Rectal Cancer: Assessment of Neoadjuvant Chemo-
radiation Outcome based on Radiomics of Multiparametric MRI. Clin Cancer 
Res. 2016;22:5256–64.

24. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn 
EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 
2004;56:549–80.

25. Linderholm BK, Hellborg H, Johansson U, et al. Significantly higher levels 
of vascular endothelial growth factor (VEGF) and shorter survival times for 
patients with primary operable triple-negative breast cancer. Ann Oncol. 
2009;20:1639–46.

26. Martincich L, Bertotto I, Montemurro F, et al. Variation of breast vascular maps 
on dynamic contrast-enhanced MRI after primary chemotherapy of locally 
advanced breast cancer. AJR Am J Roentgenol. 2011;196:1214–8.

27. Wu LA, Chang RF, Huang CS, et al. Evaluation of the treatment response to 
neoadjuvant chemotherapy in locally advanced breast cancer using com-
bined magnetic resonance vascular maps and apparent diffusion coefficient. 
J Magn Reson Imaging. 2015;42:1407–20.

28. Sardanelli F, Iozzelli A, Fausto A, Carriero A, Kirchin MA. Gadobenate 
dimeglumine-enhanced MR imaging breast vascular maps: association 
between invasive cancer and ipsilateral increased vascularity. Radiology. 
2005;235:791–7.

29. Lin M, Chen JH, Nie K, Chang D, Nalcioglu O, Su MY. Algorithm-based method 
for detection of blood vessels in breast MRI for development of computer-
aided diagnosis. J Magn Reson Imaging. 2009;30:817–24.

30. Vignati A, Giannini V, Bert A, et al. A fully automatic multiscale 3-dimensional 
hessian-based algorithm for vessel detection in breast DCE-MRI. Invest Radiol. 
2012;47:705–10.

31. Sun C, Wee WG. Neighboring gray level dependence matrix for texture clas-
sification. Computer vision. Graphics Image Process. 1983;23:341–52.

32. Viens P, Jacquemier J, Bardou VJ, et al. Association of angiogenesis and poor 
prognosis in node-positive patients receiving anthracycline-based adjuvant 
chemotherapy. Breast Cancer Res Treat. 1999;54:205–12.

33. Wu C, Pineda F, Hormuth DA 2nd, Karczmar GS, Yankeelov TE. Quantitative 
analysis of vascular properties derived from ultrafast DCE-MRI to discriminate 
malignant and benign breast tumors. Magn Reson Med. 2019;81:2147–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Development and validation of peritumoral vascular and intratumoral radiomics to predict pathologic complete responses to neoadjuvant chemotherapy in patients with triple-negative breast cancer
	Abstract
	Introduction
	Materials and methods
	Patients
	Neoadjuvant chemotherapy regimen and response assessment
	MRI protocols
	Tumor segmentation and peritumoral vessel segmentation
	Radiomic feature extraction
	Radiomic feature selection and model development
	Statistical analysis

	Results
	Patients and pathologic complete responses
	Feature extraction
	Performance of radiomics models

	Discussion
	Conclusions
	References


