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Abstract

Background The presence of infarction in patients with unrecognized myocardial infarction (UMI) is a critical feature
in predicting adverse cardiac events. This study aimed to compare the detection rate of UMI using conventional and
deep learning reconstruction (DLR)-based late gadolinium enhancement (LGE, and LGE, respectively) and evaluate
optimal quantification parameters to enhance diagnosis and management of suspected patients with UMI.

Methods This prospective study included 98 patients (68 men; mean age: 55.8+8.1 years) with suspected UMI
treated at our hospital from April 2022 to August 2023. LGE, and LGE images were obtained using conventional and
commercially available inline DLR algorithms. The myocardial signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR),
and percentage of enhanced area (P,.,) employing the signal threshold versus reference mean (STRM) approach,
which correlates the signal intensity (SI) within areas of interest with the average SI of normal regions, were analyzed.
Analysis was performed using the standard deviation (SD) threshold approach (25D-5SD) and full width at half
maximum (FWHM) method. The diagnostic efficacies based on LGE, and LGE, images were calculated.

Results The SNR, and CNRy; were two times better than the SNR, and CNR, respectively (P<0.05). P, ,_p, Was
elevated compared to P,.,_q Using the threshold methods (P < 0.05); however, no intergroup difference was found
based on the FWHM method (P>0.05). The P, ., _p. and P,.,_q also differed except between the 2SD and 35D and
the 4SD/5SD and FWHM methods (P < 0.05). The receiver operating characteristic curve analysis revealed that each
SD method exhibited good diagnostic efficacy for detecting UMI, with the P, .. _p, having the best diagnostic efficacy
based on the 55D method (P<0.05). Overall, the LGE, images had better image quality. Strong diagnostic efficacy for
UM!I identification was achieved when the STRM was >45D and > 3SD for the LGE,, and LGE, respectively.
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Conclusions STRM selection for LGE, magnetic resonance images helps improve clinical decision-making in
patients with UMI. This study underscored the importance of STRM selection for analyzing LGEp, images to enhance
diagnostic accuracy and clinical decision-making for patients with UM, further providing better cardiovascular care.

Keywords Deep learning reconstruction, Diagnostic efficacy, Late gadolinium enhancement, Magnetic resonance

imaging, Unrecognized myocardial infarction

Background

Myocardial infarction (MI) is diagnosed based on the
detection of acute myocardial injury according to cardiac
biomarker abnormalities in the context of acute myo-
cardial ischemia [1]. Unrecognized MI (UMI) is a type
of MI that has yet to be clinically diagnosed, with the
prevalence increasing by 10.0% every decade [2]. Delayed
detection due to atypical symptoms can delay treatment,
leading to poor prognosis [3]. Failure to achieve reperfu-
sion within a few hours after blood flow cessation may
cause myocardial apoptosis in vessel-supplied regions.
Therefore, determining the presence or absence of MI
and quantifying related variables are crucial in improving
the diagnosis, treatment, and prognosis [4, 5].

Cardiac magnetic resonance (CMR) imaging is a prom-
ising tool for MI detection because of good tissue con-
trast and spatial resolution. However, patient compliance
is challenging for several reasons, such as the require-
ment to acquire each high-resolution slice and the need
for stable respiration; furthermore, certain conditions,
including unstable heartbeat and arrhythmia, can cause
motion artifacts on free-breathing scans. As relatively
shorter breath-holds are required to acquire more slices,
higher-spatial resolution late gadolinium enhancement
(LGE) is most frequently utilized in magnetic reso-
nance imaging (MRI) to observe and quantify the degree
of myocardial necrosis and microvascular occlusion.
Although the enhancement is achieved semi-automati-
cally using post-processing software, the initial sketch of
the endocardium, epicardium, enhanced myocardium,
and remote normal myocardium relies on the reader’s
experience to some extent [6]. Additionally, a previous
study reported that LGE could identify only 23 of the
872 participants (2.6%) with UMI [7]. The clinical signifi-
cance of UMI has been reported using different imaging
techniques in diagnosing, refining risk stratification, and
guiding clinical decisions for treatments. All underscored
the role of CMR in improving the detection accuracy of
UMIs, which may affect adverse cardiac outcomes and
optimize cardiovascular disease management [8-10].
Therefore, timely and accurate UMI identification and
assessment are fundamental for patient stratification and
therapeutic planning [4, 5, 11]. In practice, despite many
applications of standard deviation (SD) and full width at
half maximum (FWHM) techniques, no consensus exists
for quantifying scars on LGE images; this challenge per-
sists across different cardiac diseases [12—14]. Obviously,

a gap exists in current diagnostic frameworks for analyz-
ing myocardium delayed enhancement.

Deep learning (DL) methods can improve image qual-
ity and eliminate intra- and inter-observer variability,
enabling more accurate diagnosis and treatment strate-
gies [15, 16] and segmentation for precisely sketched
lesions [17-21], among others. However, no DL recon-
struction (DLR)-based magnetic resonance (MR) studies
have evaluated patients with suspected UMI. Therefore,
this study aimed to explore the feasibility and diagnos-
tic performance of DLR-based LGE imaging (LGEp,;)
for patients with UMI compared with that of conven-
tional imaging (LGE) and propose an appropriate signal
threshold versus reference mean (STRM) for analyzing
LGEp,.

Methods

Study population

This study prospectively recruited 98 patients (68 men
and 30 women, mean age: 55.8+8.1 years) who presented
at our hospital between April 2022 and August 2023
without typical MI symptoms, such as angina pectoris of
cardiogenic origin but with suspected UMI after a physi-
cal examination. Based on the guidelines of European
and American associations and previous reports [1, 7,
22], the inclusion criteria were as follows: (i) the absence
of typical angina symptoms; (ii) the presence of elevated
or decreased serum cardiac troponin (cTn) levels, with at
least one instance of elevation above the upper limit of
the normal value (the 99th percentile of the reference val-
ue’s upper limit); (iii) prior evidence of MI on electrocar-
diography in the absence of left ventricular hypertrophy
and left bundle branch block; and (iv) no prior history
of oncological disease or surgery for cardiovascular dis-
eases. The exclusion criteria were as follows: (i) clinically
unstable condition, decompensated heart failure, con-
traindication to CMR, an estimated glomerular filtra-
tion rate<30 mL/min, and contraindication to the use of
gadolinium contrast; and (ii) LGE images that could not
be used for clinical diagnosis and objective assessments
(Fig. 1).

CMR examination and image construction

All patients underwent a routine cardiac MRI exami-
nation, including a short-axis LGE imaging sequence,
on a 3.0-T MRI scanner (Signa Architect, GE Health-
care, Waukesha, WI, USA) at our hospital. A new
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Fig. 1 Flowchart of patient enrolment and exclusion. Note: cTn: cardiac troponin; ECG: electrocardiogram; LGE: conventionally constructed late gado-
linium enhancement; LGE, : deep learning-based reconstruction late gadolinium enhancement; UMI: unrecognized myocardial infarction; SD: standard

deviation; SNR: signal-to-noise ratio; CNR: contrast-to-noise ratio

commercial inline deep-learning-based reconstruction
(DLR, brand name: AIR™ Recon DL, DV29.1_R04, GE
Healthcare, USA) employs no bias terms and rectified
linear unit activations to identify 4.4 million features
on directly received image data immediately after scan-
ning on an MR console computer to reduce noise and
Gibbs artifacts, and further eliminate intra- and inter-
observer differences [13, 16]. The parameters for the LGE
sequence were as follows: echo time=2.7 ms; repeti-
tion time=5.6 ms; flip angle=25"; field of view=34 mm;
matrix=260%174; slice thickness=8 mm; slice spac-
ing=2 mm; receiver bandwidth=83.33 kHz; views per
segment=24; number of excitations=1; and theoretical
acquisition time=8 sxnine heart beats. The LGE, and
LGE; were simultaneously generated using conven-
tional inline reconstruction and AIR™ Recon DL algo-
rithms. Fifteen minutes before LGE sequence scanning,
a single bolus of 0.1 mmol/kg (0.2 ml/kg) Gadobenate
Dimeglumine (Bracco Imaging S.P.A., Milano, Italy) was
administered, followed by 20-mL saline flush at a flow
rate of 2 ml/s [23]. This dosage was selected based on
its efficacy of myocardial enhancement for visualization
under the condition of patient safety.

Assessment of myocardial enhancement area and
diagnostic efficacy

Ultimately, data from 61 patients with myocardial
enhancement were included in the analysis (43 men

[70.5%] and 18 women [29.5%]), with a mean age of
55.9%8.7 years (Fig. 1). The percentage of whole-heart
myocardial enhancement area (P,,,,) in segments S1-S16
was assessed semi-quantitatively to diagnose cardiovas-
cular disease using Circle Cardiovascular Imaging Inc.
(cvi*, Circle Cardiovascular Imaging Inc., Calgary, AB,
Canada). The delayed enhancement area (i.e., scar size)
was subsequently quantified based on threshold meth-
ods, which involve adding 2-5 times SD to the mean sig-
nal intensity (SI) of the reference myocardium, and the
FWHM method, which identifies the half maximum SI
at the full width of SI distribution within one region of
interest (ROI) in the myocardial tissue. The P, ., was cal-
culated as the scar size divided by the myocardial volume.
Furthermore, the diagnostic efficacy of the P, of LGE
and LGE_ images (P,..,_p. and P,..._o, respectively) in
differentiating patients with UMI was assessed, with the
clinical diagnosis of UMI as the gold standard.

Theory/calculation

CMR image assessment

Qualitative and quantitative imaging evaluations were
performed double-blindedly by two radiologists with >5
years of experience in CMR diagnosis. Moreover, one of
the radiologists repeated the assessment 1 month later.
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Image quality

For the objective evaluation of image quality, ROIs were
on LGE, and LGE},; images to determine the SI of the
normal myocardium (Sly,_o and Sly,,_p;, respectively)
and myocardial delayed enhancement area (Slyppa_o
and SIyppa_pL, respectively), as well as the SD of the
background noise at the corner of the images (SDpg_g
and SDgg_p;, respectively) and the myocardial delayed
enhancement area (SDyppa_o and SDyppa_prs respec-
tively) (Fig. 2). Additionally, for LGE, and LGE,; images,
the myocardial signal-to-noise ratios (SNRs) (SNR, and
SNRy, , respectively) and contrast-to-noise ratios (CNRs)
(CNRy and CNRyy;, respectively) were calculated [9, 10,
24, 25] using the following formulae:

SNR = SI,1,,/SDpc

CNR = |SInpea — STwyl/(1.55Dgq)

The short-axis LGE, and LGE,; images were divided
into 16 segments based on the American Heart Associa-
tion criteria, and the SNR and CNR of each segment were
calculated.

Statistical analysis

All data were statistically analyzed using R-project soft-
ware (version 4.0.4, http://www.r-project.org). Quanti-
tative data are expressed as either the x+SD or median
(interquartile range). All quantitative data were analyzed
using either a paired ¢-test or a Wilcoxon signed-rank
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test depending on the results of the Shapiro—Wilk and
Levene’s tests, which were used to assess variance homo-
geneity and data normality, respectively. To control the
false discovery rate, we applied the Benjamini—-Hoch-
berg method for multiple comparison corrections. The
intraclass correlation coefficients (ICCs) of the objective
quantitative indicators, including the SNR, CNR, SD, and
P,... for LGE5 and LGE; images (SNRg, SNRp;, CNRy,
CNRp;, SDg, SDpps Pureao and P, pr, respectively)
were quantified to assess the degree of intra- and inter-
observer agreement. Receiver operating characteristic
(ROC) curves for P,..,_p;. and P,.,_o were constructed
using the different threshold methods to determine and
compare their diagnostic efficacies for the UMI or non-
UMI groups based on the area under the curve (AUC).
All statistical significance was set at P<0.05.

Results

Patient characteristics

Overall, 77 patients (53 men and 24 women; mean age:
55.618.4 years) were diagnosed with UMI based on vari-
ous clinical indicators, including the cTn level (n=77),
imaging features on electrocardiography (#=77), ultra-
sound cardiography (n=18), computed tomography
angiography (n=14), and digital subtraction angiography
(n=38), or nuclear medicine test results (n=8). Sixty-one
patients (43 men and 18 women; mean age: 55.9+8.7
years) who met the UMI diagnostic criteria were evalu-
ated to assess the distribution of the supplying vessels

Fig.2 Schematic diagram of P, ., using accordingly (a.ll) and (b.Ill) 4SD, (b.l1) 3SD, (a.lll) 55D, (@.lV) and (b.lV) FWHM methods for (a) LGEy, images, (b) LGE,
images, and (a. V) electrocardiogram of a patient with UMI. Figure 2(a) shows clearer, less noisy, more uniform normal myocardial signal and better con-
trast between the enhancement area and normal myocardium than Fig. 2(b). The patient with UMI underwent stress perfusion myocardium and received
an intravenous injection of 20 mCi 99mTc-MIBI. The stress perfusion maps as Fig. 2(b. V) supported our P, ., maps with clearer myocardium enhancement
in the enlarged left ventricle, with the morphological anomaly, relatively light sparsity of 20 mCi 99mTc-MIBI (a radiation tracker, RT) in the middle and
basal segments of the anterior wall and the middle segment of the anteroseptal wall, relatively strong sparsity of RTs in the apex, the apical segment of
the septal wall, the middle and basal segments of the posteroseptal wall, the apical, middle, and basal segments of the inferior wall, the apical segment
of the lateral wall, and the middle and basal segments of posterolateral, and normal perfusion in the remaining myocardium. Note: SD: standard devia-
tion; 2, 3,4, and 55D threshold methods: mean P,, respectively adding 2, 3,4, and 5 times of standard deviation of P, ., as the threshold for myocardial
enhancement area; FWHM: full width at half maximum; LGE, : deep learning-based reconstruction late gadolinium enhancement; LGE: conventionally
constructed late gadolinium enhancement; UMI: unrecognized myocardial infarction
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and the presence of infarction in LGE images. The non-
UMI group predominantly exhibited hypertrophic car-
diomyopathy (n=10, 71.43%) and left bundle branch
block (n=4, 28.57%) (Fig. 1).

Objective evaluation of image quality

The SDs of the normal myocardium, delayed myocardial
enhancement areas, and background of the images are
presented in Table 1. The SDp,; values were lower than
the SDg, values in all 16 segments, with the S1 segment
exhibiting the most significant difference between SDp;
and SD, images (31.95£21.82 vs. 45.74+28.29, P<0.05).
Overall, the SDyyyo_p1, SDypea-pr» and SDgg_p,, values
of LGE,; images were lower than the respective values
of LGE, images, including the SDy, o (36.38£19.55
vs. 46.03£18.65, P<0.05), SDyppa_o (47.39£41.22
vs. 59.771£44.08, P<0.05), and SDgpg_o (3.14+2.48 vs.
6.1714.03, P<0.05). The SNRp,; values were higher than
the SNRy, values in all 16 segments (P<0.001), with the
most significant difference observed in the S16 segment
(92.44+78.39 vs. 27.39124.56, respectively; P<0.05). The
S1 segment exhibited the highest SNR;; (113.89+98.62),
and the S2 segment had the highest SNR, (39.10+41.45).
The whole myocardial SNRp,; and whole delayed myo-
cardial enhancement CNR[,; were significantly elevated
compared to the whole myocardial SNRy (99.93+81.42
vs. 33.29130.89, P<0.05) and whole delayed enhanced
myocardium CNRy (123.72£45.00 vs. 60.15+15.52,
P<0.05), respectively (Fig. 2a-b—.I, Supplementary
Fig. la—d.I). The SI; values were higher than the

Table 1 Objective evaluation of image quality for LGEy and LGE,
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respective Sl values for all segments (2<0.05) except for
§7-89 and S11. In comparing the Sly,_p; and Skyy,_q
values, the SI; values were higher than the correspond-
ing SI values for S1-S6, 510, and S12-S16 (P<0.05). The
SI; values were slightly higher than the corresponding
Sl values for S7-S9 or S11; however, the difference was
not significant (P>0.05) (Fig. 3a).

P, s @ssessment

The myocardial enhancement area was semi-quanti-
tatively analyzed using various SD thresholds and the
FWHM method. For the 2SD (Fig. 3b.I, Supplementary
Figs. 1), 3SD (Figs. 2 and 3b.II, Supplementary Fig. 1),
and 5D methods (Figs. 2 and 3b.IV, Supplementary
Fig. 1), the P,,.,_p. values for the overall myocardium
were higher than the corresponding P,,.,_o values for
all 16 segments. For the 4SD method, the P,..,_p; values
of the overall myocardium were higher than the corre-
sponding P, ..._o values only in S1-S12 (Figs. 2 and 3b.I1I,
Supplementary Fig. 1). For the FWHM method (Figs. 2
and 3.c, Supplementary Fig. 1), the P,.,_p; values were
slightly higher than the corresponding P,.,_ values for
all segments.

Regarding the DLR-based P,,.,, the overall different
threshold and FWHM-based P,,.,_p; values were higher
than those based on any other approach (all P<0.05).
Regarding the P,,.,_o the values for the 2SD thresh-
old were significantly higher than those based on other
approaches (all P<0.05) (Table 2).

area—

SD SNR
LGE LGE o t/Z p LGE p, LGE o t/Z p

S 319542182 457442829 5592 <005 1138949862 335843336 4759 <005
52 36.04+2827 47.19+3001 4522 <005 106.97+103.87 39.10+4145 3.724 <005
$3 433443063 523742663 3272 <005 98.82+9338 381644142 3667 <005
S4 33.05+2062 49.28+23.02 5498 <005 912448500 326243486 4033 <005
S5 39442107 546142443 5111 <005 103.87 £98.09 38.78+39.78 3.767 <005
6 327741673 459742314 5014 <005 94.96+8596 333843685 4105 <005
7 3442+27.18 407942209 2521 <005 100.95+86.57 32.86+3023 483 <005
S8 304442695 44.75+3961 4877 <005 105.97 £94.58 33.87+3344 4493 <005
59 36.21+2937 451342937 4374 <005 96.92:+8647 347843762 4155 <005
510 37.10+27.54 47.98+29.08 4647 <005 104.39+90.32 3446+3553 4399 <005
Sk 409243234 498443227 3390 <005 98.00+88.76 350343421 4241 <005
S12 402442270 454342120 2.704 <005 975348558 304943278 4845 <005
513 284541892 389742152 4845 <005 1024149198 337443313 4522 <005
S14 317542224 4039+24.62 5046 <005 82.85+8032 246442749 4371 <005
515 3368+2104 4325+2402 3081 <005 107.57+95.83 29.81+29.20 4866 <005
516 363342236 447142596 2,956 <005 924447839 273942456 5039 <005
WM 36.38+19.55 46.03+1865 5.789 <005 99.93+8142 3329:+30.89 4,644 <005
MDEA 473944122 50.77+44.08 6.206 <005

BG 3144248 6.17+403 6.052 <005

Note: SD, standard deviation; SNR, signal-to-noise ratio; WM, whole myocardium; MDEA, myocardium delayed enhancement area; BG, background
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Fig. 3 (a) Signal intensity of the left ventricular myocardial on LGEp, and LGE, images. Percentage areas of left ventricular myocardial enhancement in
LGEy, and LGEg images using (b. 1) 25D, (b. 1) 35D, (b. lll) 45D, (b. IV) 55D, and (c) FWHM methods for quantification. Note: SI: signal intensity; WM: whole
myocardium; P, .,: percentage of myocardial enhancement area; LGE,: deep learning-based reconstruction late gadolinium enhancement; LGE;: con-
ventionally constructed late gadolinium enhancement;; SD: standard deviation; 2, 3, 4, and 55D threshold methods: mean P, ., respectively adding 2, 3,

4,and 5 times of standard deviation of P
gadolinium enhancement; O: original late gadolinium enhancement

rea @S the threshold for myocardial enhancement area; FWHM: full width at half maximum; DL, deep learning late

Table 2 Differences between different-threshold and FWHM methods

LGEp, LGE,

t p t p
2SDP, s vs. 3SD P, e, 41.32+12.78vs.39.83+16.58 1454 >0.05 32.81+1259vs.31.41+16.07 1.808 >0.05
2SD P, vs. 4SD P, o, 41.32+£12.78vs.30.57+£15.25 8.390 <0.05 3281+£1259vs.23.96+12.79 7.644 <0.05
2SD P,y vs. 55D P, oy 41.32+£12.78vs.2853+£12.92 12.072 <0.05 3281+1259vs.19.98+12.73 11.836 <0.05
2SD P, e V5. FWHM P, . 4132+£12.78vs.17.25£11.22 10.567 <0.05 3281+1259vs.17.18+11.12 7375 <0.05
3SDP, s Vs. 4SD P, o, 39.83+16.58vs.30.57+£15.25 10.342 <0.05 3141+£16.07vs.23.96+12.79 7468 <0.05
3SD P,y Vs. 55D P, oy 39.83+16.58vs.28.53+£12.92 10.963 <0.05 3141+£16.07 vs.19.98+12.73 14.059 <0.05
3SD P, eq vs. FWHM P, . 39.83+16.58vs. 17.25+11.22 8.878 <0.05 314141607 vs. 17.18+11.12 5.695 <0.05
4SD P, s vS. 5SD P, e 30.57+£1525vs.2853+12.92 2.142 <0.05 2396+12.79vs.19.98+12.73 5474 <0.05
4SD P, ey vs. FWHM P, . 30.57+1525vs.17.25+11.22 5.733 <0.05 2396+12.79vs.17.18+11.12 3.048 <0.05
55D P, 5 V5. FWHM P 28.53+1292vs.17.25+11.22 4.964 <0.05 19.98+12.73vs. 17.18+£11.12 1314 >0.05

area area

Note: LGEp,, deep learning-based reconstruction late gadolinium enhancement; LGE,, conventionally constructed late gadolinium enhancement; P, ., percentage

of myocardial enhancement area; FWHM, full width at half maximum

Assessment of the consistency of the quantitative
measurements

The degree of intra- and inter-observer agreement for the
objective measurements (SDyyoy SDypeas SDpg, SNR,
CNR, and Sly,) and P,., between LGEp, and LGE,
images was good based on the various SD and FWHM
methods (for objective measurements: all ICCs>0.60,

all P<0.05; for P,,.,: all ICCs>0.70, P<0.05). These mea-
surements were better for LGE,; images than for LGE,

images (Figs. 4 and 5).

Analysis and comparison of diagnostic efficacy
All SD methods exhibited good diagnostic efficacy for
UMI, with AUC values of the ROC curves>0.78. The
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Table 3 Area under the curve (AUC) for differentiation of UMI or
non-UMI groups

P rea Area Stan- P Approaching 95%
dard confidence interval
error Lower limit Upper

limit

2SD P, anl 0859 0066 <005 0730 0.988

25D P, s 0 0824 0073 <005 0681 0967

3SD P, eanL 0887 0057 <005 0775 0.998

3SDP,eao0 0840 0069 <005 0.705 0975

4SDP, o o0 0855 0066 <005 0725 0.986

4SDP,ea0 0781 0084 <005 0616 0.947

55D P, s 01 0891 0056 <005 0781 0999

55D P, 00 0781 0085 <005 0615 0947

FWHM P, o, o1 0797 0079 <005 0642 0951

FWHMP_ .. o 0797 0079 <005 0643 0.951

Note: SD, standard deviation; P, .,_p., percentage of myocardial enhancement
area with deep learning late gadolinium enhancement; P,.,_o, percentage of
myocardial enhancement area with original late gadolinium enhancement;
2, 3, 4, and 5SD threshold methods, mean P,,, respectively adding 2, 3, 4,
and 5 times of standard deviation of P,., as the threshold for myocardial
enhancement area; FWHM, full width at half maximum

P,.ca_pr based on the 55D threshold method exhibited
the optimal diagnostic efficacy of 0.891 (sensitivity=0.688
and specificity=1). For the conventional imaging
enhancement, the P,.,_o based on the 3SD method
exhibited the optimal diagnostic efficacy of 0.840. The
diagnostic efficacy was better for LGE;; images than for
LGE images for UMI detection for every SD threshold
method, whereas it was not different between LGE,; and
LGE parameters based on the FWHM method (Table 3;
Fig. 6).

Discussion

This study compared LGE, and LGE,; images based on
different SD thresholds and the FWHM method. The
significant differences in P, values between LGE, and
LGEp,; images for the SD threshold methods but not for
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the FWHM method suggested that the STRM should
be >3, regardless of whether conventional or DLR-
based LGE images are used, as previously reported. An
STRM 24 and P,,,_p; values based on the 55D thresh-
old exhibited the highest diagnostic efficacy for detect-
ing UMI. Additionally, the LGE,; images generated in
this study could display the delayed enhancement area
in patients with UMI for the first time, with significantly
better image quality than was previously achievable with
LGE images, such as artifacts in the myocardium, inten-
sified foci and lower background noise, lower SD, and
higher SNR and CNR values in all patients with UML
Thus, LGEp; imaging can improve diagnostic confidence
without impacting diagnostic efficacy.

The presence of an infarction in patients with UMI is a
critical feature for predicting adverse cardiac events [26—
28]. The P,.., on LGE images is the most frequently used
direct indicator of irreversible damage at the pathological
tissue level and can predict the treatment response to car-
dioprotective interventions [29, 30]. However, the clinical
approach for quantifying the myocardial enhancement
area is not uniform, with SD thresholds used in some
instances and the FWHM method employed in others.
Additionally, the generation of LGE images using con-
ventional reconstruction and DLR-based methods is
inconsistent. Generally, an STRM>3SD is the optimal
reference threshold for clinical use. Quantifying the SD
thresholds depends predominantly on the SI and SD of
the ROIs drawn in the distal normal myocardium; how-
ever, the image quality of the remote normal myocar-
dium may affect the visual sketching of the area to avoid
the delayed lesion intensification on LGEp,; images [31].
For example, using a lower SD threshold of the distal
myocardium leads to a significantly lower threshold for
encompassing the extent of delayed enhancement, result-
ing in underestimation [13]. The SD values, including
SDytye SDmpEas, and SDgg of the LGEp, images, showed

ROC
1.00 ROC
— 2SD Peapy (AUC=0.859)
0.754 — 28D Pyes0 (AUC=0.824)
—  3SD Pyeupy (AUC=0.887)
'E —  3SD P,ep.0 (AUC=0.840)
:‘é 0.50 —  4SD P, pr (AUC=0.855)
) —— 4SD P,ep0 (AUC=0.781)
—  5SD Pyeapy (AUC=0.891)
0251 55D Pyea0 (AUC=0.781)
— FWHM P,y (AUC=0.797)
0.00+ —  FWHM Pjep.0 (AUC=0.797)
000 025 050 075 1.00
1 - Specificity

Fig. 6 Diagnostic efficacy for UMI. Note: UMI: unrecognised myocardial infarction; SD: standard deviation; P, ..o, percentage of myocardial enhance-
ment area with deep learning late gadolinium enhancement; P, ..o, percentage of myocardial enhancement area with original late gadolinium enhance-
ment; 2, 3,4, and 55D threshold methods, mean P, ., respectively adding 2, 3, 4, and 5 times of standard deviation of P, as the threshold for myocardial

enhancement area; FWHM: full width at half maximum
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similar patterns and were smaller than those of the LGE,
images, consistent with a previous DLR liver study [25].
Higher SNR and CNR values on LGE[; images than
on LGE, images corresponded to improved inter- and
intra-reader consistency of P, ., measurements, indicat-
ing a more precise outline of the endocardium, epicar-
dium, and foci boundary in the LGDy,; images because
of the lower noise levels and fewer motion artifacts, espe-
cially in S1 and S16. DL plays a pivotal role in the field
of medical image segmentation [17-21]. Currently, man-
ual delineation is subject to certain variabilities. In the
future, integrating artificial intelligence-based automatic
segmentation optimization may reduce the inconsisten-
cies associated with manual delineation [22, 25-28].
The incremental change in P, ., values was inconsistent
between segments; for example, S12, a middle segment
of the lateral wall, exhibited a higher P,., on LGEp.
images than on LGE, images, possibly due to less inter-
ference from artifacts and clearer edges of the lesion.
Regarding the SD methods, the 4SD and 3SD threshold
approaches in this study resulted in the highest inter-
and intra-reader consistency for P,,.,_p; and the highest
intra-reader consistency for P,.,_o. Therefore, thresh-
old selection for image reconstruction based on conven-
tional and DL-based approaches should be considered
cautiously. Consistent with previous findings [12], the
P, eapr did not statistically differ from the P,.,_o val-
ues when the FWHM method was used, as the technique
only results in noise reduction without altering infor-
mation fidelity on LGE,; images. It yields highly repro-
ducible and consistent enhanced areas regardless of the
underlying etiologies for assessing the severity and extent
of MI and other myocardial diseases [13, 16, 26, 32, 33].
This was the first study to evaluate and directly com-
pare LGE; and LGE_ images of delayed intensification
foci in patients with UMI. The diagnostic performance
of the P,.,_p;. was higher than that of the P,,_q for the
threshold approaches, especially for the P, ., p; based
on the 5SD threshold, which exhibited the best AUC
(0.891). For LGE images, the P,..,_o based on the 3SD
threshold exhibited the optimal AUC of 0.840, consistent
with data from previous studies recommending using an
STRM =3SD for infarct size. This study recruited patients
with UMI without clinically significant cardiogenic
chest pain and with a relatively small range of reinforc-
ing foci; these results confirm that the 3SD threshold is
sufficient for conventional LGE images. In contrast, a
threshold>4SD should be used for DLR LGE images to
optimize the intra- and inter-reader agreement and diag-
nostic efficacy. The diagnosis of the extent of infarction in
UMI-related cases using the 4SD threshold was possibly
a more reliable parameter for LGEy and LGEp,; images
despite the better diagnostic efficacy of the 55D thresh-
old for LGE,; imaging. Furthermore, the detection rate
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of UMI was 67% (63/91); this rate was similar for LGEg
and LGE[, images despite the better image quality and
more reliable assessment of pathological features on
LGEp, imaging.

This study has some limitations. First, all participants
were recruited using a single-center design, and only
those who underwent an MR examination were included
for analysis, limiting the generalizability of our results.
Despite LGE images with high diagnostic accuracy of
MI detection, the final diagnosis relies on experienced
radiologists due to the lack of pathological validation for
delayed enhancement areas on LGE images. Therefore,
to enhance the robustness of result generalization, mul-
ticenter and large data, including comparison of P,..,_p.
and P, o using various SD and FWHM methods and
validation of the accuracy and reliability for UMI diagno-
sis should be considered for future LGE, or LGEy;.

Conclusions

The selection of SD thresholds for LGEp; (=4SD) and
LGEO (=3SD) images was recommended for future
research, as the difference between P,.,_p; and P,..._o
affected diagnostic efficacy and clinical decision-making
in patients with UMI. Moreover, P,,.,_p;, and P,,.,_o were
similar when the FWHM method was used, implying
LGEp,; images retained informational integrity. Despite
the same UMI detection rates between LGE, and LGE,;.
images, the LGE[;; images showed superior image quality
and reliable features for diagnosis with more confidence.
Therefore, STRM selection and diagnostic outcomes
should be carefully utilized and interpreted, particularly
for DLR-based CMR images.

Abbreviations

M Myocardial infarction

UMI Unrecognized myocardial infarction
DLR Deep learning reconstruction

SNR Signal-to-noise ratio

CNR Contrast-to-noise ratio

Porea Percentage of enhanced area

STRM Signal threshold versus reference mean
SD Standard deviation

FWHM  Full width at half maximum

CMR Cardiac magnetic resonance

LGE, Conventionally constructed late gadolinium enhancement

LGEp, Deep learning-based reconstruction late gadolinium enhancement
MRI Magnetic resonance imaging

DL Deep learning

cTn Cardiac troponin

ROI Region of interest

Sl Signal intensity

ICC Intraclass correlation coefficients

ROC Receiver operating characteristic

AUC Area under the curve
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