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Abstract 

The quick proliferation of pandemic diseases has been imposing many concerns on the international health infra-
structure. To combat pandemic diseases in smart cities, Artificial Intelligence of Things (AIoT) technology, based 
on the integration of artificial intelligence (AI) with the Internet of Things (IoT), is commonly used to promote efficient 
control and diagnosis during the outbreak, thereby minimizing possible losses. However, the presence of multi-source 
institutional data remains one of the major challenges hindering the practical usage of AIoT solutions for pandemic 
disease diagnosis. This paper presents a novel framework that utilizes multi-site data fusion to boost the accurateness 
of pandemic disease diagnosis. In particular, we focus on a case study of COVID-19 lesion segmentation, a crucial task 
for understanding disease progression and optimizing treatment strategies. In this study, we propose a novel multi-
decoder segmentation network for efficient segmentation of infections from cross-domain CT scans in smart cities. 
The multi-decoder segmentation network leverages data from heterogeneous domains and utilizes strong learning 
representations to accurately segment infections. Performance evaluation of the multi-decoder segmentation net-
work was conducted on three publicly accessible datasets, demonstrating robust results with an average dice score 
of 89.9% and an average surface dice of 86.87%. To address scalability and latency issues associated with centralized 
cloud systems, fog computing (FC) emerges as a viable solution. FC brings resources closer to the operator, offering 
low latency and energy-efficient data management and processing. In this context, we propose a unique FC tech-
nique called PANDFOG to deploy the multi-decoder segmentation network on edge nodes for practical and clinical 
applications of automated COVID-19 pneumonia analysis. The results of this study highlight the efficacy of the multi-
decoder segmentation network in accurately segmenting infections from cross-domain CT scans. Moreover, the pro-
posed PANDFOG system demonstrates the practical deployment of the multi-decoder segmentation network 
on edge nodes, providing real-time access to COVID-19 segmentation findings for improved patient monitoring 
and clinical decision-making.
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Introduction
Pandemic diseases have become increasingly confront-
ing for public infrastructure globally, with their extensive 
transmission and severe effects on individuals and com-
munities. The rapid and perfect diagnosis of these dis-
eases is of paramount importance for effective control 
and mitigation strategies [1]. The landscape of healthcare 
technology has been encountering a revolutionary shift 
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in the wake of the COVID-19 pandemic, which high-
lighted the serious need for improved and adaptive solu-
tions that can provide rapid and accurate diagnosis of 
pandemic diseases, particularly in urban environments 
where population density and mobility amplify the chal-
lenges of pandemic management [2].

Smart cities, the epitome of urban innovation, demon-
strate the revolutionary role of integrating technologies 
in urban management. Specifically, the recent challenges 
modeled by the COVID-19 pandemic have prompted the 
conjunction of smart city technologies and pandemic 
control mechanisms. The process of screening pandemic 
disease is an essential element of public health surveil-
lance and is now being reimagined and sustained through 
the application of cutting-edge technologies includ-
ing real-time data analytics, predictive analytics, and 
fast reply apparatuses are at the vanguard of this evolv-
ing method [2]. Leading nations in this new paradigm of 
pandemic containment in smart cities have been identi-
fied. For instance, Singapore has put in place a national 
contact tracing app that uses Bluetooth technology to 
find and notify anyone who might have come into contact 
with COVID-19 cases that have been confirmed. Efficient 
control of outbreaks has been made possible by South 
Korea’s strong IT infrastructure, vigorous testing, and 
data-sharing attitude [3]. Furthermore, Taiwan’s creative 
integration of medical records and travel history to iden-
tify possible cases was partly responsible for the pandem-
ic’s successful containment. These examples demonstrate 
how smart city technologies can redefine the parameters 
and extent of pandemic control.

As countries throughout the world struggled to contain 
the outbreak, smart cities and the incorporation of inter-
net technologies showed promise as a way to improve 
healthcare delivery and reaction times [4, 5]. The neces-
sity of utilizing data-rich surroundings to promote accu-
rate illness diagnosis and proactive decision-making in 
urban settings is now more important than ever in the 
post-COVID era. Smart cities have developed as centers 
of innovation that harness new technologies to address 
public health concerns. Specifically, the Artificial Intelli-
gence of Things (AIoT) technology has developed as the 
result of the convergence between artificial intelligence 
(AI) and the Internet of Things (IoT) to offer a new para-
digm to control pandemic diseases based on the data dis-
tributed across different geographical locations [6, 7].

The adoption of the AIoT framework in smart cities 
represents a paradigm shift in the way public health chal-
lenges are addressed. The urban areas utilize the capabili-
ties of networked devices and sensors integrated inside 
diverse urban infrastructures to gather huge quantities of 
data in real-time. This data encompasses diverse sources 
such as healthcare facilities, environmental sensors, 

wearable devices, and social media platforms [4]. With 
the rapid proliferation AIoT technologies in smart cities, 
we can efficiently process and analyze this multi-site data 
to gain comprehensive insights into disease dynamics, 
patterns, and impacts on different segments of the popu-
lation. AIoT facilitates the development and deployment 
of advanced machine learning algorithms, which can 
detect patterns, predict disease outbreaks, and enable 
proactive interventions. The application of AIoT technol-
ogies within smart cities has the capacity to significantly 
improve the precision and effectiveness of pandemic dis-
ease diagnosis owing to their ability to improve public 
health surveillance, response strategies for pandemics, 
and healthcare delivery systems [5]. To achieve sustain-
able management of pandemic disease in smart cities 
with high populations, it is highly required to interpret 
the distribution and seriousness of infected cases, which 
necessitates obtaining data from different healthcare sites 
in smart cities.

Smart healthcare systems usually focus on collecting 
medical imaging datasets to be used to build AI solutions 
for pandemic diseases during outbreaks. This data is usu-
ally sourced from varied imaging modalities and acquired 
from different healthcare institutions in the same smart 
city or even different cities, leading to inherent variability 
and heterogeneity across domains of data [6]. This cross-
domain/multi-site bias arises as a possible consequence 
of variability in the specifications of equipment, scanning 
protocols, patient demographics, disease manifestations, 
and other facets. Indeed, variations in scanning details 
make significant inconsistencies in image quality, reso-
lution, and noise levels, which complicate the process of 
feature extraction and interpretation [7]. In addition, the 
dependence on imagery data sourced from a single site or 
imaging modality may lead the model to overfit explicit 
data distributions, impeding its capacity to generalize to 
unseen data and varied clinical situations. This inherent 
bias brings a major limit to the generalization perfor-
mance of ML in healthcare systems [8–10]. Hence, over-
looking this bias usually makes the ML model operate 
in a suboptimal way, thereby reducing the reliability of 
related diagnostic decisions, and making ML non-appli-
cable in real-world clinical environments. To tackle the 
problems posed by cross-domain/multi-site bias, it is 
required to offer a concerted effort to make use of recent 
advances in AIoT techniques, such as fog computing, 
which enables distributed processing of medical imaging 
data at the network edge [11].

As an essential part of the AIoT system, Fog comput-
ing has been used in the design of smart cities’ services to 
address the scalability and latency concerns by bringing 
the computing resources closer to edge devices. With this 
computing paradigm, fog computing allows for localized 



Page 3 of 18Alrashdi ﻿BMC Medical Imaging          (2024) 24:123 	

processing, alleviates the need for distant data transmis-
sion, and minimizes the overall system latency, which sig-
nificantly accelerates the data analysis, and cooperative 
decision-making in a broad range of smart city applica-
tions, such as traffic management, environmental moni-
toring, and public safety [11]. Moreover, the utilization 
of this technology serves to bolster data security and pri-
vacy measures by confining important information to the 
confines of the local network. Fog computing facilitates 
the efficient usage of resources, low-latency operations, 
and improved overall performance in smart cities by 
effectively managing the substantial amount of data cre-
ated by IoT devices. This capability plays a crucial role in 
fully harnessing the potential of smart city deployments 
[12, 13].

Our objective in this paper lies in developing a reliable 
AIoT framework to empower the efficiency of diagnosis 
processes for pandemic disease based on multi-site data 
fusion. The proposed framework aims to integrate diag-
nostic data from multiple sources, to acquire a compre-
hensive recognition of disease diagnosis and severity. The 
proposed AIoT framework is exemplified through a case 
study aiming at COVID-19 lesion segmentation [14]. By 
utilizing COVID-19 lesion segmentation as a specific 
application, the framework demonstrates its effective-
ness in analyzing cross-domain CT scans and efficiently 
identifying infections. This case study serves as a prac-
tical implementation and validation of the proposed 
framework, showcasing its ability to accurately segment 
COVID-19 lesions and provide valuable insights for auto-
matic COVID-19 pneumonia analysis. In this study, we 
introduce a novel technique called a multi-decoder seg-
mentation network, which aims to enhance lung infec-
tion segmentation specifically for COVID-19 cases. a 
multi-decoder segmentation network is a lightweight 
approach that addresses the challenges posed by hetero-
geneous multi-site CT scans. It achieves robust perfor-
mance by incorporating domain-adaptive normalization 
layers, which effectively handle inter-source data hetero-
geneity [15, 16]. Then, we propose a novel learning strat-
egy that leverages heterogeneous knowledge interaction 
to facilitate cooperative learning of semantic representa-
tions from CT images sourced from diverse data sources. 
The proposed framework intelligently leverages fog com-
puting capabilities to integrate a diagnostic model of an 
edge fog cloud prevailing in real-world smart cities.

The left part of the study is arranged as follows. Sec-
tion  2 presents a comprehensive literature review, 
to highlight the existing research on multi-site data 
fusion, AIoT, and pandemic disease diagnosis. Next, 
we present the case study focusing on COVID-19 
lesion segmentation. Section 4 describes our proposed 
multi-site data fusion framework and the AIoT-based 

learning strategy for accurate pandemic disease diag-
nosis. Section  5 discusses the system design specifica-
tions. Section  6 analyzes and interprets the results, 
discussing the implications and potential applications 
of our framework. Finally, we conclude the paper by 
summarizing the key findings and contributions.

Related studies
This section presents a review of related research stud-
ies to gain constructive insights regarding the history of 
pandemic disease management in smart cities, and the 
related technologies in this subject matter.

Pandemic screening approaches
The literature contains a bunch of studies that have 
been instrumental in exploring innovative approaches 
and technologies to enhance screening and early detec-
tion of infectious diseases within urban environments. 
Allam and Jones [14] explored the amalgamation 
between AI and global data-sharing standards to allow 
for active control of urban health, explicitly throughout 
the outbreak of COVID-19 infection in smart cities. 
Their perspective paper was written one month follow-
ing the initiation of the outbreak to provide surveys of 
the pandemic from an urban viewpoint aiming to figure 
out the way in which smart city networks can enable 
improved standardization conventions for amplified 
data sharing in case of epidemics. Costa and Peixoto 
[15] review the literature approaches for tackling the 
challenges imposed by the COVID-19 pandemic in 
smart cities. They also studied the potential solutions 
and reviewed the latest approaches that can be used 
in complicated pandemic settings, explaining reason-
able and engaging development directions for the con-
struction of health-centric smart cities. Shorfuzzaman 
et  al. [16] studied the responsibility of video surveil-
lance in the sustainability actions taken to control the 
COVID-19 pandemic in smart cities, with a primary 
emphasis on monitoring social distancing and ensuring 
mask-wearing. The authors have engaged in a discus-
sion regarding the possible advantages of widespread 
video surveillance in terms of promoting public safety, 
facilitating traceability endeavors, and simplifying 
active resource management. Moreover, Ngabo et  al. 
[17] examined the applicability of ML techniques for 
management pandemic across different tasks (includ-
ing early diagnosis, epidemic detection, disease pro-
gression, death rates, and resource allocation), where 
extensive datasets were processed by ML algorithms to 
generate valuable insights that promote reliable deci-
sions-making during epidemics.
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AI for pandemic control in smart cities
The academic literature covers a diverse array of stud-
ies and research endeavors focused on utilizing AI 
to efficiently control and alleviate the consequences 
of pandemics in urban settings. In [18], Carmichael 
et al. conducted a retrospective multicenter study that 
involved the utilization of ML models to train a cohort 
of patients who were hospitalized with chronic liver 
disease with the aim of predicting the need for inva-
sive mechanical ventilation (IMV) within a 48-hour 
timeframe specifically in patients diagnosed with 
COVID-19. Patients with chronic lung disease (CLD) 
were identified by the utilization of diagnosis codes 
about bacterial pneumonia, viral pneumonia, influ-
enza, nonspecific pneumonia, and acute respiratory 
distress syndrome (ARDS). The candidate ML regres-
sors encompass demographic and clinical character-
istics that have been previously linked to unfavorable 
outcomes concerning COVID-19. Their proposed solu-
tions were constructed by integrating logistic regres-
sion as well as three ensemble tree-based methods, 
namely decision tree, AdaBoost, and XGBoost. The 
models underwent validation in COVID-19 patients 
who were admitted to hospitals within two distinct 
healthcare systems over the period of March 2020 to 
July 2020. Wismüller et  al. [19] introduced a method-
ology aimed at detecting pulmonary embolism in the 
early stages, specifically in the context of the COVID-
19 pandemic. This strategy involved the collection of 
data from multiple institutions across the nation. They 
conducted an analysis on a comprehensive dataset 
obtained from several healthcare institutions in order 
to investigate the incidence of pulmonary embolism, a 
severe consequence linked to COVID-19 that has the 
potential to be fatal. In [20], Hooper et  al. have col-
lected inclusive data from 135 autopsy estimates of 
COVID-19-positive dead persons, involving histologi-
cal assessment, in which postmortem inspections were 
executed by 36 diagnosticians at 19 health institutions 
or forensic centers in Brazil as well as the United States. 
The collection of each multi-site autopsy data was con-
ducted through online submission of the response to 
open-ended surveys. Kaissis et  al. [21] proposed an 
AI framework that preserves privacy in the context of 
multi-source medical imaging analysis, which aimed to 
tackle the issue of cooperating on medical image analy-
sis across many institutions, while simultaneously safe-
guarding the privacy of patient data. The methodology 
described by the authors employs federated learning 
and safe aggregation methods to effectively train deep 
learning models on decentralized datasets while pro-
tecting the confidentiality of patient information.

IoT for pandemic control in smart cities
This part of the subsection explores the novel advance-
ments and endeavors focused on the IoT within the 
framework of intelligent urban areas, explaining the uti-
lization of these technologies to observe, alleviate, and 
address the difficulties presented by the pandemic. By 
conducting an extensive examination of relevant schol-
arly sources, we investigate the various applications and 
methodologies that underscore the potential of IoT-
enabled solutions in effectively addressing public health 
emergencies within urban settings. Herath et  al. [22] 
explored developing an intelligent system to alleviate the 
influence of the COVID-19 pandemic through exploring 
the ability of IoT technologies to allow active monitoring 
of patients, and reaction procedures throughout public 
health emergencies in urban areas. Their proposed sys-
tem was configured to instantaneously collect real-time 
data on different attributes, counting ecological circum-
stances, social communications, and healthcare assets. 
The impact of the pandemic on the current state of smart 
city development was investigated by Gade et  al. [23], 
who examined many elements including technical devel-
opments, infrastructure requirements, and regulatory 
changes. The researchers employed predictive modeling 
approaches to anticipate forthcoming trends and poten-
tial obstacles in the advancement of smart cities follow-
ing the pandemic. Yang et al. [24] investigated the role of 
smart city projects in providing effective control of the 
COVID-19 pandemic with a specific focus on Chinese 
cities, in which in-depth analysis is dedicated to inter-
preting the roles of various IoT technologies in control-
ling the spread of the virus. They quantitatively evaluated 
the influence of smart city measurements and actions on 
decreasing the rates of infection or death and also on the 
rate of recovery. Umair et  al. [25] conducted a study to 
investigate the influence of the COVID-19 pandemic on 
the implementation of IoT technologies across various 
domains within smart cities. The researchers investigated 
the impact of the pandemic on the utilization of IoT solu-
tions in several regions. The purpose was to examine 
how these solutions have been employed to tackle issues 
and enhance operational effectiveness in these areas. 
The study conducted by Shorfuzzaman et al. [16] inves-
tigated the potential applications of video surveillance 
systems in monitoring public areas, enforcing social 
distancing measures, and improving public safety in the 
context of the pandemic. This study examined the poten-
tial advantages and difficulties linked to the implemen-
tation of mass video monitoring in smart cities, taking 
into account factors such as privacy apprehensions, data 
management, and ethical deliberations. The results of 
their study made a valuable contribution to the ongoing 
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discussion surrounding the incorporation of surveillance 
technologies in the context of smart cities.

Case study
To evaluate the effectiveness of the Multi-decoder seg-
mentation network on multi-site CT data for COVID-19 
diagnosis, we conducted experiments using three pub-
licly accessible COVID-19 CT datasets. The first dataset 
[39], obtained from Radiopaedia, consisted of twenty 
COVID-19 CT volumes with over 1,800 annotated slices. 
The second dataset, known as MosMedData [40], com-
prised 50 CT volumes collected from public hospitals in 
Russia. Lastly, we utilized the MedSeg dataset [41], which 
included nine CT volumes containing a total of 829 
slices, of which 373 were confirmed positive for COVID-
19. Detailed information regarding the specific param-
eters of each dataset can be found in the corresponding 
research. Samples of the collected multi-site CT data are 
presented in Fig.  1. Following the preprocessing steps 
described in [12], we converted all three datasets into 
2D images and applied random affine augmentation 
techniques to address any potential discrepancies. To 
ensure consistency across different facilities, we stand-
ardized the dimensions of all CT slices to 384 by 384, 
effectively reducing intensity variations. Prior to input-
ting the CT images into a multi-decoder segmentation 
network, we normalized their intensity scores to achieve 
a mean of zero and a variance of one. Our intensity nor-
malization techniques encompassed bias field correc-
tion, noise filtering, and whitening, which were inspired 

by the methods outlined in [12] and have been validated 
for their effectiveness in optimizing heterogeneous learn-
ing. For our experimental setup, the multi-site data is 
split into 80% of the data allocated for training and the 
remaining 20% for testing. This partitioning allowed us to 
evaluate the performance of a multi-decoder segmenta-
tion network on unseen data and assess its generalization 
capabilities in the context of multi-site CT data fusion for 
COVID-19 diagnosis.

Methodology
In this section, we present the proposed multi-decoder 
segmentation network, which serves as the cornerstone 
of our study, specifically designed to address the segmen-
tation of COVID-19 lesions in CT scans obtained from 
various sources within the context of pandemic diseases 
in smart cities. Figure. 2 provides a visual representation 
of the architecture.

Given the heterogeneity inherent in the data originat-
ing from different sources, our approach incorporates 
a comprehensive solution that includes both a global 
decoding path and dedicated ancillary decoding paths. 
This design allows the Multi-decoder segmentation net-
work to effectively handle the challenges associated with 
segmenting COVID-19 lesions in CT scans from diverse 
origins. To tackle the inter-source variability, we intro-
duce a re-parameterized normalization module within 
the ancillary decoding paths. This module plays a vital 
role in mitigating the impact of variations across differ-
ent sources, enabling the multi-decoder segmentation 

Fig.1  Visualization of the heterogeneity of COVID-19 CT samples orginating from different sites
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network to adapt and generalize well to the unique char-
acteristics of each dataset. By leveraging the learned 
heterogeneous knowledge from the ancillary paths, the 
ground truth (GT) masks contribute significantly to 
enhancing the overall network performance.

To further enhance the learning capability of the multi-
decoder segmentation network, we incorporate interac-
tion modules that facilitate the exchange of knowledge 
between the ancillary paths and the global paths at various 
levels within the network architecture. These interaction 
modules enable effective information sharing, enabling 
the multi-decoder segmentation network to leverage 
insights from different sources and improve the segmen-
tation accuracy of COVID-19 lesions. This comprehensive 
approach ensures that the multi-decoder segmentation 
network can handle the specific challenges posed by the 
pandemic disease within smart city environments, leading 
to more accurate and reliable segmentation results.

Lesion encoder
Drawing inspiration from the architecture of U-Net [29], 
which comprises two convolutions and a max-pooling 
layer in each encoding block, we adopt a similar struc-
ture in a multi-decoder segmentation network. How-
ever, we enhance the feature encoding path by replacing 
the conventional encoder with a pre-trained ResNeXt-50 
[30], retaining the initial four blocks and excluding the 
subsequent layers. Unlike traditional encoding modules, 
ResNeXt-50 incorporates a residual connection mecha-
nism, mitigating the issue of gradient vanishing and 

promoting faster convergence during model training. 
Moreover, ResNeXt-50 employs a split-transform-merge 
strategy, facilitating the effective combination of multi-
scale transformations. This strategy has been empiri-
cally shown to enhance the representational power of 
the deep learning model, particularly in capturing intri-
cate features and patterns related to COVID-19 lesions 
in CT scans. By leveraging the strengths of ResNeXt-50 
and its innovative architectural features, a multi-decoder 
segmentation network can effectively encode and extract 
relevant features from the input data. This enables the 
model to learn and represent complex spatial and contex-
tual information, contributing to improved segmentation 
accuracy and the overall performance of our framework 
in addressing the challenges of COVID-19 lesion seg-
mentation in smart city environments.

Domain‑adaptive batch normalization layer
Recently, numerous medical imaging studies have adopted 
batch normalization (BN) [31] to alleviate interior covariate 
shift problems and to fine-tune the feature discrimination 
ability of CNNs; these accelerate the learning procedure. 
The key notion behind BN is to standardize the interior 
channel-wise representations, and subsequently perform 
an affine transformation on the generated feature maps that 
have optimizable parameters [γ ,β] . For specific channels 
xk ∈ [x1 · · · · · · , xK ] In feature maps of K channels, their 
representations after being normalized yk ∈ [y1 · · · · · · , yK ] 
are calculated as follows:

Fig. 2  An illustrative diagram of the introduced multi-decoder segmentation network
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Symbols E[x] and Var[x] represent the average and vari-
ance of x , respectively, and ǫ represents an infinitesimal. 
The BN layer accumulates the flowing E[x] and the flowing 
Var[x] during training to learn the global representations 
and exploit these quantified values to normalize features at 
the testing stage.

In the context of smart cities, lung CT scans are sourced 
from diverse origins, utilizing different scanners and acqui-
sition protocols. Figure  2 illustrates the statistics (mean 
and variance) obtained from individual data sources when 
training the deep learning models using a normalization 
layer exclusively for each source. The figure demonstrates 
notable variations in both mean and variance across differ-
ent sources, particularly in intermediate layers where the 
feature channels are more abundant. These observed dif-
ferences in statistics across heterogeneous sources present 
challenges when attempting to construct a unified dataset 
by combining all the diverse datasets. Firstly, the statisti-
cal disparities among the heterogeneous data can compli-
cate the learning process of global representations, as the 
shared kernels may disrupt the domain-specific discrepan-
cies that are irrelevant to the common features. Secondly, 
during model training, the BN layers might yield impre-
cise estimations of global statistics due to the presence of 
statistical variations from heterogeneous sources [42–44]. 
Consequently, directly sharing these approximate statistics 
during the testing stage is likely to result in a degradation in 
performance. Therefore, it becomes evident that a straight-
forward combination of all heterogeneous datasets is not 
beneficial in the context of smart cities. Instead, a more 
sophisticated approach is required to address the statisti-
cal discrepancies and leverage the unique characteristics of 
each data source, enabling the development of a robust and 
effective DL model for accurate segmentation of COVID-
19 lesions in lung CT scans. To address these issues, a 
reparametrized version of the normalization module is 
integrated into the encoder network to normalize the sta-
tistical attribute of data from heterogeneous data sources. 
Every source s has domain-relevant trainable parameters 
[γ s,βs] . Given a specific channel xk ∈ [x1 · · · · · · , xK ] from 
source s , the corresponding output ysk is expressed in the 
form.

During the testing stage, our normalization layer 
applies the collected and accurate domain-relevant sta-
tistics used for the upcoming normalization of CT scans. 
Furthermore, we map these domain-relevant statistics to 

(1)yk = γ .xk + β , xk =
xk − E[xk ]√
Var[xk ]+ ǫ

(2)ysk = γ .x̂sk + β , x̂sk =
xk − E

[
xsk
]

√
Var

[
xsk
]
+ ǫ

a shared latent space within the encoder, where member-
ship to the source can be estimated through a mapping 
function denoted as φ(xi) . This mapping function aligns 
the source-specific statistics with a shared, domain-
agnostic representation space. As a result, our model 
can model the lesion features from different CT sources 
in a manner that is both source-aware and harmonized. 
This, in turn, makes the training process serve to har-
monize discrepancies between data sources. This not 
only improves the capability to model domain-specific 
features but also promotes a more efficient and inclusive 
fusion of multi-site data, hence supporting the represen-
tational power of our framework.

Lesion decoder
The decoder module plays a crucial role in the gradual 
upsampling of feature maps, enabling the network to 
generate a high-resolution segmentation mask that cor-
responds to the original input image (refer to Fig.  2). It 
takes the low-resolution feature maps from the encoder 
and progressively increases their spatial dimensions 
while preserving the learned feature representations. In 
addition to upsampling, the decoder incorporates skip 
connections, establishing direct connections between 
corresponding layers in the encoder and decoder. By 
merging features from multiple resolutions, the decoder 
effectively utilizes both low-level and high-level features, 
allowing the network to capture contextual information 
at various scales.

Similar to the approach described in [29], we have 
implemented a powerful block to enhance the decod-
ing process. The decoding path in our U-shaped model 
employs two commonly used layers: the upsampling 
layer and the deconvolution layer. The upsampling layer 
leverages linear interpolation to expand the dimen-
sions of the image, while the deconvolution layer, also 
known as transposed convolution (TC), employs con-
volution operations to increase the image size. The TC 
layer enables the reconstruction of semantic features 
with more informative details, providing self-adaptive 
mapping. Hence, we propose the utilization of TC lay-
ers to restore high-level semantic features throughout 
the decoding path. Furthermore, to improve the com-
putational efficiency of the model, we have replaced the 
traditional convolutional layers in the decoding path 
with separable convolutional layers. The decoding path 
primarily consists of a sequence of 1× 1 separable con-
volutions, 3× 3 separable TC layers, and 1× 1 convo-
lutions, applied in consecutive order. This substitution 
with separable convolutions helps reduce the computa-
tional complexity while maintaining the effectiveness of 
the model.
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Knowledge fusion(KF)
After addressing the disparities among data sources in 
smart cities, the subsequent objective is to leverage the 
heterogeneity of these sources to effectively learn fine-
tuned feature representations. The essential purpose 
of the Knowledge Fusion (KF) module is to smooth the 
harmonious integration of various visual representations 
acquired from different sources of CT scans during the 
learning or encoding-decoding process [32]. As shown in 
Fig 2, these encoded representations usually include fea-
tures from different domains of CT imaging and differ-
ent spatial scales. The KF module plays a pivotal role in 
reducing the overall heterogeneity present in the multi-
site data, allowing for a more coherent and comprehen-
sive analysis. Through an interactive process, the KF is 
designed to allow seamless fusion of these representa-
tions, enhancing the overall robustness and informative-
ness of the integrated data. This fusion process aims to 
improve the model’s ability to capture and leverage the 
varied characteristics and nuances within the data, ulti-
mately contributing to more accurate and reliable disease 
diagnosis in smart cities [33, 34].

As depicted in Fig. 2, collaborative training is employed 
for the global network, combining supervision from GT 
masks and additional heterogeneous knowledge from 
ancillary paths. Specifically, each domain-specific ancillary 
channel is constructed in a manner identical to the global 
decoding path, resulting in a total of S domain-related 
ancillary channels within the global network. The ancillary 
paths serve as independent feature extractors for each sup-
ported data source in smart cities, allowing for a more 
inclusive fusion of relevant knowledge representations 
compared to the global decoding path. Each ancillary path 
is trained to optimize the dice loss [35]. Concurrently, the 
acquired heterogeneous knowledge representations from 
the ancillary paths are shared with the global network 
through an effective knowledge interaction mechanism. 
This enables the collective transmission of knowledge from 
all ancillary paths into a global decoding path, stimulating 
the common kernels in the global network to learn addi-
tional generic semantic representations. Accordingly, the 
final cost function for multi-decoder segmentation net-
work training with data from source s includes dice loss 
Lsglobal and a knowledge interaction loss LsKI.

Unlike present knowledge distillation approaches [36], 
our knowledge interaction loss associates the global 
probability maps (in the global network) with the GT 
masks from the ancillary path by transforming the GT 
masks into a one-hot design, preserving the dimensions 
reliability of the possibility maps. Thus, we denote the 
estimated one-hot label of an ancillary path as 
Ps
anc ∈ R

b×h×w×c . The activation values following the 
softmax operation of global architecture are denoted as 

Ms
global ∈ R

b×h×w×c , with b representing batch size, h, 
and w representing the height and width of feature maps, 
respectively, and c representing the channel number. The 
knowledge interaction cost can be calculated by

where ms
i ∈ Ms

globalandp
s
i ∈ Ps

anc , and ϕ represents the 
number of pixels in a single batch. The concept of KF 
stems from the proven advantages of large posterior 
entropy [32]. In our model, each ancillary path aims to 
effectively capture semantic knowledge from the underly-
ing dataset by learning diverse representations and gen-
erating a wide range of predictions, thus providing a 
comprehensive set of heterogeneous information for the 
proposed multi-decoder segmentation network in smart 
cities. In supervised training, a multi-decoder segmenta-
tion network achieves rapid convergence when the 
capacity is very large. However, in KF, the global path 
needs to emulate both the GT mask and the predictions 
of multiple ancillary paths simultaneously. The proposed 
KF introduces additional heterogeneous (multi-domain) 
representation to standardize the multi-decoder segmen-
tation network and increase its posterior entropy [32], 
enabling joint convolutions to leverage more powerful 
representations from different data sources. Moreover, 
the multi-path structure in KF may also contribute to 
beneficial feature regularization for the global encoding 
path by joint training with the ancillary paths, thereby 
enhancing the segmentation performance of the multi-
decoder segmentation network.

The interaction modules play a crucial role in the pro-
posed multi-decoder segmentation network, consist-
ing of multiple interaction blocks that take the acquired 
knowledge representation from the ancillary paths and 
transfer it to the global path to enhance the overall seg-
mentation performance. These modules need to be 
lightweight to avoid increasing the model’s complex-
ity. Additionally, the approach should improve gradient 
flow to accelerate training convergence while leveraging 
channel-wise relationships. To achieve this, we adopt the 
recently proposed squeeze and excitation (SE) technique 
[37], which recalibrates feature maps through channel-
wise squeezing and spatial excitation (referred to as sSE), 
effectively highlighting relevant spatial positions.

Specifically, cSE squeezes the feature maps of the 
Uanc ∈ R

W×H×C
′ ancillary paths along the channel 

dimension and perform spatial excitation on the corre-
sponding feature map of the global network 
Uglobal ∈ R

W×H×C , thereby transmitting the heterogene-
ous knowledge representation learned for fine-tuning the 

(3)

LsKF

(
Ps
anc,M

s
global

)
= 1−

2
∑ϕ

i m
s
i .p

s
i∑ϕ

i

(
ms

i

)2 +
∑ϕ

i

(
psi
)2
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generalization capability of the model. H andW  repre-
sent the dimensions of feature maps, and C ′

and C repre-
sent the channel count corresponding to the feature maps 
in the ancillary path and global path, respectively. Herein, 
we deliberate a certain dividing policy to characterize the 
input tensor Uanc =

[
u1,1anc ,u

1,2
anc , · · · · · · ,u

i,j
anc , · · · · · · ,u

H ,W
anc

]
 , 

where Ui,j
anc ∈ R

W×H×C
′
 with j ∈ {1,2, · · · · · · ,H} and 

i ∈ {1,2, · · · · · · ,W } . In the same way, the global path fea-
ture map Uglobal = [u1,1global ,u

1,2

global , · · · · · · ,u
i,j
global , · · · · · · ,u

H ,W
global

 ]. 
A convolution layer ( 1× 1 ) is employed to execute spatial 
squeezing q = Ws ∗ Uanc , where Ws ∈ R

1×1×C
′ , and 

producing projection map q ∈ R
H×W  . This generated q is 

fed into sigmoid function σ(·) to be rescaled into the 
range of [0,1], and the output is exploited for exciting 
Uglobal spatially to generate Ûglobal = [σ(q1,1)u

1,1

global , · · · · · · ,

σ(qi,j)u
i,j
global , · · · · · · , σ

(
qH ,W

)
u
H ,W

global
].

Multi‑decoder segmentation network Specifications 
and training
The proposed multi-decoder segmentation network is 
trained to optimize the objective function for upgrading 
the global encoder ( θe ), global decoder ( θd ), and ancillary 
paths ( {θanc}S1 ). The objective function could be formu-
lated according to

where Lsanc and Lsglobal represent the dice loss for the 
ancillary paths and the global path, respectively; LsKI rep-
resents the knowledge interaction for the global network; 
σ denotes a hyperparameter for balancing the segmenta-
tion loss and the knowledge interaction loss, and is set to 
0.6, and η denotes the weight parameter and is set to 
0.0001.

Throughout the entire training process, knowledge 
interaction takes place. At each training step, S batches 
of CT scans, each belonging to a different dataset, are 
fed into the multi-decoder segmentation network. The 
ancillary paths and the global path are trained alter-
nately. Once training is completed, the ancillary paths 
are removed, and only the global path remains for infer-
ence. The proposed multi-decoder segmentation network 
is implemented on NVIDIA Quadro GPUs, with one 
GPU assigned to each data source, using the TensorFlow 
library. The encoder is built with four ResNeXt blocks. 
We employ the Adam optimizer to update the parame-
ters of the multi-decoder segmentation network. During 

(4)Lanc =
S∑

s=1

Lsanc + η

(
�θe�22 +

S∑

s=1

�θ sanc�
2
2

)
,

(5)Lglobal =
S∑

s=1

(σLsKI + (1− σ)Lsglobal)+ η

(
�θe�22 + �θd�22

)
,

training, a batch size of 5 is used, and the number of iter-
ations is set to 25000.

System design
The suggested system in this work is a fog-empowered 
cloud computing framework for COVID-19 diagnosis 
in smart cities, known as PANDFOG. It utilizes the pro-
posed multi-decoder segmentation network to segment 
infection regions from CT scans of patients, aiding doc-
tors in diagnosis, disease monitoring, and severity assess-
ment. PANDFOG integrates various hardware devices 
and software components to enable organized and uni-
fied incorporation of edge-fog-cloud, facilitating the 
rapid and precise transfer of segmentation outcomes. 
Figure. 3 provides a simple illustration of the PANDFOG 
architecture and its modules are discussed in the follow-
ing subsections.

Gateway Devices: Smartphones, tablets, and laptops 
serve as gateways within the PANDFOG framework. 
These devices function as fog devices, aggregating CT 
scans from various sources and transmitting them to the 
broker or worker nodes for further processing. The bro-
ker node serves as the central reception point for seg-
mentation requests, specifically CT images, originating 
from gateway devices. It comprises the request input 
component for handling incoming requests, the security 
administration component for ensuring secure communi-
cation and data integrity, and the adjudication component 
(resource director) for real-time workload analysis and 
allocation of segmentation requests [45–49].

The worker node is responsible for executing segmen-
tation tasks assigned by the resource director. It includes 
embedded devices and simple computers such as lap-
tops, PCs, or Raspberry Pis. Worker nodes in PANDFOG 
encompass the proposed multi-decoder segmentation 
network architectures for processing CT images from 
heterogeneous sources and generating segmentation 
results. Additional components for data preparation, pro-
cessing, and storage are also integral parts of the worker 
node [51].

The software components of PANDFOG enable effi-
cient and intelligent data processing and analysis, lev-
eraging distributed computing resources at the network 
edge. These components collectively contribute to tack-
ing the problems facing the screening of COVID-19 
and thereby improving healthcare responses. The first 
computation in PANDFOG involves preprocessing CT 
scans before they are forwarded to the multi-decoder 
segmentation network for training or inference. Data 
preprocessing details are provided in the experimen-
tal part of the study. This module trains the proposed 
Multi-decoder segmentation network on heterogeneous 
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CT images after the preparation phase. It utilizes the 
Multi-decoder segmentation network to infer segmen-
tation outcomes for CT images received from gateway 
devices based on the resource director’s assignment. 
The resource directory comprises the workload admin-
istrator and the adjudication component. The workload 
administrator manages segmentation requests and han-
dles the request queue and a batch of CT images. The 
adjudication component regularly analyzes available 
cloud or fog resources to determine the most suitable 
nodes for processing CT scans and generating segmen-
tation outcomes. This aids in load balancing and optimal 
performance [52–57].

The PANDFOG framework takes the patient’s CT 
image as input from gateway devices and employs the 
data preparation module and Multi-decoder segmenta-
tion network to generate segmentation results indicating 
the infection regions. The Multi-decoder segmentation 
network is trained on multi-source annotated datasets 
and saved on all nodes. During the diagnosis phase, a 
node assigned with a segmentation request feeds the 
patient’s CT image to the Multi-decoder segmentation 

network for forward pass inference. The input image is 
broadcast to other nodes if needed.

Experimental deign and analysis
Within this section, we provide a comprehensive com-
parison between the outcomes achieved by our model 
and those reported in previous studies. Furthermore, 
we undertake two distinct evaluations to assess the 
performance and efficacy of our proposed multi-
decoder segmentation network. The initial evaluation 
takes place within a conventional computing environ-
ment, allowing us to gauge the model’s overall perfor-
mance and effectiveness. Subsequently, we delve into 
a detailed analysis of the experimental configurations 
of the multi-decoder segmentation network within an 
AIoT framework, considering various factors such as 
latency, jittering, completion time, and more. This mul-
tifaceted evaluation provides a comprehensive under-
standing of the multi-decoder segmentation network’s 
capabilities and performance within the context of 
AIoT, offering insights into its potential for practical 
applications [56, 57].

Fig. 3  Systematic representation of the proposed PANDFOG framework
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Performance indicator
In our case study, we employed two commonly used 
evaluation indicators to assess the performance of 
the multi-decoder segmentation network framework 
for COVID-19 lesion segmentation: the Dice Similar-
ity Coefficient (DSC) and the Normalized Surface Dice 
(NSD).

Results and discussion
In our experiments, we explore and evaluate the pro-
posed network under two training scenarios: one is an 
individualistic scenario and the other is a combined 
scenario. The former scenario emphasizes training the 
network separately on each dataset and then reporting 
its inference performance. In a later scenario, we involve 
the direct integration of arbitrarily selected images from 
different sources. This random selection of samples is 
performed to guarantee that the total number of train-
ing samples and test samples are equals in both scenar-
ios. This in turn helps keep the fairness of the conducted 
comparisons. For both scenarios, the segmentation 
performance is assessed on test data from distinct 
sites, which helps gain useful insights about the gen-
eralizability of the model on unseen data. This means 
interpreting the impact of distributional shifts on the 
segmentation performance when dealing with multi-site 
CT data. Throughout these bunch of experiments, the 
multi-decoder segmentation network utilized a global 
decoding path, which is typical for U-shaped segmenta-
tion networks. The quantitative results of these experi-
ments are reported in Table 1, across different valuation 
metrics namely DSC and NSD.

In the individualistic scenario, we observed a sig-
nificant degradation in generalization performance 

(6)DSC =
2|S ∩ G|
|S| + |G|

(7)NSD =
2
∣∣∂S ∩ Bτ

∂S

∣∣+ 2
∣∣∂S ∩ Bτ

∂G

∣∣
|∂S| + |∂G|

when the model was evaluated on test sets from other 
sites compared to the performance on the correspond-
ing training data. For example, in the first row (cor-
responding site1-based training) the DSC is dropped 
from 78.24 to 67.66 when it comes to evaluation on site 
2. Similarly, the NSD score dropped from 77.23 to 65.4 
when it came to site 2. The behavior is notable for all 
individualistic scenarios, which confirms our claims 
about the impact of the distributional shift caused by 
muti-site medical data. To this end, we emphasize the 
importance of incorporating heterogeneous data dur-
ing the training phase, which can be achieved through 
the combined learning approach offered by the multi-
decoder segmentation network. In the combined 
training scenarios, we observed that the segmentation 
performance exhibited notable improvements com-
pared to the individualistic scenario with unseen test-
ing data. However, this remains below segmentation 
performance in the case of training and testing data. 
This suggests that leveraging data from multiple sites 
can enhance the model’s ability to generalize across dif-
ferent data sources and improve overall segmentation 
performance.

To further evaluate the performance of the multi-
decoder segmentation network, we conducted compara-
tive experiments against state-of-the-art segmentation 
models that have demonstrated excellence in various 
medical imaging segmentation tasks. These models were 
carefully selected to provide a comprehensive evaluation 
and enable a meaningful comparison of our proposed 
approach. Table  2 presents the results of our compara-
tive evaluation, where each model was trained and tested 
on the same dataset under consistent experimental con-
ditions. These experiments aimed to assess and com-
pare the performance of our proposed model against 
other existing models, providing valuable insights into 
the potential of our approach to advance the field of 
COVID-19 segmentation from multi-site data.

Through these comparative experiments, we can dem-
onstrate the efficacy and superiority of our proposed 

Table 1  Quantitative results of evaluating the performance of the proposed multi-decoder segmentation network under 
individualistic and combined settings

DSC↑ NSD↑

Methods Individualistic
(site 1)

Individualistic 
(site 2)

Individualistic
(site 3)

Average Individualistic
(site 1)

Individualistic 
(site 2)

Individualistic
(site 3)

Average

Individualistic (site 1) 78.24 67.66 65.1 70.33 77.23 65.4 63.7 68.78

Individualistic (site 2) 74.3 81.4 73.6 76.43 73.72 79.9 71.5 75.04

Individualistic (site 3) 75.45 71.3 80.9 75.88 73.12 72.41 81.13 75.55

Combined 79.1 80.1 78.8 79.33 76.7 78.5 79.6 78.27
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model. Our model consistently outperformed the other 
models in terms of various evaluation measures, show-
casing its ability to achieve more accurate and reliable 
segmentation results. These findings highlight the effec-
tiveness of our proposed multi-decoder segmentation 
network in handling the challenges posed by multi-site 
data in the context of COVID-19 segmentation. To fur-
ther quantify the significance of the observed perfor-
mance improvements, we conducted paired t-tests 
between the proposed multi-decoder segmentation net-
work and the mixed and independent models using the 
evaluation measures. The statistical significance level was 
set at a p-value of 0.05. For each pair of comparisons, we 
calculated both the single source p-value and the total 
p-value. Table  3 displays the results of these statistical 
tests conducted on different datasets from various sites. 
Notably, all the computed p-values were found to be 
less than 0.05, indicating that the observed performance 
enhancements achieved by our proposed multi-decoder 
segmentation network are statistically significant. This 
signifies that the improvements observed in the seg-
mentation results are not due to random chance, but 
rather reflect the true effectiveness and superiority of our 
model. These statistical tests provide further confidence 
in the reliability and robustness of our proposed multi-
decoder segmentation network, reinforcing its potential 
for practical application in real-world scenarios. The sta-
tistically significant performance improvements observed 

across different datasets and sites validate the credibility 
and generalizability of our approach, making it a promis-
ing solution for accurate COVID-19 segmentation in the 
context of multi-site data.

Ablation analysis
To gain insights into the impact of different feature 
recalibration blocks in the knowledge fusion from 
decoding paths in our model, we conducted an ablation 
analysis. We implemented and evaluated the KF module 
of our model with three variations of feature recalibra-
tion blocks: recombination and recalibration (RR), spa-
tial SE (sSE), and a combination of channel-wise SE (cSE) 
and spatial SE (sSE). The results of these experiments are 
summarized in Table 4. The analysis reveals that the uti-
lization of cSE blocks proves to be more effective than 
sSE blocks, emphasizing the importance of channel-wise 
information in the segmentation process. The cSE blocks 
enable the model to recalibrate the channel-wise features, 
enhancing their discriminative power and ultimately 
improving the segmentation performance. On the other 
hand, the RR blocks achieve comparable performance to 
the sSE blocks, suggesting that the recombination and 
recalibration mechanism successfully incorporates spa-
tial information into the model. Furthermore, integrating 
both cSE and sSE blocks yields the highest performance 
across all evaluated datasets. This combination of fea-
ture recalibration mechanisms allows the Multi-decoder 
segmentation network to leverage both channel-wise 
and spatial information, leading to more accurate and 
robust segmentation results. However, it is worth noting 
that this integration comes at the cost of increased com-
putational complexity, making it more computationally 
exhaustive compared to using individual recalibration 
blocks.

Considering the resource efficiency aspect, cSE blocks 
are shown to slightly increase the network parameters. 

Table 2  Numerical comparison between the segmentation performance of the proposed multi-decoder segmentation network 
against the competing methods (mean ± standard deviation)

DSC↑ NSD↑

Models Site 1 Site 2 Site 3 Total Site 1 Site 2 Site 3 Total

U-Net [29] 82.1 ± 8.9 86.1 ± 9.9 87.1 ± 8.9 85.10 ± 9.23 80.9 ± 10.3 84.9 ± 11.1 87.1 ± 11.5 84.30 ± 10.97

FCN-8[44] 82.2 ± 9.1 86.2 ± 9.1 86.9 ± 10.1 85.10 ± 9.43 80.3 ± 11.2 84.4 ± 10.3 86.9 ± 10.3 83.87 ± 10.60

3D-U-Net 
[45]

80.8 ± 11.4 84.0 ± 8.4 85.9 ± 14.3 83.57 ± 11.37 79.7 ± 14.5 83.5 ± 9.8 85.2 ± 13.4 82.80 ± 12.57

3D-V-Net 
[26]

80.1 ± 11.2 84.7 ± 9.2 85.3 ± 15.1 83.37 ± 11.83 79.9 ± 13.1 84.6 ± 10.7 85.3 ± 13.3 83.27 ± 12.37

DSBN [12] 83.1 ± 6.8 86.9 ± 5.2 87.8 ± 6.9 85.93 ± 6.30 82.0 ± 8.3 85.7 ± 8.1 87.0 ± 6.5 84.90 ± 7.63

MS-Net [12] 83.8 ± 6.5 87.8 ± 6.4 88.5 ± 5.9 86.70 ± 6.27 82.9 ± 9.4 86.6 ± 8.7 87.9 ± 6.5 85.87 ± 8.20

Proposed 85.3 ± 5.3 89.2 ± 5.1 89.9 ± 6.1 88.13 ± 5.50 84.6 ± 7.1 88.2 ± 6.9 87.8 + 5.1 86.87 ± 6.37

Table 3  Statistical significance of the proposed against baseline

Method Site 1 Site 2 Site 3

proposed vs U-Net [29] 7.84E-04 2.32E-11 3.95E-10

proposed vs FCN-8 [44] 1.07E-08 4.20E-09 3.92E-09

proposed vs DSBN [12] 4.47E-04 1.49E-02 2.16E-08

proposed vs MS-Net [12] 4.44E-07 4.00E-08 2.91E-03
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However, the overall impact on computational resources 
remains relatively modest. This highlights the practical-
ity and resource efficiency of integrating cSE blocks into 
the Multi-decoder segmentation network architecture, 
as they provide significant performance gains while 
maintaining manageable computational requirements. 
The ablation analysis on the feature recalibration blocks 
reaffirms the effectiveness and importance of channel-
wise information in the context of the Multi-decoder 
segmentation network. It demonstrates that the integra-
tion of CSE blocks, in combination with other recali-
bration mechanisms, leads to superior segmentation 
performance. This analysis aids in the understanding of 
the design choices in our proposed model and supports 
the selection of CSE blocks as a key component in ena-
bling effective interaction between decoding paths for 
enhanced COVID-19 segmentation.

Scalability analysis
In this part of our experimental analysis, we conducted 
several experiments to investigate the relationship 
between the number of edges and the training accuracies.

The results are presented in Fig.  4A, which illustrates 
how the training DSC varies with an increasing number 
of edge nodes. The findings reveal that as the number of 
edge nodes increases, the training DSC also increases. 
This can be attributed to the fact that when the number 
of nodes increases, the allocation of CT scans to each 
node decreases. Consequently, this reduction in the num-
ber of training samples per node leads to overfitting dur-
ing training, resulting in higher training DSC scores. On 
the other hand, the impact of the number of nodes on the 
testing accuracy is depicted in Fig. 4B. The graph shows 
that a higher number of edges leads to a decrease in the 
testing DSC. This can be explained by the fact that with 
a larger number of edges, each edge node receives only 
a small portion of the training samples. As a result, the 
model trained on these limited samples may struggle to 
generalize well to unseen data, resulting in a decrease in 
testing accuracy. These observations highlight the impor-
tance of finding the right balance when determining the 
number of edges in the system. While a higher number of 
edges may lead to better training performance initially, it 

can also result in decreased testing accuracy due to lim-
ited training samples per edge node. Therefore, it is cru-
cial to carefully consider the trade-off between training 
and testing performance when designing the system and 
selecting the appropriate number of edges.

Time analysis
In consideration of real-world applications, we acknowl-
edge the supreme standing of proficiency when it comes 
to being deployed in PANDFOG, for automatic COVID-
19 pneumonia diagnosis. To this end, the feasibility and 
complexity of PANDFOG are assessed in clinical settings 
by conducting a set of time experiments to give useful 
insights about different time complexities.

In of adjudication time analysis, we conducted four 
experiments to evaluate the impact of adjudication time 
at the broker node for different fog paradigms. These 
paradigms included a cloud, a broker, a worker node, and 
dual worker nodes, as illustrated in Fig.  5. Our results 
showed that when the task was transferred to the mas-
ter or cloud, the adjudication time was relatively small, 
approximately 144.7 ms and 154.2 ms, respectively. This 
indicates that the processing time was efficient when 
the task was handled by these centralized nodes. How-
ever, as the number of edge nodes increased, the bro-
ker became responsible for examining the workloads of 
each worker and selecting the worker with the lowest 

Table 4  ablation results for KF module in the proposed model

DSC↑ NSD↑

Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

RR [57] 84.4 88.5 88.9 88.03 84.06 88.0

sSE [37] 84.1 88.4 89.1 88.52 83.5 87.9

cSE [37] 85.3 89.2 89.9 88.13 84.6 88.2

cSE + sSE [37] 86.1 90.3 90.4 88.46 83.9 87.8

Fig. 4  Impact of number of edges model accuracy
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load to allocate the task. Consequently, the adjudication 
time increased due to the growing number of edge nodes 
that needed to be assessed by the broker. Furthermore, 
when the domain-specific data was directed to workers 
for heterogeneous learning, the broker no longer needed 
to execute load checks. This is because the selection of 
the mainstream class could be performed by any worker, 
eliminating the need for the broker’s involvement in load 
distribution. These findings highlight the dynamic nature 
of the system and the influence of different fog para-
digms on adjudication time. The increase in edge nodes 
introduces additional complexity and processing over-
head, resulting in longer adjudication times. However, by 
allowing workers to handle domain-specific data for het-
erogeneous learning, the system becomes more efficient 
as the workload distribution is effectively delegated with-
out requiring the broker’s intervention in load checks.

In addition, we underline the significance of interpret-
ing and evaluating the real-world applicability of PAN-
DFOG for deploying the multi-decoder segmentation 
network on edge nodes. To this end, an extensive latency 
analysis is conducted to gain valuable feedback regarding 
the practical performance. Figure 6 illustrates the latency 
discrepancies, which include communication and queu-
ing delays. It is observed that transmitting tasks to one 
edge or the broker node exhibits similar latency, approxi-
mately 19.4 ms and 20.7 ms, respectively, reflecting the 
total communication across one-hop data transmissions. 
In the multi-edge scenario, the latency slightly increases, 
reaching 28.6 ms for two edges and 38.4 ms for three 
edges. On the other hand, in the cloud scenario, a signifi-
cantly higher latency of 3121 ms is observed due to the 
multi-hop transmissions of domain-relevant data out of 
the local area network (LAN). The achieved numerical 
results show the trade-offs and implications for data pro-
cessing in smart cities, in which edge computing reduces 

latency for serious tasks, while multi-edge settings keep 
a balance between local processing and resource distri-
bution. This, in turn, highlights the basics of optimizing 
network architecture to minimize latency and guarantee 
sensible decision support for managing pandemic disease 
within smart cities.

Moreover, the applicability of PANDFOG is further 
explored in real-world COVID-19 pneumonia analysis 
through the introduction of jitter analysis. This means 
studying the difference in response time of successive 
task requests, which is a significant parameter for real-
time IoT services in smart cities. Figure. 7 depicts the 
jitter discrepancies along with different fog settings. The 
scenario involving only the broker node exhibits a higher 
jitter (14.1 ms) compared to the scenario where requests 
are directed to the worker nodes. This can be attributed 
to the additional adjudication induced by other tasks, 
while the broker is responsible for resource administra-
tion and security maintenance. Additionally, a marginal 
increase in jitter is observed for the three-edge scenario 
(13.1 ms) compared to the one-edge scenario (8.3 ms). 

Fig. 5  Adjudication time visualization in PANDFOG across various fog 
designs

Fig. 6  Comparative visualization of PANDFOG performance 
across different fog designs

Fig. 7  Jitter analysis of PANDFOG across varied fog designs
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Moreover, a larger jitter is observed when data is sent to a 
centralized cloud (114.6 ms).

Furthermore, Execution time analysis is broadly rec-
ognized as an essential metric for measuring the com-
puting efficiency and responsiveness of a system when 
it comes to deployment into dynamic and constrained 
IoT systems, such as smart cities’ healthcare infra-
structure. The execution time analysis, as shown in 
Fig.  8, further highlights the differences in execution 
time across different scenarios. As expected, the cloud 
configuration demonstrates the lowest execution time 
(1092.7 ms) due to its high availability of computational 
resources. It is worth noting that the execution times of 
the worker nodes are considerably higher than those of 
the broker nodes.

Bandwidth analysis
When it comes to analyzing distributed systems, such 
as smart city healthcare systems, bandwidth analy-
sis comes as a critical metric for evaluating the viabil-
ity and scalability of the system. To this end, network 
bandwidth analysis is performed for the proposed 
PANDFOG, a s displayed in Fig.  9, shows the relation 
between the network bandwidth consumption and 
the underlying fog configurations. The configuration 
involving only the broker node results in the lowest 
bandwidth consumption (11.2 kbps), while the cloud 
configuration exhibits comparatively higher consump-
tion (39.6 kbps). Increasing the number of edge nodes 
leads to an increase in bandwidth consumption, pri-
marily due to additional security checks, heartbeat 
packets, and data transmissions.

Power analysis
To further get valuable insights into the real-world appli-
cability of PANDFOG, the proposed

Analyzing power and energy consumption, as depicted 
in Fig.  10, is a crucial aspect of IoT frameworks. The 
energy utilization analysis of the proposed COVID-19 
fog framework indicates that the broker configuration 
has the lowest power utilization at 7.3 W. Additionally, 
it is observed that increasing the number of edge nodes 
only slightly increases power consumption. In contrast, 
the cloud configuration shows a significant increase in 
power consumption due to the abundance of computa-
tional resources it requires. These results demonstrate 
significant implications for the design and deployment of 
AIoT platforms in smart cities by emphasizing localized, 
edge-based data processing that not only reduces latency 
but also copes with energy competence and sustainability 
goals. The comparatively low power utilization in the case 
of broker configuration, fused with the medium spread at 
edge scaling, showcases the capacity for resource optimi-
zation in multi-edge deployments.

The above experimental analyses provide valuable 
insights into the performance, efficiency, and resource 

Fig. 8  Comparative analysis of execution time in PANDFOG 
across various fog designs

Fig. 9  Bandwidth consumption analysis of PANDFOG with various 
fog design configurations

Fig. 10  Power consumption analysis of PANDFOG under varied fog 
design configurations
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utilization of the proposed COVID-19 fog framework. 
The results highlight the trade-offs and characteristics 
of different configurations, helping to inform decision-
making and optimization efforts in designing and deploy-
ing fog-based IoT systems for pandemic control in smart 
cities. Our research focuses primarily on the implica-
tion our work holds towards achieving the goal outlined 
under the Vision 2030 agenda particularly concerning 
developing futuristic smart cities. Our primary objective 
lies in developing a fog-based AIoT system for determin-
ing the best way in which, we could perform diagnosis for 
COVID-19-alike pandemics at the highest level of accu-
racy using novel approaches towards integrating multi-
site data sourced from various multimedia scanners. This 
system allows smart cities to create an efficient system for 
tracking and monitoring pandemics, promoting public 
health safety and appropriate resource allocation. When 
implemented in existing healthcare facilities, our frame-
work builds on existing medical wearables, electronic 
health records, and other related tools designed to holis-
tically diagnose individuals while embracing personalized 
care aimed at promoting preventive measures. To sum-
marize, our development of the cloud-based AIoT sys-
tem will greatly aid in achieving the goals of Vision 2030 
for intelligent cities. By providing precise detection and 
nurturing an interconnected healthcare infrastructure, 
our framework provides communities with the means to 
efficiently react to outbreaks and improve public safety, 
leading to greater quality of life for their inhabitants. 
Our accomplishment in implementing our setup creates 
opportunities for even larger changes within medicine 
and greases the wheels toward long-term, sustainable 
smart cities down the line.

Conclusions and future works
This paper presents a comprehensive framework, named 
fog-based AIoT, for accurate pandemic disease diagno-
sis in smart cities. By leveraging multi-site data fusion, 
our framework addresses the challenges posed by het-
erogeneous data sources and enables precise and timely 
diagnosis of pandemic diseases, particularly focusing on 
COVID-19. The proposed AIoT framework incorporates 
fog-empowered cloud computing and integrates various 
hardware devices and software components to facilitate 
efficient data processing and analysis. The Multi-decoder 
segmentation network, our novel deep learning model, 
serves as the cornerstone of the framework, effectively 
handling the segmentation of COVID-19 lesions from 
CT scans obtained from diverse sources. The findings 
showed that our AIoT framework outperforms tradi-
tional centralized cloud systems in terms of precision, 
speed, and adaptability to heterogeneous data sources.

The successful functioning of our fog-based AIoT 
framework opens up new avenues for future research and 
applications in the field of disease diagnosis and moni-
toring in smart cities. Further progress can be made in 
optimizing resource allocation, refining the segmenta-
tion algorithms, and extending the framework to support 
other types of pandemic diseases. By constantly refining 
and expanding our AIoT framework, we can make signif-
icant strides towards creating smarter and more resilient 
cities that are better provided to tackle healthcare chal-
lenges during pandemics.
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