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Abstract
Background Esophageal cancer, a global health concern, impacts predominantly men, particularly in Eastern Asia. 
Lymph node metastasis (LNM) significantly influences prognosis, and current imaging methods exhibit limitations 
in accurate detection. The integration of radiomics, an artificial intelligence (AI) driven approach in medical imaging, 
offers a transformative potential. This meta-analysis evaluates existing evidence on the accuracy of radiomics models 
for predicting LNM in esophageal cancer.

Methods We conducted a systematic review following PRISMA 2020 guidelines, searching Embase, PubMed, and 
Web of Science for English-language studies up to November 16, 2023. Inclusion criteria focused on preoperatively 
diagnosed esophageal cancer patients with radiomics predicting LNM before treatment. Exclusion criteria were 
applied, including non-English studies and those lacking sufficient data or separate validation cohorts. Data extraction 
encompassed study characteristics and radiomics technical details. Quality assessment employed modified Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) tools. Statistical analysis 
involved random-effects models for pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the 
curve (AUC). Heterogeneity and publication bias were assessed using Deek’s test and funnel plots. Analysis was 
performed using Stata version 17.0 and meta-DiSc.

Results Out of 426 initially identified citations, nine studies met inclusion criteria, encompassing 719 patients. These 
retrospective studies utilized CT, PET, and MRI imaging modalities, predominantly conducted in China. Two studies 
employed deep learning-based radiomics. Quality assessment revealed acceptable QUADAS-2 scores. RQS scores 
ranged from 9 to 14, averaging 12.78. The diagnostic meta-analysis yielded a pooled sensitivity, specificity, and AUC 
of 0.72, 0.76, and 0.74, respectively, representing fair diagnostic performance. Meta-regression identified the use of 
combined models as a significant contributor to heterogeneity (p-value = 0.05). Other factors, such as sample size 
(> 75) and least absolute shrinkage and selection operator (LASSO) usage for feature extraction, showed potential 
influence but lacked statistical significance (0.05 < p-value < 0.10). Publication bias was not statistically significant.
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Introduction
Esophageal cancer, ranking seventh globally in incidence 
and sixth in mortality, affects predominantly men, espe-
cially in Eastern Asia, with nearly half a million new cases 
and deaths. The two main subtypes, squamous cell car-
cinoma (LUSC) and adenocarcinoma (LUAD), are asso-
ciated with distinct patterns; SCC may be declining in 
Asia due to economic progress, while AC is on the rise 
in high-income countries, linked to factors like excess 
body weight [1]. Lymph node metastasis (LNM) is a 
pivotal factor in esophageal cancer prognosis, influenc-
ing long-term survival. The complex lymphatic network 
around the esophagus leads to metastases in the abdo-
men, mediastinum, and neck. The diverse patterns of 
LNM in both squamous cell carcinoma and adenocarci-
noma, regardless of the primary tumor location, suggest 
a need for a more tailored and perhaps more aggressive 
approach in both surgical and radiotherapeutic man-
agement of esophageal cancer. The phenomenon of skip 
metastasis and the presence of metastases in non-adja-
cent lymph node stations underscore the complexity of 
lymphatic drainage from the esophagus and the limita-
tions of current staging and treatment paradigms [2]. The 
gold standard for detecting LNM in esophageal cancer 
is histopathological examination of surgically resected 
lymph nodes, providing a definitive diagnosis through 
microscopic analysis of tissue [3]. Although invasive, 
this method is unmatched in accuracy. For non-invasive 
pre-surgical assessment, endoscopic Ultrasound (EUS) 
is highly sensitive for local lymph node evaluation [4], 
while computed tomography (CT) and positron emission 
tomography (PET) scans are crucial for broader staging, 
including distant metastases [5]. Magnetic Resonance 
Imaging (MRI) may also be utilized, but less frequently 
for lymph node assessment [6]. These imaging tech-
niques, though valuable for initial staging and planning, 
have limitations in detecting small LNM, particularly 
micrometastases, as demonstrated by the small median 
sizes of involved lymph nodes and metastatic nests in our 
study. The lower sensitivity of imaging modalities such 
as FDG-PET for detecting small LNMs highlights the 
challenge of relying solely on preoperative imaging for 
accurate nodal staging. Consequently, this underscores 
the need for meticulous surgical assessment and pos-
sibly more extensive lymph node dissection in certain 
cases, even when clinical staging suggests the absence 
of nodal involvement. The discrepancy between clini-
cal and pathological findings emphasizes the potential 

for underestimation of disease spread and the critical 
role of postoperative pathological evaluation in guid-
ing further treatment decisions and improving patient 
outcomes. Therefore, imaging methods cannot substi-
tute the conclusive nature of histopathological exami-
nation post-surgery [7]. Histopathological samples are 
routinely obtained via surgical route, but surgery is no 
longer the preferred choice for treating metastatic esoph-
ageal cancer due to increased risks and poor progno-
sis, especially in patients with advanced metastases [8]. 
Therefore, imaging methods such as endoscopic ultra-
sound, CT, and 2-[fluorine-18]fluoro-2-deoxy-D-glucose 
(FDG)-PET for detecting LNM in esophageal cancer are 
critical since they are less invasive than surgery. Each of 
these modalities has its limitations, and individual stud-
ies suggest they exhibit low to moderate sensitivity and 
moderate to high specificity when assessing lymph node 
status [9]. The integration of artificial intelligence (AI) 
into radiology, propelled by advancements in machine 
learning (ML) and deep learning (DL), has ushered in a 
paradigm shift. This transformation is marked by the 
optimization of image acquisition processes, the stream-
lining of operational workflows, and the enhancement of 
diagnostic precision. ML algorithms, as evident in tools 
like Computer-Aided Diagnosis (CAD), significantly con-
tribute to heightened sensitivity and specificity, reduc-
ing the time needed for interpreting chest X-rays. Deep 
learning models, particularly those built on convolu-
tional neural networks (CNNs), demonstrate exceptional 
proficiency in tasks such as image recognition, prov-
ing invaluable for deciphering intricate medical images. 
Moreover, Radiomics plays a vital role in leveraging data 
to improve diagnostic insights by extracting quantitative 
features from medical images. This process is fundamen-
tal in enhancing our understanding of medical conditions 
through the analysis of specific image characteristics [10]. 
Radiomics, as an analytical method in medical imaging, 
employs sophisticated mathematical analyses to extract 
detailed features from medical images (e.g., CT, MRI, and 
PET), with a primary application focus on oncology [11]. 
Radiomics seeks to transform medical images into data 
that can be mined for valuable insights not easily visible 
to the naked eye. Through the analysis of quantitative 
features, it aims to offer extra details about the inherent 
biology, diversity, and traits of tissues and tumors. The 
extracted information holds potential for diverse medi-
cal applications, especially in oncology, serving diagnos-
tic, prognostic, and predictive purposes [12]. Radiomics 

Conclusion Radiomics shows potential for predicting LNM in esophageal cancer, with a moderate diagnostic 
performance. Standardized approaches, ongoing research, and prospective validation studies are crucial for realizing 
its clinical applicability.
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plays a potential role in improving the staging of esopha-
geal cancer by analyzing texture features from imaging 
modalities. These features, including tumor heterogene-
ity and various measurements, offer additional insights 
beyond conventional staging methods [13]. Radiomics 
outperforms traditional radiological assessments con-
ducted by radiologists in various aspects of cancer diag-
nosis and prognosis. It excels in tasks such as predicting 
tumor invasion and differentiating between malignant 
and benign tumors, offering promising potential for 
accurate prognosis and treatment planning. Radiomics 
models also show efficacy in forecasting metastasis, pro-
viding valuable insights for personalized patient care. 
These findings underscore radiomics’ role in improving 
diagnostic accuracy and guiding clinical decision-making 
in oncology [14]. Numerous meta-analyses have high-
lighted the promising results of the radiomics methods 
for predicting LNM in malignancies of organs such as the 
stomach [15], thyroid [16], breast [17], cervix [18], and 
pancreas [19]. The pooled area under the curve (AUC) 
of these studies fell between 0.70 and 0.90, indicating 
moderate to good diagnostic performance of radiomics 
methods for predicting LNM. Due to the variable diag-
nostic performance of radiomics methods for predict-
ing LNM in different organs, it is necessary to obtain a 
comprehensive standpoint on the accuracy and quality of 
the radiomics studies in esophageal cancer. This objec-
tive can be achieved through a systematic approach and 
meta-analysis. Therfore, this study was designed to inves-
tigate the pooled diagnostic performance and quality of 
the published literature, as well as to provide future per-
spectives for further studies.

Materials and methods
Study design and reporting guidelines
The present study has been conducted following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
analysis (PRISMA 2020) guidelines [20].

Literature search
A systematic literature search of the electronic databases, 
including Embase, PubMed, and Web of Science, was 
performed independently by two reviewers to identify 
relevant studies that predicted lymph node metastasis 
in esophageal cancer using the following terms and their 
equivalents: (Radiomics) AND (Esophageal Cancer) AND 
(Lymph Node Metastasis). The search was updated on 
November 16, 2023. Exclusively, English-language studies 
were taken into account. The updated search terms and 
the results are detailed in Supplementary Materials.

Study selection
PICO (population, intervention, comparison, and out-
come) questions of the study were: (P) population: 

patients preoperatively diagnosed with esophageal can-
cer; (I) intervention: application of radiomics; (C) com-
parison: assessment of radiomics for prediction of LNM 
before treatment; and (O) outcome: measurement of 
diagnostic performance (e.g., sensitivity, specificity, and 
AUC) for predicting LNM after surgery. Inclusion crite-
ria were (a) application of radiomics to predict LNM in 
esophageal cancer, (b) all participants had pathological 
postoperative LNM status (c) sufficient data for calcu-
lating 2 × 2 contingency tables consisting of true positive 
(TP), false positive (FP), false negative (FN), and true 
negative (TN). The exclusion criteria were as follows: (a) 
review papers, case reports, meetings, letters, abstracts, 
editorials, comments, posters, and guidelines; (b) studies 
that did not use radiomics methods for predicting LNM; 
(c) articles with no access; (d) literature published in a 
language other than English; (d) not providing enough 
data for constructing 2 × 2 tables; and (e) studies that not 
used separate validation cohorts.

Data extraction
The citations obtained through database retrieval were 
imported into Endnote software. After removing redun-
dant publications, a thorough examination of titles and 
abstracts was conducted to eliminate literature that did 
not meet the specified inclusion criteria. Following this, 
the complete texts of the remaining studies were carefully 
reviewed to ascertain the definitive inclusion of literature. 
Two authors independently carried out data extraction 
and the evaluation of study quality. The following basic 
data was extracted: name of the first author with the year 
of publication, study origin, design of the study (e.g., ret-
rospective or prospective design), number of centers, 
number of participants in validation cohorts, reference 
standard, image modality, phase of imaging acquir-
ing (for CT scan studies), radiomics approach (texture 
analysis, ML, or DL), and combined clinicopathological 
features. In addition, the following technical information 
was extracted: segmentation method (automatic vs. man-
ual), region of interest (ROI) type (2D vs. 3D), software 
used for feature extraction, number of imaging features 
extracted/selected, type of imaging features extracted, 
modeling algorithm, features reduction algorithm, ICC 
evaluation, and type of cross-validation.

Quality assessment
A modified version of the Quality Assessment of Diag-
nostic Accuracy Studies (QUADAS-2) tool was designed 
to investigate the quality of the included studies and 
questions for each section are detailed in Table S4 (Sup-
plementary Materials) [21]. In addition, the Radiomics 
Quality Score (RQS) tool proposed by Lamblin et al. was 
used to evaluate the methodological quality of radiomics 
studies [22]. QUADAS-2 questions were implemented in 
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the Review Manager software, and diagrams were drawn 
subsequently.

Statistical data analysis
The accumulative values of sensitivity (SENS), specific-
ity (SPEC), diagnostic odds ratio (DOR), positive likeli-
hood ratio (PLR), negative likelihood ratio (NLR), and 
are under the curve (AUC), with their 95% confidence 
intervals (CIs) were generated. Utilizing the random 
effects model, we generated the summary receiver oper-
ating characteristic (SROC) curve and calculated the 
AUC to appraise the diagnostic efficacy of the aggregated 
studies. The AUC values were categorized as indicating 
low (0.5–0.7), fair (0.7–0.8), good (0.8–0.9), and excel-
lent discriminatory power (> 0.9). Coupled forest plots 
were generated to show the pooled value for sensitivity 
and specificity. Cochran’s Q test and Higgins’ I2 statistic 
were calculated to estimate the heterogeneity among the 
studies included in this meta-analysis, with I2 values cat-
egorized as follows: 0 to 25% indicating very low hetero-
geneity, 25 to 50% indicating low heterogeneity, 50 to 75% 
indicating medium heterogeneity, and > 75% indicating 
high heterogeneity. We used Deek’s asymmetry test and 
its funnel plot to investigate publication bias. All p-values 
below 0.05 were considered to be significant. The statisti-
cal analyses in this study were conducted using Stata ver-
sion 17.0 and meta-DiSc. Fagan plots were employed to 
evaluate clinical effectiveness by offering post-test prob-
abilities of LNM while considering pre-test probabilities.

Results
Literature search
An electronic database search identified 426 citations 
with 128 duplicate studies. After screening the titles and 
abstracts of the candidate studies, 261 citations were 
excluded for not meeting the inclusion criteria. A thor-
ough examination of the full texts resulted in the exclu-
sion of 28 additional articles, leaving 9 for inclusion in the 
meta-analysis [23–31]. Figure  1 illustrates the detailed 
search process.

Study characteristics
Table 1 shows full characteristics of the selected studies 
and predictive models. Nine articles consisting of 719 
participants were selected in the quantitative synthesis, 
all retrospectively designed, eight conducted in China 
[23–26, 28–31] and one in the United Kingdom [20]. 
Imaging modalities were CT [23–26, 28–30], PET [27], 
and MRI [31]. Only one study used multi-center data 
[27]. Two studies used deep learning-based radiomics 
(deep-radiomics) for feature extraction [26, 28], and the 
rest of the studies were conventional (machine learning-
based) radiomics [23–25, 27, 29–31]. Five studies com-
bined radiomics and clinical features [26–30]. Manual 

ROI segmentation was performed by seven studies [23–
26, 29–31], and only two studies [27, 28] used the auto-
matic segmentation method. Only one study used 2D 
ROI segmentation [28]. Matlab was the most frequently 
used software for feature extraction (5/9) [24, 25, 27, 28, 
31]. Similarly, the least absolute shrinkage and selection 
operator (LASSO) algorithm was adopted in two-thirds 
of the studies for feature selection [23, 25, 27–30], fol-
lowed by more modern algorithms such as “elastic net” 
[24, 26, 31]. Logistic regression (LR) was the most com-
monly adopted algorithm for building radiomic models, 
and only one study used more advanced machine learn-
ing algorithms such as support vector machine (SVM), 
AdaBoost (Adaptive Boosting), and random forest (RF) 
[28].

Quality assessment
QUADAS-2
Figure  2 shows the quality of the selected studies using 
QUADAS-2 tool, which was completely acceptable, and 
their design was aligned with the signaling questions. 
Only the study by Ding et al. had a high risk of bias and a 
high applicability concern in the patient selection domain 
as it included some patients who received treatment 
before imaging [26].

RQS
The nine studies obtained an average RQS score of 12.78 
and a median score of 12, with individual scores ranging 
from 9 to 14 out of 36 points. The estimated mean score 
was 35%, and the study with the superior rating achieved 
38%. All studies provided/performed detailed image pro-
tocol quality, feature reduction, and discrimination sta-
tistics. On the other hand, none of the studies provided 
a phantom study, prospective study, biological correla-
tion, comparison to the gold standard, cost-effectiveness 
analyses, and open science and data. Multiple segmenta-
tion was not performed in one study [30]. One-third of 
the studies did imaging at multiple points [23, 26, 29]. 
Multivariable analysis (combined with clinical factors) 
was performed in two-thirds of the studies [24, 26–30]. 
Likewise, cut-off analysis was performed only in two 
studies [25, 27]. Eight of the included studies had valida-
tion cohorts and received + 2 points in validation items, 
and one study [27], due to using data for another center, 
received + 3 points. Four studies assessed potential clini-
cal applicability by conducting decision curve analysis 
[23, 24, 29, 30]. Detailed RQS scores of each study are 
provided in Table 2.

Diagnostic meta-analysis
Nine studies (validation cohorts) consisting of 334 
patients with LNM (+) and 385 patients without LNM (-) 
were selected for the quantitative synthesis. The pooled 
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diagnostic indicators with their 95% confidence interval 
(CI) were determined: SENS, 0.72 [95% CI; 0.67–0.77]; 
SPEC, 0.76 [95% CI; 0.69–0.82]; PLR, 3.1 [95% CI; 2.3–
4.1]; NLR, 0.36 [95% CI; 0.30–0.44]; DOR, 9 [95% CI; 
6–13]; and AUC, 0.74 [95% CI; 0.70–0.78]. The coupled 
forest plot, including sensitivity and specificity alongside 
heterogeneity indicators (Higgins’ I2 and Cochran’s Q) is 
shown in Fig. 3. Furthermore, Fig. 4 shows the summary 
ROC curve (SROC) with pooled AUC value.

Heterogeneity
Heterogeneity existence
The Cochran’s Q and Higgins I2 tests showed that 
medium heterogeneity (I2 = 57.04%) was present in the 
pooled specificity values (p-value = 0.02). In contrast, 
very low heterogeneity (I2 = 0.00%) was observed in the 
accumulative sensitivity, and Cochran’s Q test did not 

show a significant heterogeneity (p-value = 0.53). Thresh-
old effect was also ruled out as the possible cause of het-
erogeneity since Spearman’s correlation coefficient (r) 
was calculated as 0.1 (p-value = 0.798).

Causes of heterogeneity
Meta-regression was performed to investigate the 
causes of heterogeneity (Table  3). However, among all 
of the considered covariates, only using combined mod-
els significantly contributed to the results’ heterogene-
ity (p-value = 0.05). Among other covariates, a sample 
size higher than 75 or using least absolute shrinkage 
and selection operator (LASSO) for feature extrac-
tion might be implicated in the inter-study heterogene-
ity. However, the results were not statistically significant 
(0.05 < p-value < 0.10).

Fig. 1 Flowchart of the study based on PRISMA guidelines
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Subgroup analysis
Different factors were considered for subgroup analysis 
(Table 3).

Study population
Studies with sample sizes larger than 75 showed higher 
pooled sensitivity (0.74 vs. 0.68) and pooled specificity 
(0.80 vs. 0.67); however, the results were not statistically 
significant (p-values for sensitivity and specificity > 0.05).

Publication year
Studies published before 2020 exhibited slightly higher 
pooled sensitivity (0.73 vs. 0.72; p-value = 0.01), but 
pooled specificity was higher in those published after 
2020 (0.78 vs. 0.71; p-value > 0.05 with no statistically sig-
nificant difference).

ROI segmentation method
Studies utilizing manual ROI segmentation exhibited 
higher pooled sensitivity (0.73 vs. 0.70; p-value = 0.04) 
and pooled specificity (0.78 vs. 0.71; p-value = 0.38, not 

statistically significant) compared to those with semi-
automatic segmentation.

ROI segmentation dimension
Studies utilizing 2D ROI segmentation demonstrated 
superior sensitivity (0.76 vs. 0.72; p-value = 0.03) com-
pared to 3D segmentation; however, specificity was quite 
similar (0.76; p-value = 0.35).

Radiomics methods
Deep learning-based radiomics exhibited superior sen-
sitivity (0.79 vs. 0.70) and specificity (0.81 vs. 0.75) 
compared to conventional radiomics methods, but the 
evidence was not statistically significant (p-value > 0.05) 
due to the small number of studies employing the deep 
learning approach (n = 2).

Imaging modality
MRI demonstrated the highest sensitivity value (0.81), 
followed by CT (0.73) and PET (0.63). As for specificity, 
CT scored the highest (0.79), followed by MRI (0.70) and 
PET (0.64). Notably, due to the limited number of studies 

Fig. 2 QUADAS quality assessment per study (A) and per domain (B)
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involving MRI or PET, the results lacked statistical signif-
icance (p-value > 0.05), underscoring the need for further 
investigation into MRI and PET radiomics in this area.

Radiomics model construction algorithm
A study that used AdaBoost for model construction had 
a significantly higher sensitivity compared to those other 

with LR (0.76 vs. 0.72; p-value = 0.03). However, the spec-
ificity was pretty similar (0.76; p-value = 0.35).

Feature selection algorithm
Studies employing Elastic Net feature selection exhib-
ited significantly higher sensitivity (0.81 vs. 0.69; 
p-value = 0.00). However, the pooled specificity was 
higher for studies utilizing the LASSO algorithm (0.78 vs. 

Table 2 RQS score of the included studies per item
Study A B C D E F G H I J K L M N O P RQS
Shen et al. 2018 1 1 0 0 3 1 0 0 2 2 0 2 0 2 0 0 14
Li et al. 2021 1 1 0 1 3 0 0 0 2 0 0 2 0 2 0 0 12
Ou et al. 2021 1 1 0 0 3 0 0 1 2 0 0 2 0 0 0 0 10
Ding et al. 2022 1 1 0 1 3 1 0 0 2 0 0 2 0 0 0 0 11
Zhang et al. 2020 1 1 0 0 3 1 0 1 2 1 0 3 0 0 0 0 13
Chen et al. 2022 1 1 0 0 3 1 0 0 2 0 0 2 0 0 0 0 10
Peng et al. 2022 1 1 0 1 3 1 0 0 2 1 0 2 0 2 0 0 14
Tan et al. 2018 1 0 0 0 3 1 0 0 2 1 0 2 0 2 0 0 12
Qu et al. 2018 1 1 0 0 3 0 0 0 2 0 0 2 0 0 0 0 9
Average 1 0.89 0 0.33 3 0.67 0 0.22 2 0.55 0 2.11 0 0.89 0 0 12.78
Abbreviations: A: Image Protocol Quality, B: Multiple Segmentation, C: Phantom Study, D: Imaging at Multiple Points, E: Feature Reduction, F: Multivariable Analyses, 
G: Biological Correlation, H: Cut-off Analyses, I: Discrimination Statics, J: Calibration Statics, K: Prospective Study, L: Validation, M: Comparison to Gold Standard, N: 
Potential Clinical Application, O: Cost Effectiveness Analyses, P: Open science and Data

Fig. 3 Coupled forest plot showing pooled sensitivity and specificity
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0.73; p-value = 0.13), although this difference lacked sta-
tistically significant evidence.

Combined radiomics models
Studies combining radiomics signature with clinical fac-
tors demonstrated a significantly lower pooled sensitivity 

compared to those utilizing signature-only studies (0.74 
vs. 0.72). In contrast, combined models exhibited a 
higher pooled specificity (0.82 vs. 0.69; p-value = 0.05).

Publication bias
No significant publication bias was found in the included 
studies using Deeks’ asymmetry test (p-value = 0.09) 
(Fig. 5).

Sensitivity analysis
By removing each study one by one, the pooled AUC 
varied between 0.73 and 0.78, with the latter belonging 
to the removal of the study by Zhang et al., which used 
PET radiomics (Table  4). Overall, the pooled values 
were almost consistent, indicating the robustness of the 
results.

Clinical utility
Utilizing radiomics models resulted in a rise in the post-
test probability from 20 to 43% when the initial prob-
ability was positive, accompanied by a positive likelihood 
ratio of 3. Conversely, when the initial probability was 
negative, the post-test probability diminished to 8%, fea-
turing a negative likelihood ratio of 0.36 (Fig. 6).

Table 3 Meta-regression and subgroup analysis based on different covariates
Subgroups (Factors) N SENS PSEN SPEC PSPEC Meta regression

Likelihood ratio (chi2) P-value
Number of patients > 75 6 0.74 [0.68–0.79] 0.10 0.80 [0.74–0.86] 0.45 5.08 0.08

< 75 3 0.68 [0.58–0.79] 0.67 [0.55–0.78]
Segmentation Manual 7 0.73 [0.68–0.79] 0.04 0.78 [0.71–0.85] 0.38 0.84 0.66

Semiautomatic 2 0.70 [0.60–0.80] 0.71 [0.56–0.87]
Publication Year After 2020 6 0.72 [0.67–0.78] 0.01 0.78 [0.71–0.85] 0.13 0.62 0.73

Before 2020 3 0.73 [0.64–0.83] 0.73 [0.62–0.84]
ROI 3D 8 0.72 [0.67–0.77] 0.03 0.76 [0.70–0.83] 0.35 0.36 0.84

2D 1 0.76 [0.64–0.88] 0.76 [0.58–0.95]
Radiomics Method Deep learning 2 0.79 [0.71–0.88] 0.13 0.81 [0.71–0.92] 0.23 4.00 0.14

Conventional 7 0.70 [0.64–0.76] 0.75 [0.67–0.82]
Imaging Modality PET 1 0.63 [0.46–0.79] 0.03 0.64 [0.39–0.89] 0.13 3.16 0.21

Others 8 0.74 [0.69–0.79] 0.77 [0.71–0.84]
Imaging Modality MRI 1 0.81 [0.66–0.96] 0.71 0.70 [0.51–0.88] 0.10 1.64 0.44

Others 8 0.72 [0.67–0.77] 0.77 [0.71–0.84]
Imaging Modality CT 7 0.73 [0.68–0.78] 0.07 0.79 [0.72–0.85] 0.50 2.14 0.34

Others 2 0.70 [0.59–0.82] 0.68 [0.54–0.82]
Model Construction Algorithm LR 8 0.72 [0.67–0.77] 0.03 0.76 [0.70–0.83] 0.35 0.36 0.84

AdaBoost 1 0.76 [0.64–0.88] 0.76 [0.58–0.95]
Feature Selection Algorithm LASSO 6 0.69 [0.63–0.75] 0.00 0.78 [0.71–0.86] 0.13 5.44 0.07

Elastic Net 3 0.81 [0.73–0.89] 0.73 [0.62–0.84]
Combined Clinical Factors Yes 5 0.72 [0.65–0.78] 0.00 0.82 [0.77–0.87] 0.05 6.02 0.05

No 4 0.74 [0.66–0.81] 0.69 [0.62–0.76]

Fig. 4 Summary ROC curve (SROC) of the radiomic models for predicting 
LNM in esophageal cancer
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Discussion
Lymph node metastasis plays a crucial role in esopha-
geal cancer prognosis, particularly impacting early-stage 
disease due to the anatomical and histological charac-
teristics of esophageal cancer [32]. Esophageal cancer 
is recognized for its aggressive behavior and frequent 
lymphatic dissemination, underscoring the pivotal role 
of lymph node status as a critical factor in predicting 
patient outcomes. Achieving precise preoperative stag-
ing is imperative for informed decision-making and 
effective management of esophageal cancer. Despite the 
widespread use of esophageal CT scans in preoperative 
assessments, their reliability in detecting lymph node 
(LN) involvement is deemed inadequate. This inadequacy 
is attributed to disagreements in diagnostic criteria and 
inherent limitations, including the challenge of identify-
ing metastasis that may not result in noticeable enlarge-
ment of the lymph nodes [33]. Although large-scale 

lymph node (LN) dissection is necessary during surgery, 
excessive LN dissection is associated with postoperative 
complications. Therefore, accurate preoperative predic-
tion of LNM can prevent unnecessary lymph node dis-
section [26]. Recent advances in artificial intelligence 
in imaging, particularly radiomics, opened up a new 
horizon in precision medicine [34, 35]. The results of 
the meta-analysis consisting of nine studies with sepa-
rate validation cohorts and acceptable overall quality 
showed that radiomics-based methods have a moder-
ate diagnostic performance (AUC = 0.74) for diagnosing 
LNM in esophageal cancer. The presence of a geographic 
bias, with the majority of studies (8 out of 9) originating 
from China, raises a concern about the representative-
ness of the evidence. This concentration may introduce 
regional variations that limit the generalizability of find-
ings to a broader global context. The disproportionate 
focus on a specific geographic region underscores the 

Table 4 Results of the sensitivity analysis
Study Removed SEN SPEC PLR NLR DOR AUC
Chen et al. 2022 0.72 0.75 3.1 0.37 8 0.73
Ding et al. 2023 0.71 0.75 2.8 0.39 7 0.76
Li et al. 2021 0.73 0.77 3.1 0.35 9 0.74
Ou et al. 2021 0.73 0.77 3.2 0.35 9 0.74
Peng et al. 2022 0.73 0.74 2.8 0.3 8 0.76
Qu et al. 2018 0.72 0.77 3.1 0.37 9 0.73
Shen et al. 2018 0.72 0.78 3.3 0.36 9 0.74
Tan et al. 2018 0.73 0.75 2.9 0.36 0.36 0.76
Zhang et al. 2020 0.74 0.78 3.3 0.34 10 0.78

Fig. 5 Deeks’ funnel plot for testing publication bias (p-value = 0.09)
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importance of diversifying study locations to capture a 
more comprehensive understanding of the subject mat-
ter. Future research should strive for a more globally rep-
resentative sample to ensure the applicability of findings 
across different populations and settings. In addition, 
The retrospective study design in the included stud-
ies is a limitation, as it poses challenges related to data 
accuracy, potential biases, and establishing causal rela-
tionships. Retrospective studies lack prospective data 
collection and may have incomplete variables. Despite 
providing insights, their design introduces limitations 
that should be considered when interpreting findings. 
Future research could improve validity by incorporating 
prospective study designs.

Compared to previous meta-analyses in other gastro-
intestinal cancers, the pooled diagnostic performance 
was slightly lower in our study. In rectal cancer, a meta-
analysis by Bedrikovetski et al. showed that the pooled 
AUC of radiomics models was 0.808, which is higher 
than the results of this study [28]. A recently published 
meta-analysis showed that CT-scan-based radiomics 

combined with clinical factors could reach an AUC of 
0.90, representing excellent diagnostic accuracy [15]. 
Another meta-analysis evaluating validation cohorts 
has shown that radiomics based on MRI and CT might 
facilitate the diagnosis of LNM in pancreatic ductal ade-
nocarcinoma with a pooled AUC of 0.79 [19]. However, 
it seems that radiomics methods might perform slightly 
weaker in thoracic and head and neck regions compared 
to the abdominal cavity, as another meta-analysis has 
shown that CT-based radiomics studies have a pooled 
AUC of 0.75 for predicting LNM in thyroid cancer [16]. 
This suggests that the current performance of radiomics 
studies falls within a fair range of diagnostic accuracy. 
Such findings highlight the necessity for more refined 
methodologies and enhanced study designs to improve 
the diagnostic capabilities of radiomics in identifying 
LNM in esophageal cancer. Future research should pri-
oritize the standardization of imaging protocols, feature 
extraction methods, and deep learning algorithms. Addi-
tionally, to ensure their generalizability across different 
populations and clinical settings, it is crucial to train 
and validate these models using larger and more diverse 
external datasets.

We concluded following findings based on subgroup 
analysis: First, it seems that 2D segmentation performs 
better, at least in terms of sensitivity, compared to the 
3D segmentation method, as this finding was previ-
ously mentioned in meta-analyses of thyroid and gastric 
cancers [15, 16]. This observation can be attributed to 
several factors: First, 2D images often offer higher reso-
lution and quality within specific planes, facilitating the 
detection of subtle features indicative of early disease. 
The simplicity and focused nature of 2D segmentation 
enable more precise analysis of certain anatomical fea-
tures, while the computational efficiency of 2D methods 
allows for greater optimization during algorithm train-
ing. Additionally, the wider availability of annotated 2D 
data enhances the development of sensitive detection 
models. Despite the comprehensive spatial insights pro-
vided by 3D segmentation, its complexity may hinder the 
accurate modeling of early-stage disease markers. The 
choice between 2D and 3D approaches should, therefore, 
consider the specific clinical needs, the disease in ques-
tion, and the goals of the imaging analysis [36]. The scar-
city of studies employing 2D segmentation may result 
in inaccurate conclusions, restricting comprehensive 
insights and generalizability in this specific area. This 
constraint hampers a thorough exploration of potential 
applications and biases associated with 2D segmentation. 
To address this, future research should prioritize expand-
ing the number of studies utilizing 2D segmentation to 
enhance understanding and assessment of its capabilities 
and limitations.

Fig. 6 Fagan plot showing the clinical utility of radiomics models for pre-
dicting LNM in esophageal cancer
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We also found that manual segmentation outperforms 
automatic segmentation in terms of sensitivity. How-
ever, it should be noted only one study used automatic 
segmentation, and further investigations are required in 
this context, as a previous meta-analysis mentioned the 
superiority of automatic segmentation [15]. The scarcity 
of studies utilizing automatic segmentation limits avail-
able evidence and constrains insights and generalizability 
in this area. This constraint impedes thorough explora-
tion of potential applications and biases. Future research 
should prioritize expanding studies employing automatic 
segmentation to enhance understanding of its capabili-
ties and limitations.

In addition, the pooled AUC of deep radiomics mod-
els was higher than the conventional models. However, 
the variations were not identified as statistically signifi-
cant because of the limited number of studies examin-
ing this aspect (2 out of 9). The integration of CNNs and 
deep learning into radiomics has markedly enhanced 
diagnostic accuracy in medical imaging by automating 
the extraction of intricate features that may not be vis-
ible to the human eye. This advancement allows for the 
handling of high-dimensional data and the extraction of 
meaningful patterns, leading to improved disease detec-
tion, classification, and prediction capabilities. As these 
models are trained on large datasets, their diagnostic pre-
cision improves, offering potential for personalized med-
icine through predictive modeling of disease progression 
and treatment outcomes. Despite challenges such as the 
need for extensive annotated datasets, potential biases, 
and the complexity of interpreting deep learning mod-
els, this integration represents a significant leap forward 
in the field of medical imaging, promising more accurate, 
efficient, and individualized patient care [37–41]. Going 
forward, it’s crucial to increase the number of deep 
radiomics studies to get more comprehensive insights 
and facilitate thorough analyses and meta-analyses.

We also observed that adding clinical factors to 
radiomics signature can also be considered as a prom-
ising method to increase the diagnostic accuracy of the 
studies. Incorporating clinical factors into radiomics 
signatures enhances diagnostic accuracy by leveraging 
a comprehensive patient profile that combines macro-
scopic clinical data with microscopic imaging features. 
This integration improves specificity and sensitivity 
by helping differentiate diseases with similar imaging 
appearances and supports personalized medicine by 
accounting for individual variability in disease presenta-
tion. Additionally, it aids in accurate risk stratification, 
allowing for tailored treatment strategies and closer 
patient monitoring. The approach also enhances the gen-
eralizability of models across different populations by 
incorporating a wider range of predictive variables. Fur-
thermore, aligning radiomics with established clinical 

practices bolsters the credibility and acceptance of these 
advanced diagnostic tools within the medical commu-
nity, ensuring a smoother integration into clinical work-
flows. The synergy between clinical factors and radiomics 
signatures thus represents a significant step forward in 
developing more accurate, personalized, and clinically 
relevant diagnostic methodologies [42].

We have also shown that PET radiomcis methods are 
not superior to CT and MRI models, and comparing 
their performance with CT-scan methods requires more 
studies to establish a firm conclusion. The limitation of 
a limited number of studies utilizing the MRI and PET 
imaging modality was evident, with the majority (7 out 
of 9) relying on CT, one on PET, and only one incorpo-
rating MRI. This imbalance raises concerns about the 
comprehensiveness of insights gained from MRI and 
PET in the context of the topic under investigation. 
Considering the potential superiority of MRI in terms 
of performance [43–45], it emphasizes the crucial need 
for more extensive evaluation of its diagnostic accuracy 
in future research. This would ensure a comprehensive 
understanding of the subject matter and provide insights 
into the comparative effectiveness of different imaging 
modalities.

In radiomics model construction algorithms, we 
observed that AdaBoost had a significantly higher sensi-
tivity compared to those studies using LR. A recent meta-
analysis suggests that using more advanced machine 
learning algorithms such as support vector machines and 
AdaBosst can improve the results significantly, supported 
by our results [21]. AdaBoost, a machine learning algo-
rithm that combines multiple weak classifiers to form a 
strong classifier, has shown significantly higher sensi-
tivity in detecting specific conditions or characteristics 
from medical images compared to LR, a more traditional 
method widely applied in radiomics studies. This dif-
ference in performance can be attributed to AdaBoost’s 
ability to adaptively focus on the most challenging cases 
in the training dataset, thereby improving its ability to 
generalize from complex, high-dimensional imaging 
data. In contrast, LR, although powerful in its simplicity 
and interpretability, might struggle with the complex and 
high-dimensional nature of radiomic data. This adapt-
ability of AdaBoost, coupled with its ability to handle 
a wide range of data distributions and its robustness to 
overfitting, likely contributes to its superior performance 
in sensitivity, as supported by both recent meta-analyses 
and empirical results [46, 47].

Regarding feature selection, we found that elastic net 
and feature-wise attentional graph neural networks 
might perform better than LASSO. Both elastic net and 
LASSO are regularization techniques used in linear 
regression, but while LASSO imposes variable sparsity by 
encouraging some coefficients to be exactly zero, elastic 
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net combines both lasso and ridge regression penalties to 
provide a more balanced selection of variables [48, 49].

In this study, to compare the results of our study with 
previous meta-analyses, the overall quality of the selected 
articles was assessed using RQS tools, which is commonly 
used in systematic reviews for quality assessment of 
radiomics studies. Overall, the included studies received 
a mean score of 12.78, denoting 35% of the total possible 
score. This score is in line with the results of previous 
meta-analyses [15, 50], indicating that the included stud-
ies had an acceptable quality, and these results were also 
concluded from the QUADAS-2 assessment. However, 
following the development of new quality assessment 
tools for artificial intelligence like CLEAR and METRICS 
after 2023, we strongly recommend adopting these newer 
tools instead of RQS in future radiomics meta-analyses. 
The CLEAR checklist, short for Consolidated Criteria 
for Reporting Radiomics Studies, serves as a structured 
set of recommendations aimed at enhancing the trans-
parency and quality of reporting in radiomics research. 
It stresses the importance of thorough documentation 
throughout every phase of a study, spanning from data 
collection and image processing to feature extraction and 
statistical analysis. What sets CLEAR apart from RQS 
is its broader focus on reporting standards rather than 
solely on methodological quality. By advocating for the 
transparent sharing of data, scripts, and models, CLEAR 
addresses the crucial need for reproducibility and vali-
dation in radiomics. Additionally, it offers specific guid-
ance on how to report the workflow of radiomics studies, 
which is often overlooked. This holistic approach not 
only facilitates comparison, replication, and expansion of 
radiomics research but also aims to bolster the credibil-
ity and impact of findings within the field. On the other 
hand, METRICS (METhodological RadiomICs Score) is 
a novel scoring tool designed to assess the methodologi-
cal quality of radiomics research, developed through a 
collaborative effort involving a large international panel 
of experts. Unlike existing tools such as the RQS, MET-
RICS offers several advantages. Firstly, it incorporates 
input from a diverse group of experts through a modified 
Delphi process, ensuring a comprehensive and consen-
sus-driven approach to evaluating research quality. Sec-
ondly, METRICS assigns weights to different categories 
and items based on expert rankings, providing a nuanced 
and transparent assessment framework. Thirdly, MET-
RICS covers a wide range of methodological variations, 
including both traditional radiomics and deep learn-
ing-based approaches, making it applicable to diverse 
research contexts. Finally, METRICS is accompanied by 
a user-friendly web application and a repository for com-
munity feedback, facilitating its adoption and continuous 
improvement. Overall, METRICS represents a significant 
advancement in the field, offering a robust and adaptable 

tool for enhancing the methodological rigor of radiomics 
research [51, 52].

While high risk of bias for reference standard domain 
of one study was identified, it does not significantly 
compromise the overall reliability of our meta-analysis 
findings. The QUADAS-2 assessment tool was applied 
rigorously, and the majority of included studies demon-
strated acceptable quality across the assessed domains. 
High risk of bias concerns, especially in diagnostic accu-
racy studies, are not uncommon, and variations in study 
design can contribute to these biases. Importantly, simi-
lar meta-analyses often encounter multiple instances 
of high risk of bias across various domains, making the 
presence of only one study with a high risk of bias in a 
single domain relatively favorable [21, 53, 54].

However, a medium to moderate degree of hetero-
geneity was observed based on Higgins’ I2 test for the 
pooled specificity. Following meta-regression, we found 
that integrating clinical factors with radiomics signa-
tures might explain the possible cause of interstudy het-
erogeneity, as the diagnostic performance of combined 
models was higher. The pooled results were consistent 
regarding pooled sensitivity, and Higgins’ I2 test did not 
detect significant heterogeneity. In addition, no signifi-
cant publication bias was observed based on Deek’s test. 
If no significant publication bias exists in a diagnostic test 
accuracy meta-analysis, it means that studies with posi-
tive and negative results are equally likely to be published. 
This leads to more representative and reliable findings, 
reduces the risk of overestimating the test’s accuracy, 
and allows for better-informed clinical decisions with 
improved generalizability across different populations 
and settings.

Although the pooled AUC in this study was 0.74, fol-
lowing removing a study that used PET-based radiomics 
(Zhang et al.) [27], we observed that the overall pooled 
AUC of the remaining studies (consisting of MRI and 
CT-scan modalities) increased to 0.78, proposing that 
CT or MR-based radiomics could improve the diagnostic 
performance.

Limitations
This study faced a few limitations: First, commitment to 
methodological rigor drove the exclusion of studies lack-
ing separate validation cohorts from the meta-analysis. 
Studies relying solely on training cohorts or cross-vali-
dation may lead to overestimating diagnostic accuracy, 
introducing a risk of overfitting and limiting the gen-
eralizability of results. The decision underscores the 
importance of assessing diagnostic models in indepen-
dent datasets to ensure their applicability across diverse 
patient populations and clinical settings. Additionally, the 
study employed the RQS tool to assess the risk of bias, 
enhancing comparability with other studies. However, 
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we recommend that future researchers consider utiliz-
ing newer tools such as METRICS and CLEAR for more 
comprehensive assessments. Moreover, while extracting 
data, we opted for the model exhibiting superior diagnos-
tic efficacy from various options, potentially leading to an 
overestimation of the combined sensitivity and specific-
ity of radiomics in LNM in esophageal cancer. Exclud-
ing studies published in Chinese could introduce bias by 
omitting potentially relevant data and perspectives, par-
ticularly from regions like China with significant research 
output. This exclusion may skew the overall understand-
ing of the topic and introduce publication bias, as stud-
ies with statistically significant results may be more likely 
to be published in English-language journals. Therefore, 
researchers should carefully consider the implications of 
excluding studies based on language criteria to ensure 
the robustness and generalizability of their findings. 
Finally, it is important to acknowledge the limitation of 
pooling all imaging modalities together, including MRI, 
PET, and CT, in our study. While this approach allows for 
a comprehensive assessment of radiomics across various 
imaging techniques, it can also introduce heterogeneity 
in the data due to differences in image acquisition pro-
tocols, resolution, and contrast. However, the subgroup 
analysis was performed to rule out the possible sources of 
heterogeneity.

Conclusion
This meta-analysis consolidates evidence on radiomics 
for predicting LNM in esophageal cancer, showcasing 
its potential diagnostic value. Despite identified hetero-
geneity and specific challenges, radiomics demonstrates 
promise in enhancing esophageal cancer staging. To inte-
grate radiomics-based predictions into clinical workflows 
for esophageal cancer management, it is imperative to 
prioritize further research and development efforts aimed 
at refining radiomics models tailored to esophageal can-
cer while advocating for standardized imaging protocols 
and data-sharing initiatives. Validation through exter-
nal testing using diverse datasets is essential to ensure 
the reliability and generalizability of radiomics models. 
Establishing guidelines for integration into clinical prac-
tice, developing decision support tools, and interdisci-
plinary collaboration between radiologists, oncologists, 
and surgeons are crucial steps. Prospective clinical trials 
are needed to evaluate the impact of radiomics on patient 
outcomes, and continuous evaluation and improvement 
of radiomics models are essential to keep pace with tech-
nological advancements and clinical needs. It’s notewor-
thy that when diagnostic performance reaches a level 
comparable to the gold standard, which is surgery for 
prediction of LNM in esophageal cancer, radiomics has 
the potential to replace it. However, we acknowledge that 

we are not currently at that stage, and further studies are 
required to achieve this level of performance.
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