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Abstract 

Background  Segmenting liver vessels from contrast-enhanced computed tomography images is essential for diag-
nosing liver diseases, planning surgeries and delivering radiotherapy. Nevertheless, identifying vessels is a challenging 
task due to the tiny cross-sectional areas occupied by vessels, which has posed great challenges for vessel segmenta-
tion, such as limited features to be learned and difficult to construct high-quality as well as large-volume data.

Methods  We present an approach that only requires a few labeled vessels but delivers significantly improved results. 
Our model starts with vessel enhancement by fading out liver intensity and generates candidate vessels by a classifier 
fed with a large number of image filters. Afterwards, the initial segmentation is refined using Markov random fields.

Results  In experiments on the well-known dataset 3D-IRCADb, the averaged Dice coefficient is lifted to 0.63, 
and the mean sensitivity is increased to 0.71. These results are significantly better than those obtained from existing 
machine-learning approaches and comparable to those generated from deep-learning models.

Conclusion  Sophisticated integration of a large number of filters is able to pinpoint effective features from liver 
images that are sufficient to distinguish vessels from other liver tissues under a scarcity of large-volume labeled data. 
The study can shed light on medical image segmentation, especially for those without sufficient data.
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Background
Liver vessel segmentation from computed tomography 
(CT) images is to pinpoint the pixels that comprise the 
vessels; see Fig.  1. Vessel segmentation is quite helpful 
in many clinical applications  [1, 2], e.g., disease diagno-
sis, surgical planning, thermal ablation, etc. Hence, many 
computational approaches have been developed to solve 

this problem, both from the traditional machine learning 
perspective as well as the deep learning perspective, par-
ticularly the latter one.

The traditional machine-learning techniques that are 
borrowed for vessel segmentation include active con-
tour or level set  [3], graph cut  [4, 5], extreme learning 
machine  [6], vascular filters  [7–9], and still many oth-
ers  [10–13]. These approaches can fish out vessels from 
CT images with moderate accuracy and time-saving. 
However, the segmentation can be easily leaked into 
the adjacent tissues. Besides, some of these approaches 
require careful initialization, parameter settings, or fea-
ture engineering. These limitations highly prevent the 
applicability of the aforementioned models.
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Hence, deep learning-based approaches have been 
intensively explored and exploited to overcome these 
constraints because of their automatic feature learning 
characteristics. These approaches include convolutional 
neural network-based [14–16], recurrent neural network-
based [17], a mixture of convolution and recurrent neu-
ral works  [18], and integration of deep neural networks 
with conventional machine learning techniques [19, 20]. 
These deep learning-based models manifest remarkable 
improvement compared with the traditional approaches. 
However, they require large volumes of manually deline-
ated images containing vessels. Unfortunately, delineat-
ing vessel masks with high fidelity is prohibitively difficult 
and time-consuming. The main obstacles preventing 
this goal are small size, irregular shape, low contrast and 
heavy noise; cf. Fig. 1. Hence, developing a model-driven 
but not data-starved approach is still very promising.

To this end, we develop a new computational model 
that borrows a large number of existing renowned image 
filters to distinguish vessels from other tissues and then 
use XGBoost  [21] to classify each pixel as vessels or oth-
ers. Finally, a refined Markov random field integrates 
neighborhood information to polish the results. Experi-
mental results carried out on a widely used dataset 
3D-IRCADb  [22] show that our newly proposed model 
outperforms all existing traditional machine learning mod-
els, even better than deep learning-based models in most 
cases. Our model only requires a small number of labeled 
images to train the model but yields competitive or better 
results. The success reveals that many filters can compen-
sate for the shortage of labeled data, which can be inspiring 

and promising for those tasks where high-quality data is 
challenging to obtain.

Methods
The proposed liver vessel segmentation model composes of 
three modules: vessel enhancement, candidate generation, 
and segmentation refinement; see Fig. 2. The details are as 
follows.

Vessel enhancement
Two procedures are applied to the raw images to enhance 
the edges between vessel areas and other liver tissues, 
including calibration and contrast.

Calibration is necessary as the raw image may need to be 
clipped to the appropriate window for vessel analysis. To 
this end, we automatically determine the window center 
and width by a statistical approach. Precisely, the mean 
µ and standard deviation σ of vessel intensities are deter-
mined. Then, the intensities of all images are clipped into 
an interval [µ− 3σ ,µ+ 3σ ] . These clipped intensities are 
further normalized to alleviate the systematic bias between 
different imaging devices by

where f(x, y) is the initial intensity of an image at position 
(x, y), α and c are used to transform the normalized val-
ues into gray scales from 0 to 255.

After calibration, the vessels are enhanced by

f ′(x, y) = α(f (x, y)− µ)/σ)+ c,

f ′(x, y) = f (x, y)− �f (x, y)⊛ k(x, y),

Fig. 1  Vessel segmentation. The first row is the original images, while the second is the vessel masks obtained from 3D-IRCADb [22]
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where k(x,  y) is a kernel of a low-pass filter, � controls 
its magnitude, and ⊛ means convolution. This opera-
tion helps wash out many liver tissues and makes vessels 
stand out.

Candidate generation
Feature transformation
The filters used to retrieve features from images include 
CLAHE (contrast limited adaptive histogram equaliza-
tion) [23], Gabor filter [24], Gamma Correction [25], 
Gaussian filter [26], Hessian [7], Laplacian operator 
[27], Median filter [28], Mean filter [29], Minimum fil-
ter [30], Bilateral filter [31], Sobel operator [32], Canny 
edge detector [33], as well as the ten filters prede-
fined in the imageFilter module of Pillow [34], which 
are BLUR, CONTOUR, DETAIL, EDGE_ENHANCE, 
EDGE_ENHANCE_MORE, EMBOSS, FIND_EDGES, 
SMOOTH, SMOOTH_MORE and SHARPEN. The 
mathematical definitions of these filters/operators are 
shown in Table 1.

These filters have their unique merits in capturing fea-
tures from images. Thus, the information obtained in this 
way is adequate to characterize vessels.

Context‑aware vessel identification
Based on the filters, each pixel is represented by a 
d-dimensional vector containing its original intensity as 
well as all the values generated by the filters. Hence, the 
context as well as the vessel regions can be represented 
by a n× d vector with n the number of neighbors sur-
rounding the interested pixel to be classified.

A pixel F(i′, j′, k ′) is deemed as an h-
hop neighbor of the interest pixel F(i,  j,  k) if 
min(|i − i′|, |j − j′|, |k − k ′|) ≤ h , where i, j and k are 
the indices of a pixel, i and j are used to locate the pixel 
in a slice, and k is used to locate the slice in a volume. 
The h is set to 1, 2 and 3, resulting in the voxel size of 
3× 3× 3 , 5× 5× 5 and 7× 7× 7 , respectively. For the 
2D situation, only i and j are considered.

The interested pixel as well as its neighbors form a 
voxel whose features are obtained from its constituent 
pixels, where its label is the mask of the central pixel. The 
features are obtained by using the above filters. The final 
features of the voxel are input into XGBoost [21] for fea-
ture selection and pixel classification.

Segmentation refinement
The vessel segmentation is further refined by a Markov 
random field (MRF) [35] as the classification is only con-
ducted on pixel level that ignores the correlation between 
pixels.

An MRF is a graph having G = (V ,E) , where V is the 
set of nodes (e.g., the pixels of an image), and E is the 
edges connecting the nodes in V (e.g., the adjacency 
pixels). For a random variable vi in G, the probability 
of P(V = vi) is independent of other variables given its 
neighbors N (vi) that is named as the Markov blanket. 
That being said,

Based on the Hammersley-Clifford theorem [36], it can 
be expressed as

P(V = vi|V − vi) = P(V = vi|N (vi).

Fig. 2  Diagram of the proposed liver vessel segmentation model. It composes vessel enhancement, candidate generation, and segmentation 
refinement. Vessel enhancement is achieved by fading out the background but strengthening boundary regions, candidate vessels are obtained 
by XGBoost feeding with features generated from extensive image filters, and refinement is fulfilled by a refined Markov random field
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where E(·) is an energy function and Z is the partition 
function computed by Z =

∑

vi
E(vi) . In this study E(vi) 

is calculated by

where ui is the refined value of the variable vi and ρ(x, σ) 
is the Lorentzian function [37] defined by

By minimizing the energy function E, we obtained the 
refined segmentation of the vessels based on the pixel-
wise classification results.

Experiments
Datasets
The well-known dataset 3D-IRCADb [22], scanned using 
contrast-enhanced computed tomography, is adopted for 
our model training and validation. In this dataset, all the 
masks of the liver, hepatic veins, portal veins, and arteries 
are available. Since 3D-IRCADb only contains 20 volumes 
(2,823 slices), it is suitable for traditional machine learn-
ing approaches but not deep learning-based models. It is 
because computational models should be trained in cases 

P(V = vi|N (vi)) =
1

Z
exp(−E(V = vi|N (vi))),

E(vi) =Eintensity(vi)+ �Egradient(vi)

=
∑

ρ(ui − vi, σi)+ �

∑

vj∈N (vi)

ρ(vi − vj , σg ),

ρ(x, σ) = log

(

1+
( x

σ

)2
/2

)

.

instead of slices so that training bias can be largely avoided. 
Thus, we will not make head-to-head comparisons with the 
deep learning models because of overfitting.

Evaluation metrics
Four metrics are used to evaluate the performance, i.e., 
accuracy (Acc), sensitivity (Sen), Specificity (Spe), and dice 
similarity coefficient (DSC). They are defined as

where true positives (TP) are vessel pixels classified cor-
rectly, false positives (FP) are pixels classified as vessels 
incorrectly, true negatives (TN) are pixels classified as 
non-vessels correctly, and false negatives (FN) are vessel 
pixels classified incorrectly. Among them, DSC is more 
meaningful as it is robust to imbalanced labels that are 
very common in vessel data.

Performance qualification
Performance on 3D‑IRCADb
The performance of our model is evaluated through a 
rigorous five-fold cross-validation process. The dataset 

Sen =
TP

TP + FN

Spe =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

DSC =
2 · TP

FP + FN + 2 · TP

Table 1  The filters and operators that are used to transform CT images

CL(·) is a contrast limited function, g(x, y) is the function to be convoluted to the image matrix I with x and y the distance between the current location and the interest 
point (i, j), I′(i, j) is the manipulated intensity of the original intensity I(i, j), K is convolution kernel, H(·) is Hessian matrix, J is Jacobian matrix, x′ = xcosθ + ysinθ , 
y′ = ycosθ − xsinθ , Wp =

∑

i′ ,j′∈ω fr(� I(i′ , j′)− I(i, j) �)gs(� (i′ − i)+ (j′ − j) �) , fr is an intensity smoothing function, gs is a coordinate smoothing function, 
(f ∗ g) means the convolution operation between f and g, w and h are the kernel width and height, γ , σ , � and ψ are parameters

Operator Definition

CLAHE [23] Ik = (k − 1)CL(
∑

p(k))

Gabor [24] g(x , y) = exp
(

−
x′2+γ 2y′2

2σ 2

)

exp
(

i
(

2π x′

�
+ ψ

))

Gamma [25] I′(i, j) = �I(i, j)γ

Gaussian [26] g(x , y) = exp
(

−
x2+y2

2σ 2

)

Hessian [7] H(I(i, j)) = J(∇ I(i, j))

Laplacian [27] �I(x , y) =
∂2 I(x ,y)

∂x2
+

∂2 I(x ,y)

∂y2

Median [28] I′(i, j) = med K(i,j)(I(i, j);w , h

Mean [29] I′(i, j) = 1
w∗h

∑
(

K(i,j)(I(i, j);w , h
)

Minimum [30] I′(i, j) = min
(

K(i,j)(I(i, j);w , h
)

Bilateral [31] I′(i, j) = 1
Wp

∑

i′ ,j′∈ω I(i′ , j′)fr(� I(i′ , j′)− I(i, j) �)gs(� (i′ − i)+ (j′ − j) �)

Sobel [32] I′ =
√

(K ∗ I)2 + (KT ∗ I)2

Canny [33] TrackEdge(DoubleThreshold(GradientSuppression(Gradient(Smooth(I)))))

Pillow [34] Predefined in the imageFilter module of the package
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is partitioned into five folds at the scan level, with four 
folds (16 scans) designated for training and the remain-
ing fold (4 scans) for testing. The training and testing 
are iterated across all folds to ensure comprehensive 
evaluation of all scans independently. On average, the 
DSC is 0.63 for all the volumes in 3D-IRCADb. How-
ever, this score is rarely reported by others. In addi-
tion, only partial volumes with top-performed results 
are reported by others as well. Therefore, we present 
the results obtained from 3D-IRCADb with the same 
number of volumes as others; c.f., Table  2. Results 
show that our model significantly outperforms exist-
ing approaches in terms of accuracy and specificity. 

Regarding sensitivity, our model is superior to oth-
ers across all the cases, exhibiting an average lift of 
2% when compared to the existing leading model. 
Notably, both sensitivity and DSC can be substantially 
influenced by the quality of reference masks and pre-
dictive accuracy. After carefully checking the labels 
of 3D-IRCADb, we have found a considerable portion 
of labels that are incorrectly masked. Taking Fig.  3, 
there have many over-labeled, under-labeled, and even 
wrongly-labeled masks. Since the number of vessel pix-
els is significantly smaller than that of non-vessel pixels, 
it is more sensitive to imperfect labels, thus the signifi-
cant fluctuation of sensitivity.

Table 2  Performance comparison on 3D-IRCADb

Method Dataset Acc Sen Spe DSC

Kitrungrotsakul et al. [16] 1 volume - 0.90 - 0.92

Guo et al. [5] 8 volumes 0.97 0.66 0.98 -

Zhang et al. [13] 14 volumes 0.98 0.79 0.98 -

Lebre et al. [9] 20 volumes 0.97 0.69 0.98 -

U-Net [38] 20 volumes 0.99±1.1e-3 0.75±9.3e-2 0.99±2.2e-4 0.64±8.7e-2

TransUNet [39] 20 volumes 0.99±1.0e-3 0.73±7.5e-2 0.99±1.9e-4 0.62±7.6e-2

3D U-Net [40] 20 volumes 0.99±1.2e-3 0.67±1.4e-1 0.99±4.9e-4 0.60±6.2e-2

Ours 1 volume 0.99 0.94 0.99 0.93

8 volumes 0.99±8.9e-4 0.85±1.1e-3 0.99±2.7e-4 0.76±9.3e-2

14 volumes 0.99±9.7e-4 0.77±6.3e-2 0.99±2.1e-4 0.68±6.8e-2

20 volumes 0.99±1.0e-3 0.71±8.7e-2 0.99±2.0e-4 0.63±5.9e-2

Fig. 3  Examples of imperfect vessel labels. The red boxes highlight over-labeled, under-labeled, and wrongly-labeled masks
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Note that, to ensure a fair comparison, we adhere to the 
standard settings for the number of testing volumes used 
in existing approaches: 1, 8, 14, and 20 volumes, respec-
tively. The performance of each volume is evaluated 
using the five-fold cross-validation, and the results for k 
collective volumes are averaged on the k top-performed 
volumes.

Performance comparison with deep learning models
The proposed model is trained using multiple fil-
ters, necessitating only a small amount of labeled data 
intrinsically. Nonetheless, it may be less effective com-
pared to deep learning-based models that are capable 
of automatic feature learning. To assess the efficacy 
of our proposed model, we evaluate its performance 
against state-of-the-art deep learning models, includ-
ing U-Net [38], TransUNet [39], and 3D U-Net [40]. 
Detailed results presented in Table  2 reveal that our 

model is slightly inferior to U-Net but notably superior 
over TransUNet and 3D U-Net. We speculate that this 
discrepancy is primarily due to the increased param-
eters in the latter two models, particularly in the case 
of 3D U-Net.

Larger context improves segmentation
Different window sizes, i.e., 1, 3, 5 and 7, are used to 
capture the context information for vessel segmenta-
tion. To explore the impact of the context within a 
slice and between slices, we have considered the 2D 
and 3D scenarios. The performance of our model on 
3D-IRCADb with various context window sizes are 
shown in Table  3. Clearly, a larger window of context 
consistently generates better segmentation results.

Figure  4 shows two examples of vessel segmenta-
tion with various window sizes. It can be observed 
that a larger window size generates complete internal 
regions and smoother edges of vessels. In contrast, 
small window size is prone to yield more isolated pixels 
or regions. Besides, the results obtained from 3D voxels 
are more tolerant to weakly connected regions between 
vessels than that generated from the 2D pixels.

It is essential to note that a larger voxel size does not 
always translate to better performance; see Table 3. This 
is due to the reduced influence of long-distance pixels 
on the central voxel of interest. Additionally, increas-
ing voxel size substantially enlarges the feature dimen-
sion, potentially leading to issues such as the curse of 
dimensionality.

Table 3  Segmentation performance of our proposed model on 
3D-IRCADb under various voxel size

Results are obtained by five-fold cross-validation

Voxel Acc Sen Spe DSC

1×1×1 0.997 0.608 0.998 0.510

1×3×3 0.997 0.664 0.998 0.542

1×5×5 0.998 0.683 0.998 0.560

1×7×7 0.997 0.705 0.998 0.574

3×3×3 0.997 0.724 0.997 0.553

5×5×5 0.998 0.735 0.998 0.599

7×7×7 0.998 0.712 0.999 0.628

9×9×9 0.998 0.701 0.999 0.612

Fig. 4  Vessel segmentation results obtained from various context ranges. The pixels in white are correctly predicted, the red are over predicted 
(i.e., false positive) and the green are under predicted (i.e., false negative). The mark “ i × j × k ” on a slice indicates the voxel size, where i = 1 means 
the context in 2D, otherwise 3D
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Markov random field refines segmentation
Although context information has been appended to 
the model of vessel segmentation, each pixel is pre-
dicted separately. Thus the connections of vessels in 
more extensive ranges are not captured. To this end, 
we borrow the MRF [35] model with a revised energy 
function to sharpen the distinction between vessels and 
non-vessels. The MRF-aware results improve the dice 

value by 3.1% on average for the 3D-IRCADb dataset 
(p-value < 2.2e − 16 ); see Fig. 5.

To demonstrate the improvements of the MRF model, 
we present six representative examples in Fig. 6. It is clear 
that the revised MRF model is able to remove isolated 
pixels or smaller regions, fill the holes in vessel regions, 
and bridge the gaps between separated vessel segments.

Association between critical filters and context
In this study, 22 filters are used to capture vessels’ infor-
mation from various perspectives to compensate for the 
lack of data. However, not all filters are of equal impor-
tance to the model. To examine the association between 
the filters and the context size, we have retrieved the fil-
ters selected by XGBoost; see Table 4. Interestingly, only 
CLAHE, Gabor and Hessian are persistently important to 
the 2D-wise vessel segmentation. At the same time, most 
filters are kept for the 3D situation except a few presented 
in the Pillow package (the details are shown in Table 4). 
In addition, more filters are used in case the context 
range is more extensive. These observations consolidate 
our proposal of using multiple filters with broad context 
to segment vessels.

Conclusion
Liver vessel segmentation is essential for clinical liver 
disease diagnosis and treatment. Hence great efforts 
have been made to solve this problem from the com-
putational perspective. However, the performance of 

Fig. 5  Performance comparison between MRF-aware 
and MRF-agnostic results. Note only the distribution of dice 
coefficient and sensitivity are shown here as others are very close to 1 
that lose distinguishability

Fig. 6  Examples of vessel segmentation improvements achieved by the MRF model. The first row contains the original images, the second 
is the results obtained without MRF refinement, and the third shows the purified results. It can be seen that MRF is able to remove isolates, fill holes, 
and bridge gaps
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existing models is still far from satisfactory. The main 
reasons hindering vessel segmentation progress include 
small size, heavy noise, low contrast, and irregular shape. 
These difficulties further prevent the construction of 
large-volume and high-quality vessel segmentation data, 
making the computational models significantly under-fit-
ted, particularly for deep learning models. To overcome 
the limitations, we propose a rich filter-based model to 
compensate for the scarcity of labeled data, of which 
the results are further refined by a Markov random field 
model. Experiments show that the proposed model sig-
nificantly improves vessel segmentation without compli-
cated models and extensive data. This study unveils that 
rich irrelevant filters are helpful for tasks having limited 
data, like vessel segmentation.
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Table 4  Important filters to vessel segmentation with various context ranges

a ‘PL’ represents the Pillow package

 The index ‘i’ ( i ∈{-3, -2, -1, 0, 1, 2, 3}) indicates the position of a slice compared to the interest one (always marked as ‘0’) with negative the before and positive the 
behind. For the 2D situation, only one slice is presented, thus no such index is available

Filter 2D 3D

1 3 5 7 3 5 7

-1 0 1 -2 -1 0 1 2 -3 -2 -1 0 1 2 3

Origin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CLAHE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gabor ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gamma ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gaussian ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hessian ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Laplacian ✓ ✓ ✓ ✓ ✓
Median ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mean ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Minimum ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bilateral ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sobel ✓ ✓ ✓ ✓ ✓ ✓ ✓
Canny ✓ ✓ ✓
PLBLURa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PLCONTOUR ✓ ✓
PLDETAIL ✓ ✓ ✓ ✓
PLEDGE_ENHANCE ✓ ✓ ✓
PLEDGE_ENHANCE_MORE ✓
PLEMBOSS ✓
PLFIND_EDGES ✓
PLSHARPEN ✓ ✓
PLSMOOTH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PLSMOOTH_MORE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://github.com/lzhLab/veSeg/
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