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Abstract
Background Coronary inflammation induces changes in pericoronary adipose tissue (PCAT) can be detected by 
coronary computed tomography angiography (CCTA). Our aim was to investigate whether different PCAT radiomics 
model based on CCTA could improve the prediction of major adverse cardiovascular events (MACE) within 3 years.

Methods This retrospective study included 141 consecutive patients with MACE and matched to patients with 
non-MACE (n = 141). Patients were randomly assigned into training and test datasets at a ratio of 8:2. After the robust 
radiomics features were selected by using the Spearman correlation analysis and the least absolute shrinkage and 
selection operator, radiomics models were built based on different machine learning algorithms. The clinical model 
was then calculated according to independent clinical risk factors. Finally, an overall model was established using 
the radiomics features and the clinical factors. Performance of the models was evaluated for discrimination degree, 
calibration degree, and clinical usefulness.

Results The diagnostic performance of the PCAT model was superior to that of the RCA-model, LAD-model, and 
LCX-model alone, with AUCs of 0.723, 0.675, 0.664, and 0.623, respectively. The overall model showed superior 
diagnostic performance than that of the PCAT-model and Cli-model, with AUCs of 0.797, 0.723, and 0.706, respectively. 
Calibration curve showed good fitness of the overall model, and decision curve analyze demonstrated that the model 
provides greater clinical benefit.
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Introduction
Vascular inflammation is considered a crucial driver 
of atherogenesis and vulnerable plaque rupture, which 
results in subsequent adverse cardiac events [1–3]. There 
is growing interest in the detection of coronary artery 
inflammation, which has important implications for 
cardiovascular risk stratification and improving patient 
prognosis. For years, coronary computed tomography 
angiography (CCTA) has been used as a rule-out test 
for obstructive coronary artery disease (CAD) owing to 
its excellent negative predictive value [4–6], which sub-
stantial evidence suggests that CCTA-derived param-
eters provide important prognostic information, such 
as, lumen stenosis, plaque characteristics, plaque bur-
den [7–9]. A recent study demonstrated that vascular 
wall inflammation-induced change in perivascular adi-
pose tissue (PVAT) composition leads to an increase in 
CT attenuation, and this change can be captured by the 
perivascular Fat Attenuation Index (FAI) [10]. The level 
of inflammation captured by FAI is highly correlated with 
PET and can independently predict the progression of 
plaques and adverse cardiac events [10–12]. However, 
FAI is only based on voxel intensity values and does not 
consider the complex spatial relationship among voxels. 
Advanced radiomics analysis can overcome the deficien-
cies of FAI and reveal the microstructure and composi-
tion changes in the parenchyma of PCAT.

Radiomics is the process of extracting quantitative fea-
tures from a given ROI, converting images into mine-
able data, and analyzing these data for decision support 
[13–15]. Recently study reported CCTA-based radiomics 
characterization of PCAT surrounding the right coronary 
artery (RCA) and identified a distinct radiomics phe-
notype between patients with acute myocardial infarc-
tion (MI) and matched subjects with stable CAD or no 
CAD [16]. However, the role of the radiomics pheno-
type derived from PCAT surrounding the left anterior 
descending artery (LAD) and left circumflex coronary 
artery (LCX) was not mentioned, and whether the pre-
dictive value of PCAT radiomics features surrounding 
the three coronary arteries can be improved remains 
uncertain. Therefore, in this study, we sought to analyze 
CCTA-based radiomics features of PCAT surrounding 
the proximal three major coronary arteries. We aimed to 
predict future adverse cardiac events within 3 years using 
radiomics signature of PCAT and incorporating clinical 
risk factors.

Materials and methods
Study population
This retrospective study was approved by the institu-
tional review board (No. Y [2021] 074) of the General 
Hospital of Northern Theater Command, and a waiver 
for informed consent was granted.

Our study was a post hoc retrospective analysis of 
consecutive patients who underwent 256-slice CCTA 
examinations from January 2017 to December 2017 and 
followed up until March 2021. Clinical outcome was 
defined as the occurrence of MACE based on electronic 
medical records of the hospital. MACE was defined as 
cardiac death (fatal MI), non-fatal MI (ST-segment ele-
vation myocardial infarction [STEMI] and non-STEMI), 
or unstable angina leading to coronary revascularization 
(percutaneous coronary intervention [PCI] or coronary 
artery bypass grafting [CABG]) with more than 6 weeks 
between CCTA and invasive coronary angiography (ICA) 
[17]. Patients with MACE were matched (according 
to age, sex, body mass index (BMI), cardiovascular risk 
factors, and medications) to non-MACE patients who 
underwent CCTA during the same period. Exclusion cri-
teria included previous coronary revascularization, coro-
nary revascularization within 6 weeks of the CCTA scan, 
myocardial bridge is located proximal the three major 
vessels, patients with other heart diseases, poor CCTA 
image quality, and patients with a malignant tumor. A 
flowchart of patient selection is provided in Fig.  1. Rel-
evant clinical information, laboratory parameters, and 
medications were retrospectively collected from the hos-
pital’s electronic medical record system at the same time 
CCTA scans.

CCTA acquisition
CCTA scans were performed on a 256-slice CT scan-
ner (Brilliance iCT, Philips Medical systems). Sublingual 
nitroglycerin was used to dilatate coronary arteries, and 
oral or intravenous beta-blockers was administered as 
needed to reduce heart rate to ≤ 65 beats/min unless con-
traindicated. CCTA acquisition parameters were as fol-
lows: collimation was 128 × 0.625 mm, rotation time was 
270 ms, tube voltage was set at 100 or 120 kV (depending 
on BMI), and the tube current was 500–700 mAs. Data 
were acquired using a retrospective electrocardiogram-
gated protocol. 0.6–0.8  ml/kg of iodinated contrast was 
injected (Ioversol 320mgI/ml) at a flow rate of 4–6 ml/s, 
and images were reconstructed at a window centered 

Conclusion The CCTA-based PCAT radiomics features of three major coronary arteries have the potential to be 
used as a predictor for MACE. The overall model incorporating the radiomics features and clinical factors offered 
significantly higher discrimination ability for MACE than using radiomics or clinical factors alone.
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at 75% of the R-R interval with a section thickness of 
0.9 mm and a reconstruction increment of 0.45 mm.

PCAT analysis and radiomics feature extraction
PCAT segmentation and radiomics feature extraction 
were performed using the Perivascular Fat Analysis Tool 
software (Shukun Technology Co., Ltd). The proximal 
40-mm segments of the three major epicardial coro-
nary arteries (LAD, LCX, and RCA) were automatically 
traced. For the LAD and LCX, we analyzed the proximal 
40 mm from the left main coronary artery bifurcation. To 
avoid the effects of the aortic wall, we excluded the most 
proximal 10 mm of the RCA and analyzed the proximal 
10–50  mm of the vessel, as described previously [10]. 
The PCAT was defined as all voxels located within the 
outer radial distance from the coronary wall equal to the 
diameter of the respective vessel, with CT attenuation 
between − 190 and − 30 HU [10, 11].

A total of 95 features (Supplementary Materials) were 
extracted from each PCAT segmentation. Finally, 285 
radiomics features were generated from each patient. Fig-
ure 2 shows the radiomics workflow of this study.

Feature selection and model building
Feature selection
All cases in the training dataset were used to train the 
predictive model, whereas cases in the test dataset were 
used to independently evaluate the model’s performance. 
Before feature selection, variables with zero variance 
were excluded from analyses, and data were standardized 
by z-score. The calculation formula was as follows:

 
F =

Fi − Mean

σ
,

Fig. 1 The Flow chart of patient enrollment
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where F signifies the normalized eigenvalue, Fi signifies 
the original eigenvalue, Mean signifies the average, and σ 
signifies the standard deviation (SD).

To reduce redundancy, features with a Spearman’s 
correlation coefficient of > 0.9 were excluded. The Least 
Absolute Shrinkage and Selection Operator (LASSO) 
was then used to select the robust features in the train-
ing group. Clinical features related to MACE were evalu-
ated using univariate logistic regression analysis in the 
training dataset. Variables with P < 0.05 were included for 
further multivariate logistic regression analysis using the 
backward stepwise elimination method.

Model building
A total of six models were developed using different 
machine learning algorithms (logistic regression (LR), 
support vector machine (SVM), stochastic gradient 
descent (SGD), and linearSVC). To avoid overfitting, all 
models were evaluated by 10-fold cross-validation.

Clinical model building
We developed a clinical model (Cli-model) based on the 
independent clinical risk factors selected using univariate 
and multivariate logistic regression analyses.

Radiomics model building
A total of four radiomics models were established. Firstly, 
three separate models were built based on the radiomics 
features selected from the PCAT surrounding the RCA, 
LAD, and LCX, respectively. Secondly, a PCAT model 

containing all features of RCA, LAD and LCX was 
constructed.

Overall model building
Finally, an overall model that incorporated the clinical 
risk factors and the radiomics features of three coronary 
arteries was established.

Performance evaluation
We evaluated the performance of the models in terms 
of discriminative degree, calibration degree, and clinical 
usefulness.

Discriminative degree
To evaluate the discriminative ability of the models, ROC 
curves were plotted for both the training and test data-
sets. AUCs with 95% CIs were calculated and compared 
using the DeLong test. The optimum cut-off value was 
determined by the maximum Youdon index of the train-
ing dataset, which was then applied to the independent 
test dataset. Sensitivity, specificity, positive predictive 
value (PPV), negative predict value (NPV), and accuracy 
were calculated according to the best cut-off value for 
both the training and test datasets.

Calibration degree
Calibration curves using the Hosmer-Lemeshow test 
(H-L test) were generated to assess the goodness of fit 
of both the training and test datasets. The agreement 
between the observed outcome frequencies and the 

Fig. 2 Radiomics workflow in this study
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predicted probabilities of the models was assessed. A 
P-value of more than 0.05 in the H-L test was considered 
good calibration.

Clinical usefulness
Decision curve analysis (DCA) was conducted to assess 
the clinical usefulness of the established models by quan-
tifying the net benefit at different threshold probabilities 
of both the training and test datasets.

Statistical analysis
All statistical analyses were conducted using the R Stu-
dio software. The Kolmogorov–Smirnov test was used 
to evaluate whether the continuous variables were nor-
mally distributed. Continuous variables are presented as 
means ± SDs or medians (interquartile ranges [IQRs]), as 
appropriate. Student’s t-test or Mann–Whitney U-test 
was used to compare differences in the continuous vari-
ables between groups, as appropriate. Categorical vari-
ables are presented as frequencies (percentages) and were 
compared using the chi-squared or Fisher’s exact test, as 
appropriate. All statistical analyses were two-sided, and 
P < 0.05 indicated statistical significance.

Results
Patients
Table 1 shows the clinical characteristics of the training 
and test datasets. The two groups were well matched for 
age, sex, BMI, cardiovascular risk factors, and medica-
tions in both the training and test datasets (all P > 0.05). 
The average time from the CCTA examination to the 
occurrence of MACE was 13.17 months (IQR: 4.9 to 
29.17 months). In those who had experienced a MACE, 
26 (18%) subjects experienced MI, 112 (80%) subjects 
with unstable angina underwent late revascularization 
(103 PCI and 9 CABG), and 3 (2%) patients had cardiac 
death (Table  2). In terms of lipids and inflammatory 

Table 1 Baseline characteristics of patients in the training and test datasets
Variable Training Test P 

valueControl(n = 112) MACE(n = 113) Statistics P-value Control(n = 29) MACE(n = 28) Statistics P-value
Demographic features
Male 70 (62.50%) 69 (61.10%) 0.049 0.824 17 (58.60%) 18 (64.30%) 0.193 0.661 0.959
Age, years 60.50 ± 9.31 59.97 ± 9.07 0.430 0.830 57.76 ± 9.22 59.82 ± 10.70 0.597 0.597 0.588
BMI, kg/m2 26.00(24.00, 

28.00)
26.00(23.00, 
27.00)

-0.747 0.455 25.00(23.50, 
27.00)

25.00(24.00, 
27.00)

-0.314 0.754 0.211

Cardiovascular risk factors
Hypertension 78 (69.60%) 78 (69.00%) 0.010 0.920 22 (75.90%) 23 (82.10%) 0.338 0.561 0.152
Hyperlipidemia 12 (10.70%) 11 (9.70%) 0.059 0.808 2 (6.90%) 3 (10.70%) 0.259 0.967 0.744
Diabetes 43 (38.40%) 47 (41.60%) 0.240 0.624 14 (48.30%) 7 (25.00%) 3.317 0.069 0.663
Smoking 38 (33.90%) 37 (32.70%) 0.036 0.850 6 (20.7%) 14 (50.00%) 5.373 0.151 0.802
Medications
ß-blocker 4 (3.60%) 7 (6.20%) 0.832 0.362 2 (6.90%) 3 (10.70%) 0.002 0.967 0.258
ACE-I/ARB1 28 (25.00%) 29 (25.70%) 0.013 0.909 9 (31.10%) 5 (17.90%) 1.335 0.248 0.905
Ca2+ 33 (29.50%) 31 (27.40%) 0.114 0.736 7 (24.10%) 16 (57.10%) 6.447 0.011 0.082
Statin 12 (10.70%) 20 (17.70%) 1.077 0.134 8 (27.60%) 5 (17.90%) 0.766 0.381 0.300
Antiplatelet 12 (11.43%) 14 (13.33%) 2.249 0.675 6 (20.70%) 4 (14.30%) 0.404 0.525 0.529
Lipids, mmol/l
CHOL 4.26 (2.74,4.93) 4.81 (3.82,5.68) -4.397 < 0.001* 4.46 (3.63,5.19) 5.72 (4.31,6.84) -3.129 0.002* 0.021*
TG 1.40 (0.97,1.89) 1.39 (1.04,2.46) -2.116 0.034* 1.26 (1.03,1.67) 2.14 (1.71,3.84) -4.302 < 0.001* 0.010*
HDL-C 1.05 (0.91, 1.25) 1.08 (0.88, 1.40) -0.980 0.327 1.15 (0.85,1.38) 1.06 (0.88, 1.35) -0.391 0.696 0.629
LDL-C 2.36 (1.38,2.83) 2.81 (2.07,3.63) -4.999 < 0.001* 2.73 (2.01,3.10) 3.24 (2.34,4.14) -2.259 0.024* 0.041
Inflammatory markers
WBC count, *109/l 6.63 (5.70, 7.90) 7.20 (5.65, 8.40) -1.396 0.163 6.20 (5.10, 7.86) 7.35 (6.00, 8.38) -3.162 0.002* 0.075
hs-CRP, mg/l 2.60 (0.90, 4.70) 3.60 (2.50, 4.65) -2.277 0.023* 1.80 (0.70, 3.51) 3.70 (2.75, 4.57) -2.172 0.030* 0.464
MACE major adverse cardiac event, BMI body mass index, ACE-I angiotensin converting enzyme inhibitor, ARB angiotensin receptor blocker, Ca2 + calcium channel 
blocker, CHOL total cholesterol, TG triglycerides, HDL-C high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, WBC white blood cell, hs-CRP 
high-sensitivity C-reactive protein, UA unstable angina

*indicated P < 0.05 with significance

Table 2 The exact events of MACEs in the training and test 
datasets
MACE 
events, n 
(%)

Total
(n = 141)

Training 
dataset
(n = 113)

Test 
dataset
(n = 28)

X2 P

UA 112 (79.4) 93 (82.3) 19 (67.9) 2.865 0.090
MI 26 (18.4) 18 (15.9) 8 (28.6) 2.385 0.123
Death 3 (2.1) 2 (1.8) 1 (3.6) 0.000 1.000
OR odds ratio, CI confidence interval, LDL-C low-density lipoprotein cholesterol, 
WBC white blood cell, TG triglycerides
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markers, the univariate analysis found that total choles-
terol (CHOL), triglycerides (TG), low-density lipopro-
tein (LDL-C), and high-sensitivity C-reactive protein 
(hs-CRP) were significantly associated with MACE in the 
training dataset (P < 0.05).

Feature selection and modeling
Clinical factor selection and clinical model building
Multivariate logistic regression analysis of the clinical 
characteristics revealed that LDL-C, hs-CRP, and TG 
were significant predictors of MACE (P < 0.05) in the 
training dataset. The Cli-model was established based on 
selected risk factors.

Radiomics feature selection and radiomics model building
After removing the redundant features using Spearman’s 
correlation analysis, 38 features from the RCA, 34 fea-
tures from the LAD, 34 features from the LCX, and 31 
features from the PCAT remained and were identified 
by the LASSO algorithm to select the strongest features 
with significant value for predicting MACE. After the 
LASSO analysis, 15, 9, 7, and 15 features remained (Sup-
plementary Materials) for RCA, LAD, LCX, and PCAT 
respectively, to construct their respective models.

Overall model building
Finally, the selected clinical risk factors and the radiomics 
features of the three coronary adipose tissue (RCA, LAD, 
and LCX) were incorporated into an overall model.

Performance evaluation
Discriminative degree
ROC curves for each model and ML algorithms are 
shown in the training (Fig.  3a) and test (Fig.  3b) datas-
ets (Supplementary Table S2). The radiomics model con-
structed using the SVM method demonstrated the best 
performance, thus we compared the prediction ability of 
different models based on the SVM method.

The Cli-model had AUCs of 0.752 and 0.706 in the 
training and test datasets, respectively. The PCAT-model, 
which integrated the RCA, LAD, and LCX features 
exhibited superior predictive performance than that of 
the RCA-model, LAD-model, and LCX-model alone with 
AUCs of 0.764 and 0.723 in the training and test datasets, 
respectively (Table 3). The RCA-model alone performed 
better than both the LAD-model alone and LCX-model 
alone, with AUCs of 0.706, 0.679, and 0.651, respec-
tively, in the training dataset and 0.675, 0.664, and 0.623, 
respectively, in the test dataset. And the stratified analysis 
showed the scores of three major coronary vessels were 
not affected by the tube voltage (Supplementary Table 
S3). The overall model improved significantly after incor-
porating the clinical factors and radiomics features, with 
AUCs of 0.828 and 0.797 in the training and test datasets, 

respectively. ROC curves of both the training and test 
datasets are shown in Fig.  4. The accuracy, sensitivity, 
specificity, PPV, and NPV of each model are summarized 
in Table 3. The DeLong test showed that the AUCs of the 
training and test groups were not significantly different, 
with P > 0.05 for the Cli-model, PCAT-model, and overall 
model.

Calibration degree
The calibration curve demonstrated good fitness of the 
agreement between the training and test sets of the over-
all model (Fig. 5). The Hosmer-Lemeshow test showed no 
significant difference between the predictive probabilities 
of MACE and the actual probabilities (all P > 0.05), which 
demonstrated good calibration.

Clinical usefulness
After multivariate logistic regression analysis, the deci-
sion curves of the overall model in both the training 
and test sets are shown in Fig. 6 and were used to deter-
mine whether the models provided high net benefit for 
patients with CAD. The DCA demonstrated that for pre-
dicting MACE in patients with CAD, the overall model 
had an excellent overall net benefit within the majority of 
reasonable threshold probabilities.

Discussion
In this study, we built an overall model that comprehen-
sively incorporated clinical risk factors (TG, LDL-C, and 
hs-CRP) and radiomics features (based on the PCAT sur-
rounding the RCA, LAD, and LCX) to predict MACE 
within 3 years. The model outperformed the clinical fac-
tor-only and radiomics-only models in predicting MACE. 
Moreover, the integration of the PCAT surrounding the 
three main coronary arteries revealed higher perfor-
mance of the PCAT-model than that of the RCA-model, 
LAD-model, or LCX-model alone. Furthermore, the 
PCAT surrounding the RCA demonstrated better perfor-
mance than that surrounding the LAD or LCX.

In patients with CAD, predicting the risk of coronary 
artery adverse events is more important than assessing 
the degree of luminal stenosis. The relationship between 
inflammation and vulnerable plaque is well-documented 
in the literature [18–20]. Recently, Antonopoulos et al. 
established a link between PCAT inflammation and CT 
attenuation in a landmark study [10]. PCAT studies have 
shown that both pan-coronary and specific lesion inflam-
mation are associated with high-risk lesions [12, 21] and 
adverse cardiac events [11, 22]. Moreover, the predictive 
value of perivascular FAI was reported in the CRISP-CT 
study, which found that although FAI is a strong predic-
tor of all-cause and cardiac mortality, it loses its predic-
tive value in patients whose treatment was initiated with 
statins and aspirin after CCTA, which suggests that the 
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risk identified by FAI is modifiable [11]. Thus, additional 
biomarkers are required to detect permanent changes in 
PCAT composition, which include fibrosis and microvas-
cular remodeling [23, 24]. Radiomics enables the quan-
tification of morphological features that are difficult to 
discern by the naked eye [25, 26].

Oikonomou et al. [27] were the first to use a radiotran-
scriptomic method to quantify a CT radiomics profile of 
adipose composition, which was subsequently linked to 
the expression of genes that characterize inflammation, 

fibrosis, and vascularity. They put forward a new artifi-
cial intelligence-powered imaging biomarker, the Fat Rra-
diomics Profile (FRP), and showed that FRP significantly 
improved the risk prediction of MACE beyond conven-
tion risk stratification. Our results are in line with these 
findings, and the number of adverse events in our study 
was relatively large and we comprehensively consid-
ered the radiomics features of adipose tissue surround-
ing the three main vessels. Shang et al. recently reported 
a CCTA-based radiomics characterization of PCAT 

Fig. 3 The ROC curves of the machine learning algorithms with different models in the training (A) and test dataset (B)
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surrounding target lesions and significant plaque predic-
tor to predict acute coronary syndrome [28]. In contrast, 
we automatically segmented and extracted radiomics 
features of PCAT surrounding the three proximal coro-
nary arteries, and the clinical endpoint included patients 
who died that could respond more comprehensively to 
MACE. In a prospective case-control study, Lin et al. 
reported that patients with acute MI exhibit a PCAT 
radiomics phenotype that is distinct from that of patients 
with stable or no CAD [16]; however, only RCA was con-
sidered and MACE was not predicted. Our study focused 
on PCAT measurements of the three coronary arteries 
and indicated that RCA has the highest prediction abil-
ity for MACE and LCX has the poorest. These discrepant 
findings may be due to differences in anatomy and sur-
rounding tissues. The proximal RCA has an abundance of 
surrounding adipose tissue and an absence of confound-
ing non-fatty structures, such as major side branches, 
coronary veins, and the myocardium [10, 29]. Compared 
with RCA and LAD, the anatomical variation and distor-
tion of LCX are relatively larger, and it is surrounded by 
less adipose tissue. Furthermore, the predictive efficiency 
was further improved after integrating the RCA, LAD, 
and LCX. This may be because the radiomics features of 
PCAT surrounding the LAD and LCX provide additional 
information.

In our study, radiomics features of PCAT were auto-
matically measured in CCTA images using dedicated 
software, without the need for extra image acquisition 
or radiation exposure. Moreover, the clinical risk factors 
are those that are readily available and routinely collected 
from medical history.

Our study has several limitations. First, our retrospec-
tive study was a preliminary study that was performed 
in a single center using the same CT scanner with a 
relatively small sample size. It is well-established that 
scanners and protocols vary among different hospitals. 
Several studies have shown that imaging parameters, 
reconstruction settings, and segmentation algorithms 
affect radiomics signature of lesions. Thus, the gener-
alizability of the model may be affected [30–32]. There-
fore, further studies in a larger population with samples 
acquired on different scanners are warranted to verify the 
reproducibility and robustness of our predictive models. 
Second, our study was a case-control study; causal infer-
ences are limited. In addition, this is a ‘hypothesis gener-
ating’ research; thus, our results and conclusions need to 
be validated in a real-world setting.

In conclusion, the CCTA-based radiomics model of 
PCAT, integrating the three major proximal coronary 
arteries, was superior to that of RCA, LAD, and LCX 
alone in predicting MACE within 3 years. Compre-
hensively incorporating radiomics features and clinical 
factors contribute to improve the risk stratification of Ta
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Fig. 5 The calibration curves of overall model in the training and test dataset. The closer the calibration curve is to the diagonal line, the higher the 
calibration degree of the model

 

Fig. 4 The ROC curves of overall model for predicting MACE in the training and test dataset

 



Page 10 of 11Zhang et al. BMC Medical Imaging          (2024) 24:117 

patients with CAD. Adding radiomics analysis of PCAT 
to the clinical cardiovascular risk factors can provide 
incremental prognostic value without any additional 
financial burden or radiation dose to patients.
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