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Abstract
Background  Breast cancer is the most common cancer among women, and ultrasound is a usual tool for early 
screening. Nowadays, deep learning technique is applied as an auxiliary tool to provide the predictive results for 
doctors to decide whether to make further examinations or treatments. This study aimed to develop a hybrid learning 
approach for breast ultrasound classification by extracting more potential features from local and multi-center 
ultrasound data.

Methods  We proposed a hybrid learning approach to classify the breast tumors into benign and malignant. Three 
multi-center datasets (BUSI, BUS, OASBUD) were used to pretrain a model by federated learning, then every dataset 
was fine-tuned at local. The proposed model consisted of a convolutional neural network (CNN) and a graph neural 
network (GNN), aiming to extract features from images at a spatial level and from graphs at a geometric level. The 
input images are small-sized and free from pixel-level labels, and the input graphs are generated automatically in an 
unsupervised manner, which saves the costs of labor and memory space.

Results  The classification AUCROC of our proposed method is 0.911, 0.871 and 0.767 for BUSI, BUS and OASBUD. 
The balanced accuracy is 87.6%, 85.2% and 61.4% respectively. The results show that our method outperforms 
conventional methods.

Conclusions  Our hybrid approach can learn the inter-feature among multi-center data and the intra-feature of local 
data. It shows potential in aiding doctors for breast tumor classification in ultrasound at an early stage.

Keywords  Breast tumor classification, Ultrasound images, Federated learning, Convolutional neural network, Graph 
neural network, Artificial intelligence
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Introduction
The incidence of breast cancer ranks first among 
females in the cancer statistics and still keeps increas-
ing. Although the mortality is decreasing, breast cancer 
is still a great threat to women’s health [1]. Early diag-
nosis and proper treatment can improve the quality of 
life for patients. The ultrasound as one of common tools 
for early screening breast cancer has advantages of non-
invasion, non-radiation, etc [2]. The ultrasound waves 
transmitted by the probe can penetrate biologic tissues, 
images are obtained while the processor processes echoes 
received by the probe [3]. According to the ultrasound 
images, doctors will diagnose the breast lesion as benign 
or decide to make further examinations such as biopsy.

In recent years, artificial intelligence has developed 
rapidly and is expected to be an auxiliary tool for doc-
tors in disease diagnosis [4, 5]. CNN relying on its 
advantages in the domain of image processing has been 
widely used in tumor detection, segmentation, clas-
sification, etc. The aim of detection is to find bound-
ing boxes around tumors. In [6] researchers combined 
CNN and gated recurrent units to detect invasive ductal 
carcinoma in pathological images. In [7], a ShuffleNet-
ResNet scheme was proposed to detect breast cancer in 
mammograms and ultrasound datasets. An annotation-
efficient deep learning approach in [8] was designed for 
cancer detection in digital breast tomosynthesis. Unlike 
detection, segmentation will produce a pixel mask that 
yields shaped contours [9]. embedded a spatial-temporal 
transformer in encoder-decoder layers for breast tumor 
segmentation in DCE-MRI. A global guidance network 
[10] was proposed for breast lesion segmentation in 
ultrasound images, aiming to capture long-range depen-
dencies of the inputs and improve lesion segmentation 
accuracy. Researchers in [11] used attention modules 
to guide a neural ordinary differential equation based 
framework to segment breast tumors in ultrasound 
and DCE-MRI, alleviating the problems such as large 
amounts of parameters, lack of interpretability, overfit-
ting problem, etc. Since ultrasound images are vulner-
able to speckle noise interference [12, 13], researchers 
in [14] studied the segmentation of breast tumors from 
ultrasound images with different kinds of despeckling 
algorithms. In [15], a Hybrid-UNet which created using 
SegNet and UNet was proposed to segment thyroid 
tumors from despeckling ultrasound images. For clas-
sification [16], proposed a multi-DCNN framework 
to classify breast cancer in mammograms. In [17], the 
researchers added segmentation-based attention block to 
the deep CNN for breast tumors classification in ultra-
sound which was a segmentation-classification scheme. 
In [18], the authors designed an automatic classification 
model for histopathological images based on deep feature 
fusion and enhanced routing. In [19], edge preserving 

smoothing despeckling filter and encoder- decoder-based 
ResNet50 segmentation model were used for ultrasound 
images at preprocessing stages. Then the researchers 
extracted information from thyroid tumor by fifteen deep 
learning-based pretrained models and finally trained 
PCA-SVM for classification.

Images are Euclidean data that of translation invari-
ance. Unlike images, graphs are non-Euclidean data 
which can be visualized as aggregations of nodes and 
edges without having any order. The advent of GNN has 
provided a powerful technique to process graph data by 
exploiting the node relationships [20]. In [21], a finger-
prints-GNN was proposed to predict molecular proper-
ties of breast cancer [22]. used graph representations of 
the cellular interconnection geometry in a whole slide 
image to predict HER2 status in breast cancer. In [23], a 
hierarchical Graph V-Net was designed to classify histo-
pathological images.

The combination of these two networks has also been 
explored by researchers. In [24], the authors extracted 
features by CNN to construct graphs and then used 
GNN for automatic characterization of both the mor-
phology and distribution of microcalcifications in mam-
mograms. Researchers in [25] used a CNN to extract 
features from DCE-MRI scans and an autoencoder to 
represent genomic variant results or micro array expres-
sion features in a condensed latent space. The combina-
tion of radiographic data and genomic data improved the 
GNN abilities for prediction of breast cancer molecular 
subtype.

The combination of CNN and GNN for classification 
of breast cancer in ultrasound is rarely studied. Thus, in 
this study we designed a hybrid learning architecture that 
contained CNN and GNN to achieve spatial learning, 
geometric learning and federated learning simultane-
ously, aiming to make better use of multi-center ultra-
sound images and protect privacy at the same time.

The main contributions of our work are as follows:

1.	 A hybrid learning approach consisting of federated 
learning, spatial learning and geometric learning was 
firstly proposed for breast tumor classification in 
multi-center ultrasound data;

2.	 The images did not need doctors to delineate the 
contours of tumor in advance, and the graphs 
were generated from images automatically in an 
unsupervised manner;

3.	 The federated learning was used to extract inter-
feature among multi-center ultrasound without data 
exchange and privacy leakage;

4.	 The CNN branch was designed to extract features 
in spatial domain from small sized images, while 
the GNN branch was designed to extract features 
in geometric domain from graphs. Intra-feature 
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extracted from two branches was fused and classified 
using a multi-layer perceptron (MLP) finally.

The rest of this article is organized as follows: all the 
datasets and techniques we used are presented in Sec-
tion “Materials and methods”; Evaluation metrics and 
experimental results are shown in Section “Results”; Sec-
tion “Discussion” gives a comprehensive discussion on 
our method and comparative methods according to the 
experimental results and describes future work; Section 
“Conclusions” concludes the article.

Materials and methods
Ultrasound datasets
BUSI
This dataset was collected by Baheya hospital, Egypt [26]. 
It consists of breast ultrasound images (n = 780) of 437 
benign cases, 210 malignant cases and 133 normal cases 
with confirmed pathological diagnosis. These images 
were scanned by LOGIQ E9 ultrasound system and 
LOGIQ E9 Agile ultrasound system ML6-15-D Matrix 
linear probe transducer (1–5 MHz).

BUS
It is a public breast ultrasound dataset that was collected 
from the UDIAT Diagnostic Centre of the Parc Tauli 
Corporation, Sabadell (Spain) [27]. Within the dataset 
(n = 163), there are 53 malignant cases and 110 benign 
cases with confirmed pathological diagnosis. These 
images were scanned with a Siemens ACUSON Sequoia 
C512 system 17L5 HD linear array transducer (8.5 MHz).

OASBUD
The free available ultrasonic radio-frequency (RF) echoes 
were recorded from breast lesions in the Department 
of Ultrasound, Institute of Fundamental Technological 
Research Polish Academy of Sciences in Warsaw [28]. 
These RF signals were obtained by the Ultrasonix Sonix-
Touch Research ultrasound scanner using the L14-5/38 
linear array transducer (10  MHz). The dataset (n = 200) 
contains longitudinal and transverse scans for each case, 
so there are 104 malignant samples and 96 benign sam-
ples with confirmed pathological diagnosis.

Table 1 summarizes the information of these datasets, 
the ratio of benign cases to malignant cases is imbal-
anced, especially for datasets BUSI and BUS. We chose 
blind/referenceless image spatial quality evaluator 
(BRISQUE) [29] and naturalness image quality evalua-
tor (NIQE) [30] to assess the average no-reference image 
quality score of each dataset. Figure  1a illustrates the 
radar chart on these no-reference quality metrics. Note 
that a smaller score indicates better perceptual quality, 
so the dataset with a smaller bounding area has better 
quality, i.e., generally BUSI is better than BUS and BUS is 
better than OASBUD. It can be seen in Fig. 1b that with 
the naked eye, the images from BUSI and BUS are more 

Table 1  Basic information of three multi-center datasets
Dataset Center Category Num
BUSI Baheya Hospital, Egypt benign 437

malignant 210
BUS UDIAT Diagnostic Centre, Spain benign 109

malignant 54
OASBUD Institute of Fundamental Techno-

logical Research Polish Academy 
of Sciences, Poland

benign 96
malignant 104

Fig. 1  (a) Radar chart of no-reference image quality score. BRISQUE and NIQE were adopted to assess the quality of benign images and malignant images 
in the three multi-center datasets. (b) Images from three datasets, the first row shows the benign cases and the second row shows the malignant cases. 
According to both (a) and (b) we can see dataset BUSI and BUS have a better quality than OASBUD
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distinguishable than images from OASBUD. Since the 
three breast ultrasound datasets above differ in countries, 
devices, image quality, etc., we consider them as multi-
center datasets and conduct a series of experiments.

Preprocessing of images and graphs
For better training and assessing the performance of our 
approach on three multi-center datasets, all the images 
were resized to 32 × 32, then we split each dataset into 
training set (60%), validation set (20%) and test set (20%). 
Since the small amount of data, we applied augmentation 
methods including random horizontal/vertical flipping 
(probability: 50%), random affine transformation (scale: 
0.9 ∼ 1.1, rotation: -3 ∼ 3 rad, shear: -3 ∼ 3 rad, translation: 
-0.0625 ∼ 0.0625) and adding Gaussian noise (expecta-
tion: 0, standard deviation: 0 ∼ 0.1, normal distribution), 
the number of training sets multiplied tenfold. Also, for 
better use of geometric information, we constructed 
graphs from images by following steps: firstly, simple 
linear iterative clustering (SLIC) [31], an unsupervised 
algorithm, converted an image to a super-pixel represen-
tation. Then, according to centroids coordinates of super-
pixels, K-nearest neighbor (KNN) graphs were created. 
Finally, the mean value and centroid coordinate of each 
super-pixel segment were assigned as node features and 
the Euclidean distance of linked nodes was assigned as 
edge attribute. Table 2 summarizes the details of images 
and graphs in three multi-center datasets with respect to 
training set, validation set and test set. And Fig. 2 illus-
trates the paths about how to preprocess images and con-
struct corresponding graphs.

Multi-center breast tumor classification with hybrid 
learning
In this study, all the model architectures were built by 
PyTorch [32], an open-source deep learning library. The 
experiments were conducted on a 64-bit Ubuntu 20.04.5 
long-term support operating system, equipped with a 
2.50 GHz Intel(R) Xeon(R) Platinum 8255 C CPU and a 
NVIDIA GTX 2080Ti 11 GB GPU card.

Federated learning
We considered a scenario in which there are several hos-
pitals had their own clinical data for prediction. It is a 
good solution to collect all the data together and train a 

general prediction model, however, because of privacy 
issues, we should keep data locally rather than exchange. 
Here, we proposed to use federated learning, which 
allows each hospital to train the model locally and keep 
the data safe, only the weights of models are needed for 
global update. We adopted FedCL [33] as the basic feder-
ated architecture, referred to the thoughts of its contras-
tive learning and proposed the proper loss function as 
follows for our task:

	

L = LCE(x, y) + LHE(f t−1
local, f t

local)
+ LHE(f t

global, f t
local)

� (1)

where LCE  means cross entropy loss, LHE  means hinge 
embedding loss, x and y mean classification prediction 
of local model and ground truth label, f and t denote the 
feature extracted by model and the t-th epoch of local 
training.

Figure  3 shows the paradigm of federated learning, 
each model is trained locally for several epochs before 
every communication round. After a certain amount of 
communication rounds, we considered the current local 
model as pretrained model for general data and it needed 
to fine-tune on specific data/task. In specific, the feder-
ated learning steps are as follows:

(1)	The center sever sends an initial global model to all 
the clients (Center A, Center B, Center C…), the 
learnable parameters of the global model are denoted 
as wglob .

(2)	Every center trains the local model with local data for 
k epochs, the learnable parameters of the local model 
are denoted as wi(i = A, B, C...).

(3)	For each communication round, local clients send 
wi  to center sever and center sever will aggregate the 
parameters wglob ←

∑
i

ni
N

wi , where ni  is the data 
amount of the i-th center and N is the total number 
of all the data.

(4)	The center sever sends the updated wglob  to local 
clients for next communication round.

Table 2  Details of images and graphs in three multi-center datasets
Dataset Training num Graph info Validation num Graph info Test num Graph info
BUSI 3890 ∼ 120 nodes

∼ 1923 edges
129 ∼ 120 nodes

∼ 1923 edges
129 ∼ 120 nodes

∼ 1921 edges
BUS 1010 ∼ 120 nodes

∼ 1917 edges
31 ∼ 120 nodes

∼ 1915 edges
31 ∼ 120 nodes

∼ 1919 edges
OASBUD 1200 ∼ 119 nodes

∼ 1911 edges
42 ∼ 119 nodes

∼ 1909 edges
38 ∼ 120 nodes

∼ 1913 edges
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Spatial and geometric learning
To capture more information from the given data, 
we designed a two-branch model architecture which 
extracts features from both spatial domain and geometric 
domain. The details are presented in Fig. 4. In the branch 
of the image, we utilized PreResNet [34] as the backbone 
to extract features from images. It is a modified version 
of ResNet [35] which inherits the key operation, i.e., skip 
connection, and the main distinction is the order of con-
volution, normalization and activation. Here we adopted 

a depth of 110, it contained three basic blocks and each 
block consisted of 18 operations of skip connection. The 
core calculation formula of feature in PreResNet is as 
follows:

	
xL = xl +

L−1∑

i=l

F (xi, wi)� (2)

Fig. 2  Preprocessing paths of image (green arrow) and graph (red arrow). In the green preprocessing path, the original image will be resized to N×N 
first, then flipped horizontally or vertically randomly and added Gaussian noise, finally applied random affine transformation. In the red preprocessing 
path, the SLIC algorithm will be used to segment the image based on super-pixel, then for super-pixel segments, the KNN algorithm is used to create a 
graph based on their centroid coordinates. Besides, according to the original image, node features are assigned by the mean value of each super-pixel 
segment, together with the centroid coordinate, and for each edge, the Euclidean distance is calculated as edge attributes. Finally, the complete graph is 
constructed, we show the edge attributes by color map here
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Fig. 4  Hybrid learning architecture for breast tumor classification. The model consists of two branches, one for image features extraction and another 
for graph features extraction

 

Fig. 3  The paradigm of federated learning. The model in each center has the same architecture, it is trained with local data for several epochs and the 
weights will be uploaded to a public platform. Then weights of all the centers are aggregated and posted back to each center. In this way, the model can 
learn from multi-center datasets without data leakage
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xL  and xl  mean features of deeper unit L and shallower 
unit l, F means residual function, and w means weights of 
i-th residual unit.

Thus far, we have extracted the image features in spatial 
domain. In the branch of the graph, the graph isomor-
phism network (GIN) [36, 37] was adopted as the back-
bone, it consisted of four graph blocks and each block 
had operations of graph convolution and fully connec-
tion. Let G = (V, E) denote a graph with node attributes 
Xv(v ∈ V ) and edge attributes euv(u, v ∈ E)(feature of 
edge between node u and v). The k-th layer of the repre-
sentation of node v calculates as follows:

	

h(k)
v = COMBINE(k) (h(k−1)

v , AGGREGATE(k)

({(h(k−1)
v , h(k−1)

u , euv) : u ∈ N(v)}))
� (3)

Here N(v)  means a set of neighbors of v.
In addition, we added a multi-layer perceptron (MLP) 

with dropout to extract and refine the graph features in 
geometric domain. Finally, two kinds of features were 
concatenated and input to an MLP to make the decision 
whether the breast tumor was benign or malignant. Our 
two-branch architecture was designed to learn compre-
hensive information between images, node features and 
edge attributes, aiming to achieve better results than 
learning information solely.

Results
Metrics
In this paper, evaluation metrics were used to mea-
sure the performance of classification, including bal-
anced accuracy, sensitivity, specificity, F1 score, AUCROC 
(area under the receiver operating characteristic curve), 
AUCPR (area under the precision-recall curve). These 
metrics were calculated as follows:

	
balanced accuracy =

sensitivity + specificity

2
� (4)

	
sensitivity =

TP

TP + FN
� (5)

	
specificity =

TN

TN + FP
� (6)

	
F1 score =

2 × TP

2 × TP + FP + FN
� (7)

here TP, FP, TN and FN are true positives, false positives, 
true negatives and false negatives respectively. Since the 
datasets used in this study were imbalanced, especially in 
BUSI and BUS, the number of benign cases was far more 
than malignant cases, we selected balanced accuracy to 

evaluate the performance. Sensitivity reveals the ability of 
the model to distinguish negative samples and reversely 
specificity reveals the ability of the model to distinguish 
positive samples. F1 score balances precision and recall, 
it reflects a comprehensive score of the model. ROC and 
PR curve are usually used to evaluate the classification 
performance and while the samples are imbalanced, the 
latter could reflect the differences more exactly than the 
former. In general, AUC is the criteria to judge which 
curve performs better.

Ablation experiments of our hybrid method
We conducted a series of ablation experiments to com-
pare the performance of models under various condi-
tions. Our hybrid learning method, CNN method and 
GNN method were evaluated on three multi-center data-
sets with and without federated learning. The quantita-
tive performance of all the methods were presented in 
Table 3, and the corresponding ROC as well as PR curves 
were illustrated in Fig. 5. We can see that in dataset BUSI, 
our method which mixed federated learning, spatial 
learning and geometric learning had reached best bal-
anced accuracy of 87.6%. AUCROC, AUCPR, F1 score and 
sensitivity were also the highest among all methods. For 
its specificity, it was the only two which exceeded 90%. 
As for our method without federated learning, its perfor-
mance was comparable or even better to other methods 
with federated learning. The condition was the same in 
dataset BUS, our hybrid learning method with or without 
federated learning outperformed others with respect to 
almost all the metrics. However, in dataset OASBUD, the 
performance of all the methods slumped because of the 
poor quality of the images. CNN with federated learning 
got the best AUCROC and AUCPR, but that did not mean 
this model had a higher ability of classification since its 
F1 score and sensitivity were lower than 10%. Contrary to 
this extreme situation, our method and GNN with feder-
ated learning got relatively balanced results.

Also, we presented decision curve analysis (DCA) of all 
models for three multi-center datasets in Fig. 6. For data-
set BUSI and BUS, our hybrid method with or without 
federated learning got a relatively high net benefit than 
other methods in a range of threshold. In dataset OAS-
BUD, the decision curve of CNN with federated learning 
seemed to perform best, like the performance of its ROC 
and PR curve, because of its unduly high specificity and 
unduly low sensitivity.

Performance evaluation with comparison methods
We also compared our hybrid method with four other 
relative state-of-the-art classification methods, including 
two deep learning methods for breast ultrasound and two 
hybrid methods for other domains. HoVer-Trans [38] was 
proposed based on vision transformer for breast cancer 
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diagnosis in ultrasound images, according to the original 
study we resized images to 256 × 256 for model training. 
Another deep learning method for breast ultrasound 
is SBANet [17], which consisted of three training stage. 
Firstly, a segmentation model was trained for generating 
ROIs; secondly, fine-tuned the feature networks based on 
ROIs and origin images; finally, trained the feature aggre-
gation network. For simplicity, we skipped the first stage 
and provided ground truths of ROIs directly. The images 
were resized to 224 × 224 according to the original study. 
Besides the field of breast ultrasound, we selected two 
more hybrid methods, FastViT [39] and MIL-ViT [40]. 
FastViT adopted a hybrid vision transformer architec-
ture which used structural reparameterization to lower 
the memory access cost by removing skip-connections in 
the network, the method was able to generalize to many 
tasks including image classification, object detection, 
semantics segmentation, and 3D hand mesh regression. 
Hence we obtained its pretrained weights and fine-tuned 
for breast tumor classification task, the input size was set 
to 256 × 256. MIL-ViT was also a hybrid framework, com-
bining the global semantic representation learning capa-
bility of the vision transformer and the capacity of local 
representation extraction from the conventional multiple 
instance learning. The method was for fundus image 

classification, we also obtained its pretrained weights and 
fine-tuned for our task, the input size was 384 × 384.

The comparison results are shown in Table 4. In BUSI, 
our method achieved best balanced accuracy, F1 score 
and specificity of 0.876, 0.833 and 0.920 respectively; 
MIL-ViT got best AUCPR and specificity of 0.969 and 
0.920 respectively, while SBANet got best AUCROC and 
sensitivity of 0.948 and 0.857 respectively. In BUS, our 
method performed best in more than half of the metrics 
(four in six). And in OASBUD, our method and Fast-ViT 
each got the half amount of the best results. Generally, 
MIL-ViT and HoVer-Trans had steady performance in 
every dataset while FastViT and SBANet performed 
poorly in BUS. FastVit and MIL-ViT had good perfor-
mance in one or two datasets, while the results of HoVer-
Trans were not so outstanding among three datasets.

We have calculated inference time per image (exclud-
ing the time of model initialization and weights loading) 
for all methods in Table 5. MIL-ViT had the fastest infer-
ence speed of only 0.007s/image, and Fast-ViT ranked 
second of 0.011s/image. Our hybrid model spent 0.015s. 
We can see that all the method just took milliseconds for 
prediction.

Table 3  Results of test sets for BUSI, BUS and OASBUD
Dataset BUSI
Architecture Hybrid (ours) CNN GNN

Federated learning √ × √ × √ ×
Balanced accuracy 0.876 0.811 0.782 0.805 0.788 0.729
AUCROC 0.911 0.870 0.880 0.848 0.816 0.770
AUCPR 0.871 0.815 0.847 0.784 0.755 0.673
F1 score 0.833 0.753 0.706 0.741 0.716 0.633
Sensitivity 0.833 0.690 0.714 0.714 0.690 0.595
Specificity 0.920 0.931 0.851 0.897 0.885 0.862
Dataset BUS
Architecture Hybrid (ours) CNN GNN
Federated learning √ × √ × √ ×
Balanced accuracy 0.852 0.805 0.731 0.652 0.557 0.602
AUCROC 0.871 0.857 0.824 0.771 0.629 0.810
AUCPR 0.849 0.820 0.769 0.627 0.417 0.652
F1 score 0.800 0.727 0.636 0.500 0.400 0.400
Sensitivity 0.800 0.800 0.700 0.400 0.400 0.300
Specificity 0.905 0.810 0.762 0.905 0.714 0.905
Dataset OASBUD
Architecture Hybrid (ours) CNN GNN
Federated learning √ × √ × √ ×
Balanced accuracy 0.614 0.647 0.525 0.544 0.619 0.544
AUCROC 0.767 0.756 0.806 0.703 0.714 0.617
AUCPR 0.789 0.775 0.805 0.714 0.773 0.680
F1 score 0.545 0.500 0.095 0.308 0.483 0.308
Sensitivity 0.450 0.350 0.050 0.200 0.350 0.200
Specificity 0.778 0.944 1.000 0.889 0.889 0.889
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Discussion
Computer aided diagnosis have made considerable prog-
ress these years. In deep learning era, the invention of 
CNN made it better and faster for image processing. In 
this paper, we proposed to classify breast tumors by not 
only learning spatial features from single-center images, 
but also learning geometric features from corresponding 

graphs and hybrid features from multi-center images 
without data exchange.

As shown in Table  3; Fig.  5, our hybrid method with 
federated learning, i.e., combining all the three feature 
learning technologies, showed the best performance on 
both dataset BUSI and BUS. In dataset BUSI, its AUCROC 
have achieved 0.911, both sensitivity and specificity 

Fig. 5  ROC (the first column) and PR curves (the second column) of all the methods. The first row, second row and third row present the curves of dataset 
BUSI, BUS and OASBUD respectively
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maintained a higher level than other methods. Even 
though without federated learning, the performance of 
hybrid method was still comparable or better than oth-
ers. That meant the concatenation of spatial features and 
geometric features was more effective than single source 
features. For CNN, federated learning could improve the 
performance in terms of AUCROC and AUCPR. In data-
set BUS, we could get the same conclusion above. Our 
hybrid method with federated learning outperformed all 
the other methods, got the highest AUCROC of 0.871, and 
with high sensitivity and specificity at once. But for GNN, 
whether in dataset BUSI or BUS, its overall performance 
was worse than that of CNN. A more likely reason is that 
in an image processing task, geometric features tend to 
serve as an auxiliary role rather than dominance.

It is worth note that in dataset OASBUD, the perfor-
mance of ROC and PR curve was quite misleading. For 
example, CNN with federated learning got the best 
AUCROC and AUCPR, but its sensitivity and specific-
ity had completely two different values. Its sensitivity 
of 0.050 and specificity of 1.000 meant that the model 
almost determined all the samples as benign, in other 
words it did not possess a classification ability. The 
extremely low F1 score also pointed out this problem. 
Considering all the metrics comprehensively, our hybrid 
method with or without federated learning as well as 
GNN with federated learning got relatively balanced 
results. In contrast with dataset BUSI and BUS, due to 
poor quality of dataset OASBUD, geometric features 
from graphs even contained more effective information 

Fig. 6  DCA of all models for three multi-center datasets. (a) for BUSI, (b) for BUS and (c) for OASBUD
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than spatial features from images. That was why GNN 
performed better than CNN relatively.

In Table  4, we compared our hybrid method with 
four related state-of-the-art methods, three of them 
used the transformer as their backbone. Transformer 
was invented for sequential data, since the vision trans-
former was proposed, it had shown strong potentials in 
image processing. Different from these methods which 
were focusing on global and local semantic features, we 
focused on spatial and geometric features from images 
and graphs, inter- and intra- features from multicenter 
and local datasets. Moreover, we can see that our hybrid 
method performed best in some of metrics among these 
methods, but did not seem to have overwhelming per-
formance compared to these state-of-the-art methods in 
all the metrics. However, in terms of experimental con-
ditions, our method worked without ROIs (pixel-level 
labels) while SBANet needed doctors to delineate tumor 
contours manually; our method took only 32 × 32-sized 

images as input that greatly saved memory while four 
other models required more than 49 times larger size of 
images. Thus, our method still showed its advantages in 
the experiment.

In Table  5, we can see that two vision transformer-
based methods, MIL-ViT and FastViT had shown very 
fast speed on inference. However, every method had took 
just milliseconds for prediction, in other words, they all 
had potentials to apply in real time medical system in the 
future.

There are some limitations in this study. Firstly, the 
method of how to construct graphs that contain richer 
information than now should be further studied. Sec-
ondly, the breast ultrasound datasets we used are publicly 
available, in the future we plan to collect and process pri-
vate data from different hospitals for further multi-center 
research.

Conclusions
In this paper, we proposed the hybrid learning methods 
for breast tumor classification, and compared with the 
conventional CNN and GNN. The experiments were 
conducted on three multi-center datasets to evaluate the 
performance of each model. The results confirmed the 
efficacy of combining spatial learning, geometric learn-
ing and federated learning. That means, spatial and geo-
metric features, inter- and intra- features were indeed 
beneficial for classification task, hybrid learning had its 
potential in classifying breast tumors from multi-center 
datasets. In addition, we do not need to detect or seg-
ment breast lesions before classification, so the approach 
is time-consuming and directness compared to some 
other multi-phase methods. Our work is expected to pro-
cess multi-center data without exchange and aid in the 
early diagnosis of the breast tumor.
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Table 4  Results of our hybrid method and comparative 
methods in BUSI, BUS and OASBUD.
Dataset BUSI
Method hybrid (ours) FastViT MIL-ViT HoVer-Trans SBANet
Balanced accuracy 0.876 0.842 0.853 0.800 0.865
AUCROC 0.911 0.855 0.938 0.854 0.948
AUCPR 0.871 0.915 0.969 0.890 0.915
F1 score 0.833 0782 0.805 0.732 0.809
Sensitivity 0.833 0.810 0.786 0.714 0.857
Specificity 0.920 0.874 0.920 0.885 0.874
Dataset BUS
Method hybrid (ours) FastViT MIL-ViT HoVer-Trans SBANet
Balanced accuracy 0.852 0.729 0.776 0.755 0.650
AUCROC 0.871 0.490 0.871 0.771 0.752
AUCPR 0.849 0.723 0.917 0.866 0.696
F1 score 0.800 0.632 0.706 0.667 0.462
Sensitivity 0.800 0.600 0.600 0.700 0.300
Specificity 0.905 0.857 0.952 0.810 1.000
Dataset OASBUD
Method hybrid (ours) FastViT MIL-ViT HoVer-Trans SBANet
Balanced accuracy 0.614 0.625 0.519 0.589 0.597
AUCROC 0.767 0.678 0.739 0.742 0.717
AUCPR 0.789 0.676 0.725 0.722 0.777
F1 score 0.545 0.682 0.591 0.500 0.667
Sensitivity 0.450 0.750 0.650 0.400 0.750
Specificity 0.778 0.500 0.389 0.778 0.444

Table 5  The inference time for our hybrid method and 
comparative methods
Method hy-

brid 
(ours)

FastViT MIL-ViT HoVer-Trans SBANet

Inference 
time per 
image(s)

0.015 0.011 0.007 0.063 0.023
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