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Abstract
Objective To develop a nomogram based on tumor and peritumoral edema (PE) radiomics features extracted from 
preoperative multiparameter MRI for predicting brain invasion (BI) in atypical meningioma (AM).

Methods In this retrospective study, according to the 2021 WHO classification criteria, a total of 469 patients with 
pathologically confirmed AM from three medical centres were enrolled and divided into training (n = 273), internal 
validation (n = 117) and external validation (n = 79) cohorts. BI was diagnosed based on the histopathological 
examination. Preoperative contrast-enhanced T1-weighted MR images (T1C) and T2-weighted MR images (T2) 
for extracting meningioma features and T2-fluid attenuated inversion recovery (FLAIR) sequences for extracting 
meningioma and PE features were obtained. The multiple logistic regression was applied to develop separate 
multiparameter radiomics models for comparison. A nomogram was developed by combining radiomics features and 
clinical risk factors, and the clinical usefulness of the nomogram was verified using decision curve analysis.

Results Among the clinical factors, PE volume and PE/tumor volume ratio are the risk of BI in AM. The combined 
nomogram based on multiparameter MRI radiomics features of meningioma and PE and clinical indicators achieved 
the best performance in predicting BI in AM, with area under the curve values of 0.862 (95% CI, 0.819–0.905) in the 
training cohort, 0.834 (95% CI, 0.780–0.908) in the internal validation cohort and 0.867 (95% CI, 0.785–0.950) in the 
external validation cohort, respectively.

Conclusions The nomogram based on tumor and PE radiomics features extracted from preoperative multiparameter 
MRI and clinical factors can predict the risk of BI in patients with AM.
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Introduction
Atypical meningioma (AM), one of 15 subtypes of 
meningioma, is classified as a WHO grade 2 tumor with 
a certain degree of aggressiveness, with an invasiveness 
between that of benign and malignant meningioma; it 
accounts for approximately 24.5% of all meningiomas 
[1], and it has a higher risk of postoperative recurrence 
than WHO grade 1 meningiomas [2–4]. Brain invasion 
(BI) refers to the presence of meningioma tissue in the 
adjacent brain tissue without a separate connective tis-
sue layer and tumor cells infiltration into the brain paren-
chyma in irregular tongue-like projections without an 
intervening pia mater [2, 5]. BI was clarified in the 2016 
revision of the CNS WHO 4 classification as an indepen-
dent histological criterion for the diagnosis of AM [6]. 
The 2021 WHO CNS 5, the latest revision, emphasises BI 
as a pathological diagnostic criterion for AM and applies 
to any potential subtype [7].

BI in meningiomas has a distinct clinical significance 
and is independently associated with tumor progression, 
recurrence and poor prognosis [2, 8–11]. The presence of 
BI is closely related to the choice of surgical technique, 
such as the application of intraoperative navigation, 
expansion of surgical excision range, etc [12, 13]. . BI 
makes surgery far more difficult and may have negative 
implications on functional outcome. In addition, BI is a 
risk factor for preoperative epileptic seizure and postop-
erative bleeding [14–16]. Therefore, accurately identify-
ing BI in meningioma is of important clinical significance. 
AM is more likely to recur and has a worse prognosis 
than WHO grade 1 meningioma [17]. Additionally, the 
prevalence of AM has increased to 20–35% following 
the use of BI as an independent diagnostic criterion for 

the condition [17, 18], necessitating studying AM as a 
distinct research object. Currently, the gold standard for 
the diagnosis of BI is the histopathological examination, 
but this is an invasive procedure that cannot capture the 
associated changes in real time. It is therefore important 
to develop practical means to prospectively and noninva-
sively determine BI in AM.

Several previous studies explored the correlation 
between BI and imaging features, such as peritumoral 
edema (PE), enhanced heterogeneity and irregular 
tumor shape, which were the independent risk predic-
tors of BI [19–23]. Radiomics is an emerging image pro-
cessing method developed in recent years that allows 
high-throughput extraction and quantitative analysis 
of radiomics features in images that cannot be identi-
fied by the naked eye [24, 25]. Although there are several 
radiomics studies on BI prediction of meningiomas [12, 
26], there is a lack of radiomics studies on BI prediction 
of atypical meningiomas. Since the imaging features of 
atypical meningiomas are obviously different from those 
of meningiomas, it is necessary to develop a special 
radiomics study to establish a prediction model of BI for 
atypical meningiomas.

Therefore, using multicentre data, the aim of this study 
was to analyze the MRI-based radiomics features of AM 
tumors and PE, to develop a nomogram for predicting BI 
in AM patients, and to compare the predictive perfor-
mance of different models.

Materials and methods
Patients
This retrospective study was approved by the Medical 
Ethics Committee of three medical centres, which waived 

Fig. 1 Workflow of patient selection WHO: World Health Organization
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the need for written informed consent from the patients. 
From the perspective of research design, we planed to 
include 3 radiomics scores (R-scores) and 6 clinical char-
acteristics, to construct a logistic model. According to 
the 10 events per variable empirical principle, at least 90 
positive and negative samples would be include into the 
training set.With a ratio of 7:3 for total sample, the total 
sample size should be greater than 258. From July 2016 
to July 2022, 1382 patients with pathologically confirmed 
AM from medical centre 1 (Beijing Tiantan Hospital, 
Capital Medical University) were initially considered, and 
390 patients with AM were finally included in the study. 
The detailed inclusion/exclusion criteria and enrolment 
process are shown in Fig. 1. In this study, the pathologi-
cal samples were uniformly diagnosed with BI using light 
microscopy. BI was defined as the presence of adjacent 
intracerebral meningioma tissue without a separate con-
nective tissue layer, with an appearance described as “an 
irregular tongue-like protrusion of tumor cells infiltrat-
ing the underlying brain parenchyma without an inter-
vening pia mater” [2, 5], and the WHO classification was 
recorded; patients without BI were analysed by a combi-
nation of pathology reports and surgical records. Patients 
from centre 1 were randomly divided into a train-
ing cohort (n = 273) and an internal validation cohort 
(n = 117) at a ratio of 7:3 using the DeepWise Multimodal 

Research Platform version 2.5.1 (http://keyan.deepwise.
com). A total of 79 AM patients from medical centre 2 
(SanBo Brain Hospital, Capital Medical University) and 
centre 3 (Shaoxing Second Hospital) were collected as 
an external validation cohort. All data is based on one 
MRI which is the most recent MRI examination within 2 
weeks before surgery. Representative images of multipa-
rameter MRI and histopathology are shown in Fig. 2.

MR image acquisition and segmentation
Two radiologists with more than 10 years of experience 
in neuroimaging independently interpreted the tumor 
location (skull base/non-skull base) on preoperative 
MRI. Inconsistent results were resolved by consultation; 
neither radiologist had any knowledge of the pathology 
results nor was involved in the subsequent analysis. A 
diagnostic radiologist with more than 10 years of expe-
rience used the open source software 3D-slice (version 
5.0.3, https://www.slicer.org) to manually delineate the 
volume of interest (VOI) of the tumor along the border 
on contrast-enhanced T1-weighted MR (T1C) images 
and T2-weighted MR (T2) images independently, and 
both the tumor and PE were outlined on T2-fluid attenu-
ated inversion recovery (FLAIR) images. After record-
ing the volumes of tumors on the T1C and T2 images, to 
ensure the reliability of the data, the average of the two 
was taken as tumor volume (VTumor), the volume outlined 
on the FLAIR images minus the volume of the tumor was 
considered as peritumoral edema volume (VPE), and VPE 
was divided by VTumor to obtain the peritumoral edema 
index (PEI = VPE/VTumor) [27, 28]. In our study, the clinical 
factors included clinical parameters (sex, age) and imag-
ing parameters (tumor location, VTumor, VPE and PEI). The 
detailed scanning protocol and parameters are shown in 
Supplementary A.

Image preprocessing
After manual separation of the tumor and PE using 3D 
Slicer (version 5.0.3, http://www.slicer.org), to reduce 
the variation in images acquired by different MR scan-
ners, we normalised the T1C, T2 and FLAIR sequence 
images using z score normalisation after manually seg-
menting the VOI to obtain a standard normal distribu-
tion of image intensities while resampling all voxels to 
1.0 × 1.0 × 1.0 mm3. Feature discretization was performed 
using bin width: 25. To ensure the accuracy of the VOI, 
40 patients were randomly selected from the training 
cohort, and the VOI on the FLAIR sequence images were 
outlined again by the former and another radiologist in 
the same way as described above. Then, the inter-/intra-
class correlation coefficients (ICCs) were used to evaluate 
the consistency between the VOI of the 40 patients and 
those outlined by the previous doctors. Features were 
extracted separately according to the outlined VOI to 

Fig. 2 A 50-year-old female, presented with a tic of limbs, from centre 3. 
A mass is located in the right frontal lobe, which is diagnosed as atypi-
cal meningioma (AM) by pathological examination. (A) Axial T1-weighted 
MR images (T1C) show that the tumor and brain tissue are of equal in-
tensity with unclear boundaries. (B, C) Axial T2-weighted MR images (T2) 
and T2-fluid attenuated inversion recovery images (FLAIR) show the equal 
intensity of the tumor and brain tissue, accompany by a large amount of 
peritumoral edema (PE), and the edema boundary is clearly displayed. (D) 
The T1C show that the tumor boundary is not smooth and the tumor-
brain interface is blurred. (E) Pathological HE staining (10 × 10 magnifica-
tion): the patient is diagnosed as AM with brain invasion (BI). Arrows show 
tumor tissue infiltrating into brain tissue
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determine and assess the reliability between the VOI out-
lined by the same outliner at different times and between 
the VOI outlined by different outliners. High reproduc-
ibility was indicated when the mean ICCs of all features 
was > 0.75.

Radiomics feature extraction and selection
We used the DeepWise Multimodal Research Platform 
version 2.5.1 (http://keyan.deepwise.com) with the 
Python PyRadiomics (version 3.0.1) and scikit-learn (ver-
sion 0.22) packages as radiomics feature extraction and 
data analysis tools for this study. More details about fea-
ture extraction and selection are shown in Supplemen-
tary B.

Model construction and validation
Using the radiomics score (R-score) of the tumor and 
PE features obtained from multiparameter MRI after 
least absolute shrinkage and selection operator (LASSO) 
regression screening and calculation, T1C, T2, FLAIR 
single models were developed in the training cohort. 
In the process of parameter adjustment, the optimal 
hyper-parameters were selected by using fivefold cross-
validation and and grid search for the training cohort. 
Then, the R-scores of the T1C, T2 and FLAIR features 
were analysed by univariate and multivariate logistic 
regression, meaningful R-scores were selected and used 
to develop the fused radiomics model. The above four 
radiomics models were then independently verified in 
the internal and external validation cohorts. The subject 
ROC curves of each model were plotted, and the area 

under the ROC curve (AUC), accuracy (ACC), sensitivity 
(SEN), specificity (SPEC), positive predictive value (PPV) 
and negative predictive value (NPV) were calculated. The 
predictive performance of each model was evaluated and 
compared to determine the optimal model for predicting 
BI in AM patients.

The clinical characteristics of all included patients were 
analysed by univariate analysis and multivariate logistic 
regression to identify clinical risk factors significantly 
associated with a prediction of BI and construct clinical 
prediction models in the training cohort. Furthermore, 
the identified clinical factors were introduced into multi-
variate logistic regression along with the multiparameter 
R-scores to construct a comprehensive prediction model. 
The clinical, fused radiomics and comprehensive models 
were then compared in terms of their predictive efficacy 
for BI in AM, and the models were independently vali-
dated in the internal and external validation cohorts.

Based on the results of the study, a clinical and 
radiomics nomogram of the optimal prediction model 
that was clinically meaningful was constructed, accu-
rately predicting the likelihood of BI occurring in AM 
patients preoperatively. Figure  3 represents a radiomics 
flow chart of the study.

Statistical methods
Continuous variables are expressed as the mean ± stan-
dard deviation, and categorical variables are expressed 
as frequencies (percentages). ANOVA (continuous vari-
ables) and the chi-square test (categorical variables) were 
used for data processing. The two-independent sample 

Fig. 3 Flowchart of the radiomics study. First, data were collected, including contrast-enhanced T1-weighted MR images (T1C), T2-weighted MR images 
(T2) and T2-fluid attenuated inversion recovery (FLAIR) images, followed by manual tumor segmentation on the T1C and T2 sequences and manual 
tumor + PE segmentation on the FLAIR sequence. Second, the tumor and PE radiomics features were extracted, including first-order, shape, texture and 
filter features. Third, the least absolute shrinkage and selection operator (LASSO) was used to select the optimal features. Finally, T1C, T2, FLAIR and fused 
radiomics models were established to predict brain invasion in atypical meningioma patients, and their predictive performance was compared
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t test was used for variables with normal distributions, 
while the Wilcoxon signed-rank test was used for vari-
ables with a skewed distribution. The DeLong test was 
used to compare the ROC curves among the different 
models. p < 0.05 was considered to indicate statistical sig-
nificance. The Deepwise Multimodal Research Platform 
version 2.5.1 (https://keyan.deepwise.com) was used as 
statistical analysis tool for this study.

Results
Clinical data
A total of 390 AM patients from centre 1 were enrolled 
in this study, including 225 (57.69%) patients with BI and 
165 (42.31%) patients without BI. These patients were 
then divided into two cohorts at a ratio of 7:3, with 273 
comprising the training cohort, including 157 patients 
with BI and 116 patients without BI, and 117 comprising 
the internal validation cohort, which included 68 patients 
with BI and 49 patients without BI. A total of 79 AM 
patients from centres 2 and 3 were used as the external 
validation cohort, including 37 patients with BI and 42 
patients without BI. In the training cohort, patients with 
BI were statistically older (p = 0.046), but no such differ-
ence was observed in the internal and external validation 
cohorts. Sex and tumor location were not significantly 
different in the training and validation cohorts, and 
VTumor was statistically significant in the external valida-
tion cohorts and not significantly different in the training 
and internal validation cohorts. In the training, internal 
and external validation cohorts, VPE (p < 0.01) and PEI 
(p < 0.01) were significantly higher in the patients with 
BI than in those without BI. The baseline characteristics 

of the patients in the training and validation cohorts are 
shown in Table 1.

Clinical predictors of BI
Sex, VPE and PEI were included in the multivariate logis-
tic regression analysis (Supplementary C), showing that 
VPE (p < 0.001, OR = 1.018, 95%CI: 1.008–1.027) and PEI 
(p = 0.035, OR = 1.333, 95%CI: 1.020–1.743) were signifi-
cantly different between patients with and without BI 
and positively correlated with BI. After including VPE and 
PEI, the clinical model achieved AUCs of 0.818 (95%CI: 
0.765–0.870), 0.796 (95%CI: 0.703–0.857) and 0.773 
(95%CI: 0.666–0.881) were obtained in the training, 
internal, and external validation cohorts, respectively.

Selection of radiomics features
A total of 1409 T1C tumor features, 1409 T2 tumor 
features, and 1409 FLAIR tumor and PE features were 
extracted in this study. The ICCs of the outlines gener-
ated using the FLAIR images were excellent, with ICCs of 
0.894 ± 0.175 and 0.850 ± 0.182, respectively. After Pear-
son correlation analysis and LASSO regression analysis, 
nine features from FLAIR, three features from T2 and 
two features from T1C images were selected. The heat-
map of the Pearson correlation analysis for the selected 
features is shown in Supplementary D. As shown in the 
figure, the correlation between the selected radiomics 
features was low, and the feature redundancy was mini-
mal. The analysis and weights of the selected radiomics 
features are shown in Table  2, which also shows that 
tumor and PE radiomics features based on the FLAIR 
sequence were predominant.

Table 1 Baseline characteristics of atypical meningioma patients in the training and validation cohorts
Variable Training cohort (N=273) P value Internal validation cohort 

(N=117)
P value External validation cohort 

(N=79)
P value

Noninva-
sion
(N=116)

Invasion
(N=157)

Noninvasion
(N=49)

Invasion
(N=68)

Noninvasion
(N=42)

Invasion
(N=37)

Sex, (No., %) 0.458 0.408 0.105
Female 62 (53.4%) 91 (58.0%) 29 (59.2%) 35 (51.5%) 28 (66.7%) 18 (48.6%)
Male 54 (46.6%) 66 (42.0%) 20 (40.8%) 33 (48.5%) 14 (33.3%) 19 (51.4%)
Age (years, 
mean±SD)

51.78±13.87 55.09±13.52 0.046* 53.92±12.53 53.77±12.87 0.949 54.79±13.95 57.30±13.762 0.424

Location (No., 
%)

0.494 0.645 0.263

Non-skull base 72 (62.1%) 93 (59.2%) 26 (53.1%) 39 (57.4%) 22 (52.4%) 24 (64.8%)
Skull base 44 (37.9%) 64 (40.8%) 23 (46.9%) 29 (42.6%) 20 (47.6%) 13 (35.1%)
VTumor (cm3, 
P25,P75)

31.22 
(17.04-61.88)

36.16 
(19.50-71.64)

0.903 33.55 
(16.08-59.37)

35.07 
(18.54-72.02)

0.454 27.96 
(9.29-46.66)

60.93 
(28.50-82.37)

0.002**

VPE (cm3, P25,P75) 8.828 
(0.37-34.49)

65.66 
(25.68-102.20)

<0.001** 7.01 
(0.79-33.90)

47.97 
(23.19-115.01)

<0.001** 3.86 (0.09-36.55) 47.84 
(19.40-88.06)

<0.001**

PEI (P25,P75) 0.24 
(0.02-0.78)

1.57 (0.72-2.88) <0.001** 0.17 
(0.02-0.64)

1.42 (0.47-3.66) <0.001** 0.15(0.01-0.86) 0.84 
(0.42-1.39)

0.002**

* p<0.05, ** p<0.01 VTumor, Tumor volume; VPE, Peritumoral edema volume; PEI, Peritumoral edema index

https://keyan.deepwise.com
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Construction and comparison of radiomics models
The R-scores of the T1C, T2, and FLAIR (T1C-score, 
T2-score and FLAIR-score) tumor and PE radiomics fea-
tures were calculated using the corresponding formulae, 
and multivariate logistic regression was used to construct 
the T1C, T2, FLAIR and fused radiomics models sepa-
rately. A comparison of the models is shown in Fig. 4(A-
C). A comparison of the decision curves of the models is 
shown in Fig. 5(A-C).

The results showed that the AUC of the model built 
from the tumor and PE radiomics features extracted from 
the FLAIR sequence in predicting BI in AM was signif-
icantly higher than that of the models based on the T2 
and T1C tumor features in the training cohort (FLAIR 
model AUC = 0.851, 95%CI: 0.806–0.897), internal valida-
tion cohort (AUC = 0.819, 95%CI: 0.742–0.898) and exter-
nal validation cohort (AUC = 0.820, 95%CI: 0.728–0.913). 
Furthermore, there was a significant difference (DeLong 
test, p < 0.05) among the AUCs of the three models; 
ranked according to p value, FLAIR > T2 > T1C.

The T1C-score, T2-score, and FLAIR-score were 
included in univariate and multivariate logistic regres-
sion analyses (Supplementary E). The results of multiple 
logistic regression showed that the T2-score and FLAIR-
score were significantly different between patients with 
and without BI (p = 0.005 and p < 0.001, respectively) and 
positively correlated with BI. The T1C-score was not sig-
nificantly different between the two groups (p = 0.609); 
therefore, only the T2-score and FLAIR-score were ana-
lysed by multivariate logistic regression to construct a 
fused radiomics model. The AUC of the fused radiomics 
model was higher than that of the FLAIR model alone in 
the training cohort (AUC = 0.859, 95%CI: 0.815–0.902), 
internal validation cohort (AUC = 0.825, 95%CI: 0.752–
0.904), and external validation cohort (AUC = 0.862, 
95%CI: 0.777–0.946). In addition, the ACC, SPEC, PPV 

and NPV of the fused radiomics model were higher than 
those of the single radiomics models in both the training 
and validation cohorts.

Comparison of clinical, fused radiomics and 
comprehensive models
Combining VPE, PEI, T2-score and FLAIR-score, a com-
prehensive model was constructed using multivariate 
logistic regression. The ROC curves of the six models 
are shown in Fig. 4, and the decision curves are shown in 
Fig. 5. The AUCs, ACCs, SENs, SPECs, PPVs and NPVs of 
the six models are shown in Table 3. The comparison of 
AUC among the clinical, radiomics and comprehensive 
models are shown in Fig. 6.

The results show that the comprehensive model was 
significantly superior to the clinical model (p = 0.030 in 
the training cohort, p = 0.021 in the external validation 
cohort) and had the highest AUC in predicting BI in AM 
patients, superior to that of the clinical model (p = 0.029 
in the training cohort, p = 0.042 in the internal validation 
cohort and p = 0.020 in the external validation cohort) 
but not significantly different from that of the fused 
radiomics model (p > 0.05), which had the highest ACC, 
SEN, PPV, NPV and AUC in both the training and valida-
tion cohorts.

Development of the nomogram
A clinical and radiomics nomogram for preoperatively 
predicting the likelihood of BI in AM patients was con-
structed by combining VPE, PEI, T2-score and FLAIR-
score, as seen in Fig. 7A, where each risk factor is labelled 
in quantitative form, and a total score is calculated based 
on the corresponding score for each risk factor for each 
AM patient to predict the risk of developing BI. The 
higher the total score is, the greater the risk of develop-
ing BI. Additionally, calibration curves were plotted for 

Table 2 Statistics of all selected radiomics features
Feature Coef Mean Standard deviation P value Test
original_shape_Sphericity_Flair 0.1527 0.5588 0.1089 <0.001** t
log-sigma-1-0-mm-3D_glszm_GrayLevelNonUniformity_Flair 0.6828 57.5973 41.7664 <0.001** W
log-sigma-3-0-mm-3D_glszm_ZoneEntropy_Flair 0.2371 3.9044 0.6087 <0.001** W
log-sigma-2-0-mm-3D_glszm_ZoneEntropy_Flair 0.5451 3.9873 0.5339 <0.001** W
log-sigma-1-0-mm-3D_glrlm_RunEntropy_Flair -0.5881 3.9082 0.1374 <0.001** W
wavelet-LLL_glszm_ZonePercentage_Flair -0.5744 0.0001 0.0002 0.029* t
log-sigma-1-0-mm-3D_glcm_Correlation_Flair 0.5867 0.4739 0.0404 <0.001** W
wavelet-HLL_gldm_DependenceEntropy_Flair 0.4603 5.1823 0.0610 <0.001** W
wavelet-LLH_glrlm_LongRunLowGrayLevelEmphasis_Flair 0.4322 10.3298 1.8539 <0.001** t
log-sigma-5-0-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis_T2 0.2854 1102.4890 326.3752 <0.001** W
log-sigma-5-0-mm-3D_firstorder_90Percentile_T2 0.2267 0.1624 0.1118 <0.001** t
log-sigma-2-0-mm-3D_glcm_Imc2_T2 0.6242 0.7178 0.0309 <0.001** W
log-sigma-1-0-mm-3D_glcm_MCC_T1C 0.2214 0.4755 0.0383 <0.001** W
log-sigma-1-0-mm-3D_glcm_ClusterProminence_T1C 0.2278 0.7736 0.0376 <0.001** t
W, Wilcoxon test; t, t test. * p<0.05, ** p<0.01
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the training, internal and external validation cohorts 
to determine the predictive efficacy of the nomogram 
(Fig. 7B-D). The results show that the prediction curves 
are very close to the reference line, indicating strong 
predictive efficacy. Additionally, we show the confusion 
matrix of the comprehensive model (Fig.  7E-G), which 
reveals that the predicted false negatives and false posi-
tives are low in the training, internal validation and exter-
nal validation cohorts.

Discussion
In our study, the efficacy of MR radiomics features of AM 
tumor and PE in predicting the occurrence of BI in AM 
was compared between radiomics models built from dif-
ferent preoperative MRI sequences, a clinical model, a 
fused radiomics model and a comprehensive model con-
structed from the extracted MRI radiomics features and 
clinical features. The results showed that: (1) the AUC 
of the model built from the tumor and PE radiomics fea-
tures extracted from FLAIR sequences in predicting BI in 

AM was significantly higher than that of the model based 
on the tumor features from the T2 and T1C sequences; 
(2) the radiomics features of PE play an important role in 
predicting BI; (3) PEI is an independent clinical risk fac-
tor in predicting BI in AM; and (4) the combined model 
(VPE, PEI, T2-score and FLAIR-score) showed the best 
performance in preoperatively predicting BI in AM 
patients in the training, internal validation and external 
validation cohorts.

Our study demonstrated that the incidence of BI in 
AM patients was 55.86%, which is higher than the 31.5% 
(95% CI 22.3–42.6%) before the revised criteria for AM 
were released [29–32] and in line with the findings from 
recent studies [8, 33]. The reason for this is that the new, 
revised criteria include BI as an independent, histologi-
cal criterion for diagnosing AM. Formerly WHO grade 1 
meningioma patients were included as having AM once 
the new BI-based criterion was applied to them, result-
ing in an increase of 1–10% in the incidence of AM [23, 
34], as well as an increase in the proportion of BI in AM. 

Fig. 4 Comparison of the ROC curves of the different models (A, B, C) ROC curves of the different radiomics models in the training, internal validation 
and external validation cohorts. The fused radiomics model showed the best diagnostic efficacy among them, with an AUC of 0.859 in the training cohort 
(A), 0.825 in the internal validation cohort (B) and 0.862 in the external validation cohort (C). (D, E, F) ROC curves of the clinical, fused radiomics and com-
prehensive models in the training, internal and external validation cohorts. The comprehensive model showed the best diagnostic efficacy among these 
three models, with an AUC of 0.862 in the training cohort (D), 0.834 in the internal validation cohort (E) and 0.867 in the external validation cohort (F)
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In terms of clinical risk factors for BI in AM, our study 
found that patient sex, age, tumor location, and VTumor 
were not involved, consistent with the findings of several 
studies [8, 29]. In other studies, however, BI was more 
common in older, male meningioma patients and prefer-
entially targeted areas other than the skull base [32, 35]. 
The possible reason for this inconsistency is that most of 
these other studies included all meningiomas and did not 
factor in the WHO classification. Our study showed that 
BI was associated with VPE and PEI, with the probability 
of BI increasing with increased VPE and PEI. Previous 
studies have suggested that PE is an independent predic-
tor of BI [19, 20, 36], consistent with our study. Ong T et 
al. [20] studied BI in 60 meningioma patients and found 
that a larger PE may be associated with an increased inci-
dence of BI. However, when controlling for tumor size, 
no statistically significant differences were found for PEI, 
in contrast to the results of our study.

Previous radiomics studies on predicting BI of meningi-
omas have primarily focused on analyzing the internal of 
the tumor and the tumor-brain interface [12, 26, 33, 36]. 
In this study, we developed a novel analysis by extracting 
the PE radiomics features and combining them with the 
internal features of the tumor. Nine features from FLAIR, 
three features from T2 and two features from T1C images 
were identified, demonstrating the clear preponderance 
of FLAIR sequence features. The results of the ROC 

analysis demonstrate that the AUC of the model con-
structed using tumor and PE radiomics features from the 
FLAIR sequence was significantly higher than that of the 
model based on the T2 and T1C tumor features in pre-
dicting BI in AM, which indicated the important role of 
both tumor and PE features in providing prediction-rele-
vant information. One possible explanation for this find-
ing is that when BI occurs in meningioma, changes also 
occur in the microenvironment surrounding the PE, and 
FLAIR sequences, which are sensitive to water in tissue, 
allow for clear delineation of edema boundaries. Another 
interesting result is that the FLAIR and T2 data proved 
to be more significant than the T1C data in predicting 
scores, this has also prompted us to pay more attention to 
the application of non-enhanced images in meningioma. 
In addition, the fused radiomics model combining FLAIR 
and T2 features outperformed both the single radiomics 
and clinical models. The nomogram constructed by com-
bining VPE, PEI, T2-score and FLAIR-score demonstrated 
the best performance in predicting the occurrence of BI 
in AM patients preoperatively.

Li N et al. [33] conducted a study on 284 WHO grade 
2 meningioma patients to predict BI based on tumor 
and tumor-brain border features.They found that com-
bined clinical and conventional imaging indices had 
a slightly higher AUC than our study. However, the 
tumor-brain interface is not easy to delineate, and the 

Fig. 5 Decision curve analysis for the different models (A, B, C) Decision curves of the T1C, T2, FLAIR and fused radiomics models in the training, internal 
validation and external validation cohorts. (D, E, F) Decision curves of the clinical, fused radiomics and comprehensive models in the training, internal 
validation and external validation cohorts
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inclusion of conventional imaging indicators was over-
represented, increasing the difficulty in implementing 
predictive models. Zhang J et al. [12] used T1C and T2 
sequences to extract the radiomics features of meningi-
oma. They developed a combined clinical-radiomics fea-
tures nomogram for predicting BI in meningiomas, their 
study achieved an AUC of 0.857 in the training cohort 
and 0.819 in the validation cohort. However, it is worth 
noting that the majority of the study population in their 
research consisted of WHO grade 1 meningiomas, which 
may have introduced bias into the construction of the 
predictive models. Additionally, none of the results of the 
above studies had been externally validated. In our study, 
we included the largest number of AM cases compared 
to any published study, and we utilized a simple delin-
eation for radiomics feature extraction and data from 
multiple centers. The AUC was 0.867 in the external vali-
dation cohort, indicating that our model is reliable and 
generalizable to other AM populations.

This study had several limitations. First, our study was 
retrospective, and there might be unavoidable selec-
tion bias. Second, the VOI was manually outlined using 
software, a time-consuming process that needs to be 
fully automated using better software to improve effi-
ciency and avoid human error. Finally, as we retrospec-
tively collected MR images from different centres, there 
were inevitable differences in equipment and scanning 
parameters. We standardised all the images to reduce the 
impact of these differences on the radiomics features, and 
good performance was obtained in the external valida-
tion cohort.

In conclusion, this study developed a predictive clini-
cal and radiomics nomogram based on tumor and PE 
radiomics features extracted from multiparameter MRI, 
highlighting the important role that the radiomics fea-
tures of PE play in predicting BI in AM patients. After 
further validation of data from multiple centers, the 
nomogram developed in this study could maximize the 
predictive accuracy for BI in AM patients in clinical prac-
tice and guide better clinical implementation of surgical 
protocols and personalized patient treatment, helping to 
improve the survival of AM patients.
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Fig. 6 Comparison of AUC among the radiomics, clinical and comprehensive models in the training, internal and external validation cohorts. p < 0.05 was 
considered to indicate statistical significance. * p < 0.05, ** p < 0.01
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Abbreviations
ACC  Accuracy
AM  Atypical Meningioma
AUC  Area Under the Curve
BI  Brain Invasion
CNS  Central Nervous System
FLAIR  T2-Fluid Attenuated Inversion Recovery
ICCs  Inter-/Intraclass Correlation Coefficients
LASSO  Least Absolute Shrinkage and Selection Operator
NPV  Negative Predictive Value

PE  Peritumoral Edema
PEI  Peritumoral Edema Index
PPV  Positive Predictive Value
R-scores  Radiomics Scores
SEN  Sensitivity
SPEC  Specificity
T1C   Contrast-enhanced T1-weighted MR image
T2  T2-weighted MR image
VOI  Volume Of Interest
VTumor  Tumor Volume

Fig. 7 Nomogram of the comprehensive model and its calibration curves and confusion matrixes (A) The comprehensive model was constructed to 
develop the nomogram. (B, C, D) Calibration curves of the comprehensive model-based nomogram in the training, internal validation and external valida-
tion cohorts. (E, F, G) Confusion matrixes of the comprehensive model in the training, internal validation and external validation cohorts
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