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70–80%. By monitoring the risk of injury in sports, it is 
possible to find signs of injury and take effective action in 
a timely manner.

Currently, research in the field of sports injuries is 
extensive. Fonseca et al. focus on exploring methods for 
predicting sports injuries [1]. Bolling, Caroline, delves 
into the definition of sports injuries as perceived by ath-
letes, coaches, and therapists [2]. Nielsen, Rasmus Oes-
tergaard focus on treatment methods for different types 
of sports injuries and approaches to managing subse-
quent injuries in athletes [3]. Donaldson, Alex, examines 
the challenges faced in evidence-based sports injury pre-
vention [4]. Park, So young systematically analyzes injury 
locations, rates, causes, and types among female athletes 
[5]. Despite some progress made in existing research, 
there are still many shortcomings in the monitoring and 
prevention of sports injuries, lacking comprehensiveness 
and precision.

The application of deep learning algorithms in the 
medical field has garnered widespread attention. Bai et al. 

Introduction
Popular physiological responses to exercise injuries con-
sist of muscle sprains, fatigue during exercise, cardiac 
overload, and tibial fibrosis. Effective identification and 
detection of the state of exercise of the body can protect 
against exercise injuries. It has been shown that optimiz-
ing training by identifying sports status can prevent, con-
trol, and monitor scattered sports injury risks. The use 
of effective training condition recognition and detection 
approaches can efficiently prevent fatality and shock from 
unexpected exercise injuries within a statistical range of 
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Abstract
In response to the low real-time performance and accuracy of traditional sports injury monitoring, this article 
conducts research on a real-time injury monitoring system using the SVM model as an example. Video detection 
is performed to capture human movements, followed by human joint detection. Polynomial fitting analysis is used 
to extract joint motion patterns, and the average of training data is calculated as a reference point. The raw data is 
then normalized to adjust position and direction, and dimensionality reduction is achieved through singular value 
decomposition to enhance processing efficiency and model training speed. A support vector machine classifier is 
used to classify and identify the processed data. The experimental section monitors sports injuries and investigates 
the accuracy of the system’s monitoring. Compared to mainstream models such as Random Forest and Naive 
Bayes, the SVM utilized demonstrates good performance in accuracy, sensitivity, and specificity, reaching 94.2%, 
92.5%, and 96.0% respectively.
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propose machine learning-based methods for the identi-
fication of sports injuries [6]. Ba and Hongbing explore 
a deep learning system for sports injury medical reha-
bilitation based on image analysis [7]. Chang, Peter D, 
uses deep learning algorithms to detect complete tears 
of the anterior cruciate ligament [8]. Ozrazgat-Baslanti 
summarizes the research progress of deep learning in 
acute kidney injury related to the intensive care unit 
[9]. Rank, Nina introduces a deep learning-based algo-
rithm capable of predicting acute kidney injury before 
the onset of symptoms and complications after surgery 
[10]. Despite the significant achievements of deep learn-
ing algorithms in the medical field, their application in 
sports injury monitoring remains relatively limited. This 
article addresses existing deficiencies in sports injury 
monitoring and proposes a new approach. Through steps 
such as video detection, human body keypoint detection, 
polynomial fitting analysis, mean calculation, normaliza-
tion, singular value decomposition, and data dimension-
ality reduction, this paper establishes a comprehensive 
sports injury monitoring system. Compared to existing 
research, the proposed method is more comprehensive, 
accurate and practical, offering more effective solutions 
for the monitoring and prevention of sports injuries.

In this paper, the depth learning algorithm is used to 
study the real-time monitoring system of sports inju-
ries. Firstly, the deep learning algorithm is applied to 
human target recognition, including motion detection 
and motion analysis. Then the research of sports injury 
real-time monitoring system is carried out, the design 
principle, the overall design, and the hardware design of 
the system are introduced, and the monitoring software 
is developed. In the experiment part, the real-time moni-
toring system of sports injury and the artificial experi-
ence analysis method are used to monitor the injury of 
running, aerobics and table tennis, and explore the moni-
toring accuracy of the monitoring system. The innova-
tions in this article are as follows.

  – Applying deep learning algorithms to real-time 
monitoring of sports injuries has improved detection 
accuracy.

  – Deep learning-based monitoring systems have 
achieved high accuracy rates in activities such as 
running, aerobic exercise, and table tennis.

  – The article presents a comprehensive design scheme 
for a sports injury monitoring system, integrating 
hardware and software, enabling the comprehensive 
monitoring and analysis of sports injuries.

Human motion target motion recognition based on 
depth learning
The research and application of machine learning in the 
medical field is becoming more and more extensive, and 
many achievements have been made, mainly in disease 
prediction, disease auxiliary diagnosis, disease progno-
sis evaluation, new drug development, health manage-
ment, medical image recognition, etc. Deep learning is a 
new field of machine learning research. It can transform 
the original data from a simple nonlinear model to a 
higher level of abstract expression through the machine 
learning process, without human intervention, and then 
extract highly complex functional features by combining 
multilevel transformation learning. This is the main dif-
ference between deep learning and traditional machine 
learning. The commonly used deep learning algorithms 
in the medical field include convolutional neural net-
works, deep belief networks, deep neural networks, and 
recursive neural networks, which can be mainly used 
for disease diagnosis, drug development, medical image 
analysis, etc. In this paper, the depth learning algorithm 
is used to study real-time monitoring of sports injuries. 
First, human target action recognition is performed. The 
human target action recognition method is shown in 
Fig. 1.

The specific steps of this method are as follows.

1) Video detection: by examining video data, capture 
the movements of human targets

Fig. 1 Human target movement recognition method
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2) Human joint detection: use training and testing data 
to detect human joints.

3) Analysis, polynomial fitting: Perform polynomial 
fitting analysis on the detected joint data to extract 
motion patterns 4) between joints.

5) Calculate the mean: Calculate the mean of the 
training data as a reference point for data processing.

6) Demeaning: De-mean the original data to adjust 
data position and orientation. Use singular value 
decomposition to reduce the dimensionality of the 
data.

7) Data Dimension Reduction: Utilize dimensionality 
reduction techniques to improve data processing 
efficiency and model training speed.

8) SVM Classifier: Use the Support Vector Machine 
classifier to classify and identify processed data.

Motion detection
The recognition of human actions is completed by deter-
mining the reliability map S of the body joints and the 
two-dimensional vector field L of the affinity domain of 
the joint points [11].

Collaborative detection and association
Collaborative detection and association involve identi-
fying connectivity between human nodes and learning 
regions. First, the convolutional neural network is used 
to analyze the input graph, and the result of the associa-
tion of features F is obtained as the input of each step. 
The first 10 layers of the VGG-19 network (Visual Geom-
etry Group-19) are used to initialize and adjust the net-
work. The network structure is divided into two iterative 
prediction branches. The first branch defines the two-
dimensional characteristic graph R of body joints, and 
the second branch predicts the two-dimensional vector 
field M of the affinity of different body parts. The input of 
the first stage generates the confidence diagram R1  and 
vector field M1 . In each subsequent prediction stage, the 
output of the previous stage is used as the input of this 
stage. The original characteristic diagram is F and the 
iterative calculation formula is as follows:

 Rt = ρt(F t, Rt−1, Mt−1) (1)

 Mt = ρt(F t, Rt−1, Mt−1) (2)

Among them, ρt(•) represents the iterative calculation 
of branches at each stage of the neural network. Formula 
1 iteratively computes confidence maps and vector fields 
using convolutional neural networks to accurately recog-
nize human actions. Formula 2 evaluates the accuracy of 
predicted confidence maps to guide model optimization.

A loss function L2 is added at the end of each step to 
provide more accurate prediction results. In order to deal 
with the problem that some data in the dataset cannot be 
completely marked, the weight of each loss function is 
used to form the following loss function:

 
f t

R =
J∑

j=1

∑

q

w (q) . ‖ St
jq − S∗

j (q) ‖2
2 (3)

 
f t

M =
C∑

c=1

∑

q

w (q) . ‖ St
cq − S∗

c (q) ‖2
2 (4)

Among them, S∗
j (q) and S∗

c (q) are the real marked val-
ues, and w (q) is 0 and 1, and when the point is marked 
it is 1. If the point is marked, it is 1, otherwise it is 0, 
so as to avoid punishing the model when the sample is 
positive. Formula 3 calculates local affinity field associa-
tions to ensure connectivity among all joints, enhancing 
model robustness and accuracy. Formula 4 maps the 
node detection results to the confidence maps for further 
joint detection and action recognition. The final objective 
function is in the following form:

 
f =

∑T

t=1
(ftR + ftM) (5)

Formula 5 optimizes confidence maps to improve node 
detection accuracy and robustness.

Joint point confidence map detection
When nodes are detected in the input image, the con-
volution neural network operation can detect the node 
map, which is called the confidence map. This work uses 
several training steps. Each step uses the results of the 
previous training step and optimizes them to bring the 
final results closer to the target value [12].

First, the confidence map of the nth individual is 
s∗
j,n (q), and xj,n  is the true value of the nth individual at 

the joint point j. Then the predicted value of the point q 
can be expressed as a Gaussian function in the following 
form:

 
s∗
j,n (q) = exp −

‖ q − xj,n ‖2
2

σ2
 (6)

Formula 6 predicts node positions using Gaussian func-
tions to improve node detection precision. For each dif-
ferent real point x, there is a symmetrical curve at point 
q, and the maximum operation method is as follows:

 s∗
j (q) = n

maxs∗
jn (q) (7)
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Formula 7 selects the maximum confidence value as 
the node detection result, improving the stability of the 
result.

Association of the local affinity domain
Once human joints are detected, all joints must be con-
nected. If the connection only considers the validity of 
two detection points, when there is more than one point, 
an incorrect connection would occur.

xj1,n  and xj2,n  represent the actual positions of joint 
point j1  and joint point j2  of the nth person on limb 
c, so the form of the vector field of the point q is: 

L∗
c,n (q) =

{
V, qonc

o, other
 (8)

Among them, V = (xj1,n − xj2,n) / ‖ xj1,n − xj2,n‖2 repre-
sents the unit vector of the direction of the limb. Formula 
8 computes vector fields between nodes based on the 
direction of the limb, connecting joints of different parts 
of the body. Finally, the affinity fields of all individuals at 
point q are averaged as follows:

 
L∗

c (q) =
1

nc (q)

∑

n

L∗
c,n (q) (9)

Formula 9 calculates the reliability of the connections 
between joints through the affinity field, ensuring the 
accuracy and rationality of the connection. nc (q) repre-
sents the number of all nonzero vectors of the point q. 
For any two joint points dj1 and dj2, the reliability E of 
the affinity field relationship is calculated by the distance 
between the two points:

 
E =

u=1
∫

u=0
Lc (q (u)) .

dj2 − dj1

‖ dj2 − dj12 ‖
du  (10)

 q (u) = (1 − u)dj1 + udj2  (11)

Formula 10 averages the affinity fields of all individuals 
to consider the connection accuracy in a comprehensive 
way. Formula 11 evaluates the reliability of the connec-
tion relationships between joints through the calculation 
of the reliability of the affinity field. In the calculation, the 
integral is approximately solved by the sum of the uni-
formly distributed values of the discretized u.

2.2 Motion analysis
Because the position of the human body changes con-
stantly during the sampling process, it is necessary to 
standardize the test data. As the width/height ratio of 
the human shoulder is 1:4, the x and y values of each 
joint point are normalized to the range of [-200,200] and 
[-800,800], that is:

 
xi = 400 × xoi − xmin

xmax − xmin
− 200 (12)

 
yi = 1600 × yoi − ymin

ymax − ymin
− 800 (13)

Formula 12 standardizes the sampled data to meet the 
requirements for subsequent motion analysis. Formula 
13 utilizes the orthogonal Procrustes problem to opti-
mize the spatial coordinate fitting effect of the model. 
Among them, (xoi ,yoi ) and (xi ,yi ) respectively represent 
the point coordinates before and after normalization, and 
xmax , xmin , ymax  and ymin  represent the maximum and 
minimum values of the sample point coordinates.

Proctor analysis
Mathematically, the orthogonal Proctor problem is to 
solve an orthogonal matrix R0 so that AR0 is as close to 
B as possible. A and B are the space coordinates of two 
objects, that is, to solve the convergence problem.

 f0 (R) = min
R ‖ AR0 − B‖F  (14)

Among them, ‖ .‖F  is the F norm. Formula 14 deter-
mines the centroid of samples for reference in subse-
quent translation operations.

A. Translation.
First, the mass center of the sample is determined, 

which can be expressed by the following formula:

 
(
−x,

−y) = (
1
N

N∑

i=1

xi,
1
N

N∑

i=1

yi)  (15)

Formula 15 performs translation operations on original 
coordinate points to correct data position and orienta-
tion. Among them, N represents the number of corre-
sponding points in the sample, so all data points must 
undergo a translation operation:

 (x′
i, y

′
i) = (xi−

−
x, yi−

−
y) (16)

Formula 16 computes the scaling ratios in the X and Y 
directions to ensure uniform data proportions. Among 
them, (x′

i, y′
i) represents the position of the point after 

translation.
B. Scaling.
The scaling ratio in the X direction and the scaling ratio 

in the Y direction must be determined, respectively, that 
is, F norm SFx  and SFy :
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SFx =

√√√√ 1
N

N∑

i=1

x̂i
2 (17)

 
SFy =

√√√√ 1
N

N∑

i=1

ŷi
2  (18)

Formula 17 uses the least squares method to find the 
optimal rotation angle based on the distance between the 
data points, optimizing data fitting. Formula 18 reduces 
data errors and improves motion estimation accuracy 
through calibrated data from Procrustes analysis.

C. Rotation:
The Proctor distance is defined as:

 
P 2

d =
N∑

i=1

[(xil − xi0)
2 + (yil − yi0)

2]  (19)

Formula 19 fits human joint data using a polynomial 
fitting program as a basis for subsequent motion esti-
mation. Among them, (xi0, yi0) and (xil, yil)  are model 
points and sample points, respectively. The best rotation 
can be found with the least square method θ. The Proc-
tor distance P 2

d  between the sample and the model is 
minimized.

Calibration of the data after Proctor analysis can reduce 
the error caused by camera position and the different dis-
tance between the detected human body and camera, 
making the final estimate result more reasonable [13].

2.2.2 Polynomial fitting
A human body model can generally be represented as a 
simple rigid body connected by a series of joint points, as 
shown in Fig. 2.

14 common points were selected as data for further 
analysis. If the human body is considered to be a layered 
arrangement of joints, it can be divided into three parts. 
BB connects three joints --0, 1 and 2; UB connects seven 
points --5, 4, 3, 2, 6, 7 and 8; LB connects seven points 
--11, 10, 9, 0, 12, 13, and 14. In this way, overlapping 
joints can be analyzed by parts. This paper uses the poly-
nomial fitting program of human joint data as a basis for 
subsequent motion estimation.

Polynomial fitting plays an important role in numeri-
cal analysis. It gives a smooth function that is easy to 
handle and calculate. In addition, polynomial fitting can 
also provide accurate convergence when approximat-
ing numerical data, but polynomial fitting can only pro-
vide accurate approximation within a short interval. The 
general formula for polynomial fitting is given by the 
formula:

 p (x) = c0 + c1x + ... + cnxn (20)

Formula 20 provides a smooth function to approxi-
mate numerical data and ensures accurate fitting. 
Among them, cn represents the fitting coefficient of the 
polynomial.

The polynomial fitting in this paper assumes that all 
coordinate points are located in the x-y plane, so the 
origin is located at the midpoint of the two femurs. As 
described in the article, the body joint points are divided 
into three parts for analysis, namely BB, UB and LB, and 
each part is polynomial fitted from the X axis direction 
and Y axis direction, respectively.

This paper introduces the concept of goodness of fit 
R2

R  of curves:

 
R2

R = 1 −
∑n

i=1(yNi − ŷNi)
2

∑n
i=1(yNi−

−
yNi)

2  (21)

 

−
yNi=

1
n0

n0∑

i=1

yNi  (22)

Formula 21 evaluates the effect of data fitting through 
the goodness of fit of curve fitting. Formula 22 performs 
dimensionality reduction on data through principal 
component analysis (PCA) to reduce data dimensions. 
Among them, yNi  represents the value of the origi-
nal node on the x and y axes, ŷNi  represents the value 
after polynomial fitting, −

yNi  represents the sample mean 
value, and n0  represents the number of fitting data.

Fig. 2 Human Joint Point Model
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A good fitting value R2
R  is in the range of [0,1]. If the 

value is closer to 1, it indicates that the fitting effect of the 
data is better and vice versa.

Reduced dimension data and action analysis
This paper analyzes the post polynomial fitting data of 
human joints on the x-axis and y-axis, respectively, and 
then conducts Principal Component Analysis (PCA) on 
these data to reduce the dimensions of the data. This 
method performs an orthogonal decomposition of the 
features of the sample data to obtain the main compo-
nents of the converted data information [14].

The main steps of dimension reduction through PCA 
can be divided into five stages.

A. The average value of all training samples is calcu-

lated: 

−
X=

1
ni

ni∑

i=1

Xi  (23)

B. The covariance matrix of the sample is calculated: 

A =
∑ni

i=1
(Xi−

−
X)

T

(Xi−
−
X) (24)

C. The eigenvalue of the sample covariance matrix is 
decomposed, and the K-L transformation matrix is 
found: A × V = V × D  (25)

D. According to the required precision, the PCA 
dimension reduction matrix is constructed by select-
ing the principal component of the K-L change: 

MT =
ni∑

i=1

(Xi−
−
X) × VPCA × DPCA  (26)

E. The data are dimensionally reduced: 

M = (Xi−
−
X)

T

× MT
 (27)

Among them, Xi  represents available data and is a vec-
tor; VPCA  and DPCA  are eigenvalues and eigenvector 
matrices after selecting the corresponding principal com-
ponents; MT  is the reduced dimension matrix and M is 
the reduced dimension data.

Formula 23 computes the average of all training sam-
ples as a benchmark for reducing the dimension of the 
data. Formula 24 calculates the covariance matrix of sam-
ples for feature decomposition in PCA dimensionality 

reduction. Formula 25 decomposes the eigenvalues of 
the covariance matrix to obtain the principal component 
transformation matrix. Formula 26 constructs a PCA 
dimensionality reduction matrix by selecting the prin-
cipal components according to the required precision, 
reducing the dimensions of the data. Formula 27 com-
pletes the reduction of the dimensionality of the data to 
obtain the processed data for subsequent motion analy-
sis. The training and test data processing methods are 
slightly different. The training data are averaged, that is, 
the sample average, and all training data are subtracted 
from the sample average. Then the covariance matrix is 
calculated to determine the eigenvalues and eigenvectors, 
and the reduced-dimension matrix is obtained through 
the contribution calculated eigenvectors. The final train-
ing data is obtained by multiplying the de-averaged train-
ing data and the reduced dimension matrix [15].

In damage monitorThis article introduces a model for 
ing systems that use the Support Vector Machine (SVM) 
technique. The input layer, decision function, kernel 
function, and support vectors make up the model. Pre-
processed data, including mobility statuses and physi-
ological markers, are received at the input layer. The 
decision function categorizes the input data and makes 
predictions based on the kernel function output. Sup-
port vectors, pivotal data points selected during train-
ing, determine classifier boundaries and performance. 
Through iterative optimization, the model accurately 
identifies and predicts motion injuries.

This article uses the SVM model for action recogni-
tion tasks. The structure of the SVM model consists of an 
input layer, a hidden layer, and an output layer. The input 
layer receives data that has been polynomially fitted, the 
hidden layer performs feature extraction using the ReLU 
activation function, and the output layer employs the 
softmax function to output the probability distribution 
of various action categories. During the training process, 
the stochastic gradient descent (SGD) optimizer is uti-
lized with a learning rate set to 0.001. Training and vali-
dation sets are divided using random sampling, with 70% 
of the data used for training and 30% for validation.

Evaluation of sports injury real-time monitoring 
system
Design principle of sports injury real-time monitoring 
system
A real-time sports injury monitoring system consists of 
two parts: a portable mobile terminal and a main moni-
toring system.

The portable mobile software device is used to describe 
the state of the human body in the process of movement 
and the human body in the state of motion. The system is 
responsible for acquiring real-time data of human heart 
rate, pulse, cardio pulmonary function, heart rate, muscle 
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tension, pulmonary function, and other parameters dur-
ing exercise as baseline analysis data to determine status 
and injury risk. In the long-term test, physiological indi-
cators of individual training performance are completely 
recorded, and the data can be easily analyzed and pro-
cessed for the sports injury risk assessment experiment. 
The data processing of experimental results is combined 
with an expert system to describe physiological perfor-
mance and state monitoring. If abnormal data is detected, 
the simulator will notify by alarm [16].

The main control monitoring system can identify the 
target action of human movement and analyze the state 
of human movement and injury risk data in real time. 
If the patient is found to be really dangerous, the infor-
mation would be immediately transmitted through the 
expert system and appropriate warnings and preventive 
measures would be issued. According to the above design 
analysis, a damage monitoring system based on human 
motion state recognition. is established. The principle of 
process realization is shown in Fig. 3.

The specific process illustrated in Fig.  3 is as follows: 
First, the system collects physiological data, includ-
ing parameters such as heart rate, pulse, and cardio-
respiratory function of the human body. Next, the 

system identifies the target movements of the human 
body through the main control monitoring system and 
analyzes the movement status and risk of injury data in 
real-time. Once a patient is found to be at risk, the sys-
tem immediately communicates this information through 
an expert system. The expert system analyzes the data, 
identifies abnormal conditions, and proposes the corre-
sponding preventive measures. In the event of abnormal 
conditions, the system sends an alert, providing warnings 
about injury risks and the corresponding preventive mea-
sures to reduce or avoid the occurrence of injuries.

Overall design of the system
Based on the above analysis of the design principles of 
the athlete injury risk monitoring system, the overall 
design of the system is described. The main functions 
of the system include detecting the physiological state 
of people, identifying their movement, and processing 
information. Hardware includes data acquisition module, 
human motion recognition module, information process-
ing module of mobile terminal software, main control 
module, analog to digital converter (ADC) module, and 
injury risk analysis module.

The hardware and peripheral circuit designs for the 
motion injury risk monitoring system are shown in Fig. 4, 
which also depicts the system’s overall architecture. The 
data collecting module, human motion recognition mod-
ule, information processing module for mobile terminal 
software, primary control module, analog-to-digital con-
verter (ADC) module, and injury risk analysis module 
are all included in the hardware part. Peripheral circuit 
designs encompass the Universal Serial Bus (USB) mod-
ule, clock circuit, network communication module, gen-
eral wireless data packet communication module, ADC 
circuit, and sensor adjustment circuit. Key functionalities 
include detecting human physiological status, identifying 
human motion, and processing information. The entire 
system achieves monitoring and analysis of motion injury 
risks through collaborative operation of these modules, 
thereby providing timely alerts and preventive measures.

Fig. 4 The overall design structure of the sports injury risk monitoring 
system

 

Fig. 3 The principal implementation process of an injury monitoring system based on human motion state recognition
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Hardware design of the system
S3C6410 is the main processor of the human motion data 
acquisition and analysis system. The hardware design 
includes the following parts: USB module design, timing 
circuit design, network communication module design, 
general wireless packet industrial communication mod-
ule design, ADC circuit design, and sensor regulation cir-
cuit design.

Circuit of the USB module
The design of this module is to use the terminal interface 
function of the mobile software to achieve interface com-
patibility and data transmission of the sports injury risk 
monitoring system. The system designs a circuit from 
USB module to sensor output, and uses internal circuits 
(such as filter, converter, amplifier, etc.) to provide origi-
nal data for sports injury monitoring. The USB interface 
design uses parallel peripheral interfaces to form the 
clock interrupt interface of the human sports injury risk 
monitoring system. The power consumption of the sports 
injury risk monitoring system is very low [17].

Clock circuit
The clock circuit of the human sports injury risk moni-
toring system is used to interrupt the clock frequency of 
the physiological state information of the human sports 
injury risk monitoring system. According to the design 
requirements of the Android system for mobile handheld 
devices, the sports injury information logic controller 
automatically adjusts the energy spectrum detection gain 
according to signal size and selects the BOOTM pin [0: 3] 
to set the charging mode [18].

The network communication module
Net network communication module is the core of the 
entire system. First, the network communication module 
of the human sports injury risk monitoring system was 
developed on the Android mobile terminal, and the por-
tability of the operating system and the compatibility of 
the device ports were realized through the WiFi interface. 

The online sports injury risk identification and evaluation 
records of the expert system were used.

ADC circuit design
The ADC circuit is designed for the storage, allocation, 
and function sampling of human sports injury risk moni-
toring information, and uses MC7660 as the ADC chip.

Conditioning circuit design
The sensor conditioning circuit of the human motion 
injury monitoring system can realize the signal condi-
tioning function. When recognizing human motion sta-
tus, a signal conditioning circuit must be developed for 
filtering and amplification to improve recognition ability. 
The signal conditioning circuit uses S3C6410 as the main 
processor of the system. Since the human body beats 60 
to 100 times per minute during movement, the signal 
conditioning circuit is designed to amplify the signal by 
more than 100 times. The signal filter is a low-pass filter 
with a cut-off frequency higher than 20 Hz [19].

Software development of the system
In this paper, software is developed for the hardware part 
of the injury risk monitoring system based on human 
motion detection. When developing the software for the 
portable injury risk monitoring system, ARM1176JZF-S 
is used as the main processing core and the WiFi inter-
face is used to achieve portability of the operating system 
and compatibility of device transplantation. First, a work-
ing directory is created and then a cross-compilation 
check of the WiFi interface is carried out. Finally, risk 
monitoring and evaluation is carried out in the new com-
piler [20].

Real-time monitoring experiment of sports injury
To assess the effectiveness of real-time sports injury 
monitoring, we selected 30 subjects for testing. They 
wore our developed portable sports injury risk moni-
toring system while running, aerobic exercise, and table 
tennis, and collected motion data over the course of 
a week. Ten subjects participated in each type of activ-
ity. We compared the results of the evaluation of sports 
injuries between the system described in this article and 
traditional methods of manual expert analysis, using the 
precision of the risk monitoring signals as the test metric.

Running
Ten subjects were monitored for running for one week. 
The precision of the sports injury risk monitoring of this 
system and the traditional artificial experience analysis 
method are shown in Fig. 5.

It can be seen from the data that the accuracy of the 
real-time sports injury monitoring system in this paper 
for the risk monitoring of running injury of 10 research Fig. 5 Accuracy of Running Injury Risk Monitoring
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objects is more than 94%, and the accuracy of the risk 
monitoring of running injury based on the traditional 
manual experience analysis method is between 89% and 
95%. For sports injuries in running, the monitoring accu-
racy of the monitoring system in this paper is higher than 
that of traditional empirical analysis, which shows that 
the application of the deep learning algorithm in machine 
learning to the monitoring of running sports injuries can 
better monitor human condition during running, and 
timely carry out damage warning and prevention.

Aerobics
Ten subjects were monitored for aerobics for one week, 
and the precision of the sports injury risk monitoring of 
this system and the traditional artificial experience analy-
sis method is shown in Fig. 6.

It can be seen from the data that when 10 research 
objects are engaged in aerobics, the accuracy of the real-
time monitoring system of sports injury in this article is 
91-96%, and the accuracy of the risk monitoring of sports 
injury in aerobics based on the traditional manual experi-
ence analysis method is 88-92%. By comparing the data, it 
is found that the monitoring accuracy of the monitoring 
system in this paper is higher than that of the traditional 
empirical analysis, which shows that the application of 
the deep learning algorithm in machine learning to the 
monitoring of aerobic sports injury can better monitor 
the human state during aerobic sports, and timely carry 
out injury warning and prevention.

4.3 Table tennis.
Ten subjects were monitored for table tennis for one 

week. The accuracy of sports injury risk monitoring of 
this system and the traditional artificial experience analy-
sis method are shown in Fig. 7.

It can be seen from the data that the precision of the 
sports injury risk monitoring of the real-time sports 
injury monitoring system in this article is 85-90%, and 
the precision of the table tennis injury risk monitor-
ing based on the traditional artificial experience analy-
sis method is 82-86%. For sports injuries in table tennis, 
the monitoring accuracy of the monitoring system in this 
paper is higher than that of the traditional empirical anal-
ysis, which shows that the application of the depth learn-
ing algorithm in machine learning to the monitoring of 
sports injuries in table tennis can better monitor the state 
of the human body during sports, and timely carry out 
injury warning and prevention.

Comprehensive analysis
The monitoring results of the three sports modes are 
comprehensively analyzed and the results are shown in 
Table 1.

The depth learning algorithm sports injury monitor-
ing system has an average accuracy rate of 96.28% for 

real-time monitoring of running injuries, 93.55% for 
real-time monitoring of aerobics injuries, and 87.68% for 
real-time monitoring of table tennis injuries. The aver-
age accuracy of the artificial experience analysis method 
for real-time monitoring of running injury is 92.13%, 
the average accuracy for real-time monitoring of aero-
bic injury is 90%, and the average accuracy for real-time 
monitoring of table tennis injury is 83.76%. From com-
prehensive data, it can be calculated that the average 
accuracy of the depth learning algorithm sports injury 
monitoring system is 92.5%, and the average accuracy 
of the artificial experience analysis method is 88.63%. 
Applying the depth learning algorithm in machine learn-
ing to sports injury monitoring has higher accuracy. 
Compared to the traditional artificial experience analy-
sis method, the accuracy increases by 3.87%, which can 
better monitor sports injuries and prevent injuries. This 

Table 1 Comprehensive analysis of results of sports injury 
monitoring
Exercise style Deep learning monitoring 

system
Human 
experi-
ence 
analysis

Running 96.28 92.13
Aerobics 93.55 90
Table tennis 87.68 83.76
Comprehensive results 92.5 88.63

Fig. 7 Monitoring the precision of the risk of injury in table tennis

 

Fig. 6 Accuracy of Monitoring Sports Injury Risk in Aerobics
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shows that machine learning algorithm has high per-
formance computing power and has broad applications 
prospects in the medical field.

The model in this paper is compared with other 
related algorithms in the analysis of sports injuries, and 
the results are shown in Table 2. In this study, all mod-
els were evaluated using the same dataset. The data set 
comprises diverse sports injury cases from various sports 
events and training scenarios. It contains comprehensive 
physiological parameters as well as motion data gath-
ered during athletic events. SVM models were trained 
and assessed based on a data set of 1000 samples, each 
of containing movement data collected by wearable sen-
sors together with physiological features including heart 
rate, blood pressure, and muscle tension. Similar assess-
ments of other models covering different features includ-
ing sports injuries, physiological factors, and motion 
characteristics were conducted on the same dataset. The 
efficiency of the suggested models in the study of sports 
injuries was confirmed by a thorough review of this 
dataset, which included an analysis of each algorithm’s 
performance.

With results of 94.2%, 92.5%, and 96.0%, accordingly, 
Table 2 shows the way the SVM algorithm operates with 
respect to of accuracy, sensitivity, and specificity. Among 
the other models, the Gaussian process regression exhib-
its the highest precision, reaching 93.4%. However, the 
SVM model remains competitive in terms of precision 
and specificity while also offering faster training speeds 
and better interpretability. Therefore, for sports injury 
analysis, the SVM model remains a reliable choice. Com-
pared to existing methods that use similar data, such as 
MRI [21], the system proposed in this document offers 
greater real-time capability and specificity, allowing 
faster and more accurate injury analysis and risk warn-
ing, thus protecting the health of athletes.

Conclusions
Based on the high computing performance of machine 
learning technology, this paper used the deep learn-
ing algorithm in machine learning to study the real-
time sports injury monitoring system. In this paper, the 
motion depth learning algorithm was used to recognize 
actions of human motion targets. Then a real-time moni-
toring system for sports injury was established, including 
human physiological data monitoring and human motion 
target action recognition. In the experiment part, the 
monitoring effect of the monitoring system was studied. 
The experimental results showed that the motion injury 
monitoring system based on the depth learning algorithm 
has higher monitoring accuracy than the traditional arti-
ficial experience analysis method, which shows that the 
machine learning algorithm can be better applied to the 
medical field.
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