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Abstract
Precision and intelligence in evaluating the complexities of middle ear structures are required to diagnose 
auriculotemporal and ossicle-related diseases within otolaryngology. Due to the complexity of the anatomical 
details and the varied etiologies of illnesses such as trauma, chronic otitis media, and congenital anomalies, 
traditional diagnostic procedures may not yield accurate diagnoses. This research intends to enhance the 
diagnosis of diseases of the auriculotemporal region and ossicles by combining High-Resolution Spiral Computed 
Tomography (HRSCT) scanning with Deep Learning Techniques (DLT). This study employs a deep learning method, 
Convolutional Neural Network-UNet (CNN-UNet), to extract sub-pixel information from medical photos. This 
method equips doctors and researchers with cutting-edge resources, leading to groundbreaking discoveries and 
better patient healthcare. The research effort is the interaction between the CNN-UNet model and high-resolution 
Computed Tomography (CT) scans, automating activities including ossicle segmentation, fracture detection, and 
disruption cause classification, accelerating the diagnostic process and increasing clinical decision-making. The 
suggested HRSCT-DLT model represents the integration of high-resolution spiral CT scans with the CNN-UNet 
model, which has been fine-tuned to address the nuances of auriculotemporal and ossicular diseases. This novel 
combination improves diagnostic efficiency and our overall understanding of these intricate diseases. The results 
of this study highlight the promise of combining high-resolution CT scanning with the CNN-UNet model in 
otolaryngology, paving the way for more accurate diagnosis and more individualized treatment plans for patients 
experiencing auriculotemporal and ossicle-related disruptions.
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Introduction
Today, otolaryngology, the specialist area dedicated to 
the comprehensive evaluation of ear, nose, and throat 
ailments, grapples with a significant challenge [1]. It’s 
at a turning point in its quest for accurate and in-depth 
knowledge of middle ear disorders related to the auricle, 
temporal bone, and ossicles [2]. Due in large part to the 
complex anatomical components of the middle ear, diag-
nosing these conditions can be a challenging jigsaw puz-
zle [3]. Despite their value, current diagnostic approaches 
frequently fail to provide complete diagnoses, highlight-
ing the pressing need for a game-changing alternative 
[4]. One of the most significant difficulties in otolaryn-
gology stems from the middle ear’s complex anatomy. 
While conventional methods of diagnosis can be help-
ful in many scenarios, they often need to improve when 
trying to decipher issues involving the auriculotemporal 
region and the ossicles [5]. Due to the complexity of these 
disorders and the wide variety of their causes (which can 
range from trauma to chronic otitis media to congenital 
anomalies), a thorough and multi-pronged approach is 
required for an appropriate diagnosis [6].

The primary worry with CT scanning right now is the 
level of radiation exposure it exposes patients to in every-
day clinical scenarios; however, with the implementation 
of CT technology, this problem will go away [7]. Future 
CT imaging evaluations of patients in all clinical contexts 
will be more robust and trustworthy because to a mixture 
of dual-energy appropriation, X-ray dose reduction, and 
acquisition time velocity implementation methods.

Cone beam computed tomography scans have little 
direct dangers. Some examples include allergic responses, 
nephritis, and the potential for radiation-induced cancer 
in the long run. There are other factors to think about, 
such as whether or not the patient is pregnant and the 
potential effects of radiation on the unborn child.

Computed tomography (CT) pictures [8] inevitably 
contain noise since all measurements of substance are 
subject to statistical error. Consequently, to improve the 
quality of CT images, edge-preserving denoising tech-
niques are necessary. Noise reduction and the retention 
of genuine medically relevant contents are not mutually 
exclusive, though.It is possible to minimize or eliminate 
noise in CT images during the reconstruction process 
by employing suitable denoising filters. Consequently, 
denoising is necessary to enhance picture quality for bet-
ter diagnosis.

Recent studies have investigated several obstacles and 
emerging areas in medical imaging, including the resolu-
tion of CT image noise and the creation of novel denois-
ing algorithms to enhance image quality and diagnostic 
precision [9]. Several novel methodologies have been sug-
gested for merging multimodal medical images, focusing 
on safeguarding data privacy and security [10]. CT scans 

can benefit from advanced denoising approaches, such 
as edge-guided filtering and collaborative feature repre-
sentation networks, which have demonstrated potential 
in reducing noise and maintaining edge details, improv-
ing interpretability [11]. Another potentially effective 
method involves utilizing convolutional neural net-
works and fractional order total generalized variation 
algorithms for multimodal picture fusion and denoising 
in Non-Subsampled Contourlet Transform [12]. These 
strategies aim to address the constraints associated with 
particular modalities and improve the overall diagnostic 
efficacy of medical imaging data by using data from other 
imaging modalities.

This study is driven by a number of separate motiva-
tions, primarily driven by the urgent need for accurate 
and all-encompassing diagnostic strategies to deal with 
the intricacies of auriculotemporal [13] and ossicle-
related disorders [14]. The first compelling force is the 
immediate requirement for thorough and precise diag-
nostic methods for auriculotemporal [13] and ossicle-
related diseases [14]. These diseases frequently pose 
perplexing puzzles, prompting patients and medical pro-
fessionals to search for better diagnostic techniques [15]. 
Second, there is a promising new way to deal with these 
diagnostic difficulties due to the development of High-
Resolution Spiral Computed Tomography scanning and 
Deep Learning Techniques (HRSCT-DLT). This research 
aims to use HRSCT-DLT to advance otolaryngology by 
overcoming current diagnostic constraints and providing 
new levels of precision and insight. This research repre-
sents a paradigm change that has the potential to rethink 
the current system of diagnosis for disorders affecting 
the temporal and auricular bones. The high-resolution 
spiral CT scanning technique is renowned for its excep-
tional spatial resolution and capacity to image intricate 
bony structures within the temporal bone effectively. 
In contrast, Magnetic Resonance Imaging (MRI) offers 
enhanced soft tissue contrast and is frequently used to 
assess soft tissue pathology in the middle ear and sur-
rounding anatomical regions. Using ionizing radiation in 
CT scanning raises potential concerns, particularly for 
pediatric patients or persons requiring recurrent imag-
ing. MRI, as a non-ionizing modality, presents a more 
secure alternative. MRI can offer valuable functional 
information, such as dynamic imaging of the eustachian 
tube or evaluation of cochlear implants, which may not 
be attainable only by CT scanning. Temporal bone X-ray 
provides a rapid and economical initial assessment. Still, 
it may not provide the information required for a thor-
ough review compared to CT or MRI.

The study’s central tenet is to improve diagnostic accu-
racy and efficiency by combining High-Resolution Spiral 
Computed Tomography (HRSCT) [16] scanning with 
Deep Learning Techniques (DLT) [17]. Incorporating the 
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CNN-UNet deep learning method, which has been fine-
tuned to perform exceptionally well in catching the fin-
est distinctions inside medical images, is central to this 
groundbreaking method. This integration of cutting-edge 
science and medical practice gives doctors and research-
ers access to diagnostic technologies that promise previ-
ously unattainable levels of understanding [16]. It is clear 
that the union of medical imaging and deep learning 
has transformative potential, and this combined strat-
egy has the potential to take patient care to new heights 
[18]. The primary goals of this study cover a wide range 
of topics. This research further advances diagnostic capa-
bilities by investigating the complementary nature of the 
CNN-UNet model with high-resolution CT images [19]. 
Several essential tasks, such as ossicle segmentation, 
fracture identification, and disruption cause categoriza-
tion, characterize this investigation [20]. This study aims 
to improve the speed and accuracy of clinical decision-
making by automating these processes.

This study’s main contribution is.

 	• To develop a state-of-the-art diagnostic 
framework for automated, precise evaluation of 
auriculotemporal and ossicular disorders based 
on the HRSCT-DLT model, improving diagnostic 
accuracy and clinical insight in otolaryngology.

 	• To automate crucial diagnostic activities such 
as ossicle segmentation, fracture detection, and 
disruption cause categorization using the CNN-
UNet deep learning model within the HRSCT-DLT 
framework for improved efficiency and accuracy in 
diagnosis.

 	• To assess the HRSCT-DLT model’s clinical effects, 
validate the framework’s efficacy, and pave the way 
for future research and advancements, this will serve 
as a standard for successfully incorporating cutting-
edge technology into medical diagnosis.

The remainder of the article is structured as follows: 
Sect.  2 examines the results and limitations of sev-
eral research studies in the field. In Sect.  3, the sug-
gested methodology and its underlying architecture are 
described in detail. Section  4 presents the experimental 
results and discusses our study’s outcomes. Section  5 
concludes the paper.

Literature survey
Segmentation of CT Scans of the Temporal Bone
Three groups of researchers have made contributions to 
the process of segmenting CT images of the temporal 
bone: Neves et al. [21], Li et al. [22], and Ke et al. [23]. To 
segment otologic components such as the cochlea, ossi-
cles, facial nerve, and sigmoid sinus, Neves et al. created 
a CNN-based automated approach that produced very 

accurate results. Using promising efficacy measures, Li et 
al. presented a 3D-DSD Net to segment important ana-
tomical organs. A convolutional neural network (CNN) 
model was developed by Ke et al. for automatic segmen-
tation in adults and children. The model demonstrated 
remarkable performance for various spatial features of 
the temporal bone. Error analysis, misclassification, and 
the creation of user-friendly interfaces are all areas that 
still have space for development despite the progress 
made.

Deep learning in ear disease diagnosis
Many researchers, including Fujima et al. [24], Wang et 
al. [25], Khan et al. [26], and Erolu et al. [27], have focused 
their attention on the utilization of deep learning in the 
diagnosis of a variety of ear problems. One group, Fujima 
et al., researched using deep-learning analysis to diag-
nose otosclerosis. In contrast, another group, Wang et 
al., developed a deep-learning technique for diagnosing 
middle ear problems that are persistent. The researchers 
Khan et al. and Erolu et al. examined the ability of artifi-
cial intelligence modelling to differentiate between indi-
viduals with chronic otitis media who had cholesteatoma 
and those who did not. Khan et al. revealed a novel usage 
of CNNs for diagnosing tympanic membrane and middle 
ear infections. The findings of these studies emphasize 
the promise of artificial intelligence in diagnosing ear dis-
eases but also indicate the necessity of conducting addi-
tional studies in areas such as generalizability, clinical 
impact, and data variety.

Diagnostic tools and techniques
Different diagnostic tools and methods are presented by 
Duan et al. [28], Jeevakala et al. [29], and Diwakar et al. 
[30] to distinguish and locate particular ear disorders. 
Duan et al. researched whether deep learning might be 
used as a diagnostic tool to differentiate between otitis 
media caused by OME and OM caused by PCD. Jeevakala 
and colleagues developed an automatic method to find 
and isolate the internal auditory canal (IAC) from the 
nerves that supply it. Diwakar et al. presented a method 
combining wavelet packet-based thresholding with a 
non-local means (NLM) filter for better edge preserva-
tion. The findings of this research demonstrate the signif-
icance of artificial intelligence in assisting radiologists in 
generating accurate diagnostic decisions. However, they 
also highlight the need for more clinical validation, gen-
eralizability testing, and optimizing interpretability.

Perspectives from research on otosclerosis and dentistry
Asavanamuang et al. [31] suggested utilizing CBCT, or 
cone-beam computed tomography, to examine radio-
graphic features associated with pre-eruptive interstitial 
resorption (PEIR) in teeth that have not yet erupted. The 



Page 4 of 16Cai et al. BMC Medical Imaging          (2024) 24:102 

objectives of this study are to ascertain the prevalence of 
PEIR and its relationship to the angulation, location, and 
pericoronal space of teeth. Results point to the prevalence 
of PEIR in particular tooth orientations, highlighting the 
significance of CBCT monitoring, especially for molars. 
Silva et al. [32] described a systematic review that aims 
to offer evidence-based guidelines for the diagnosis and 
management of otosclerosis. Members of the task force 
receive training in knowledge synthesis techniques, and 
they evaluate literature to provide recommendations on 
treatment (such as surgery, medication, hearing aids, and 
implantable devices) and diagnosis (including audiologic 
and radiologic) based on predetermined parameters.

The study developed a state-of-the-art diagnostic 
framework for automated, exact evaluation of auriculo-
temporal and ossicular abnormalities using the HRSCT-
DLT model, enhancing otolaryngology diagnostic 
accuracy and clinical insight. Optimize diagnosis effi-
ciency and accuracy by automating ossicle segmentation, 
fracture identification, and disruption cause categoriza-
tion using the CNN-UNet deep learning model in the 
HRSCT-DLT framework. This will set a precedent for 
effectively integrating cutting-edge technology into med-
ical diagnostics by assessing the HRSCT-DLT model’s 
clinical impacts, validating the framework, and enabling 
future research and developments.

Medical imaging aims to detect and track healthy and 
diseased bodily structures and functions by creating 
three-dimensional models of individual organs and tis-
sues. Various medical imaging modalities are utilized for 
this aim, including X-ray, CT, PET, MRI, digital mam-
mography, diagnostic sonography, and many more. 
Cardiovascular diseases, cancer of various tissues, neu-
rological problems, congenital heart conditions, compli-
cations in the abdomen, complicated broken bones, and 
many other significant illnesses can be better diagnosed 
with the use of these cutting-edge medical imaging tools. 
Any kind of imaging has its advantages and disadvan-
tages. Two main approaches exist for temporal skeleton 
computed tomography (CT) accumulation: a dual intake 
with independent bilateral axial and panoramic scans 
or a single axially recorded volume with coronal and if 
desired, sagittal reorganizes applied to the longitudinal 
source data. While contrast medication can be useful in 
certain cases, including when looking for otomastoiditis 
issues, vascular tumors, or vascular anomalies, it is usu-
ally not needed for routine evaluations of coalescence, 
mastectomy air cell death, or hearing loss. Because of 
CT’s superior contrast compared to traditional hypo-
cycloidal tomography, traumatic ossicular disturbances 
may now be seen. Additionally, congenital anomalies of 
the stapes’s framework can be better seen.

The proposed HRSCT-DLT model symbolizes a harmo-
nious merger of high-resolution spiral CT scanning and 

the CNN-UNet model. This union is designed to address 
the nuances of auriculotemporal and ossicular disorders. 
It is not only a shortening of the diagnostic procedure; it 
marks an ascension in our grasp of these delicate situa-
tions, defining the boundary of medical imaging and 
diagnostics. This research intends to help doctors make 
more accurate diagnoses by highlighting the possibili-
ties of combining high-resolution CT scans [33] with 
the CNN [34] and UNet [19] models in otolaryngology. 
In addition, this method facilitates the development of 
patient-specific treatment plans for auriculotemporal and 
ossicular disorders. The ultimate goal is for this game-
changing strategy to transfer to better patient outcomes 
and a higher general level of care. The research has the 
potential to herald a new era of precision and quality in 
otolaryngology through its careful path of discovery, cus-
tomization, and application. The study developed a state-
of-the-art diagnostic framework for automated, exact 
evaluation of auriculotemporal and ossicular abnormali-
ties using the HRSCT-DLT model, enhancing otolaryn-
gology diagnostic accuracy and clinical insight. Optimize 
diagnosis efficiency and accuracy by automating ossicle 
segmentation, fracture identification, and disruption 
cause categorization using the CNN-UNet deep learn-
ing model in the HRSCT-DLT framework. This will set 
a precedent for effectively integrating cutting-edge tech-
nology into medical diagnostics by assessing the HRSCT-
DLT model’s clinical impacts, validating the framework, 
and enabling future research and developments (Table 1).

This literature review investigates otolaryngology and 
otologic imaging analysis, focusing on applying deep 
learning approaches, particularly CNNs. CT scans of the 
temporal bones have been segmented automatically using 
CNNs, with impressive results in accuracy and overlap 
with the human ground truth. The studies stress the sig-
nificance of user-centred design, mistake detection and 
correction, clinical validation, data variance, and inter-
pretability. Otosclerosis, chronic middle ear illnesses, 
tympanic membrane and middle ear infections, and dif-
ferentiating between comorbidities caused by OME and 
PCD are all successfully diagnosed using deep learning 
algorithms. The study suggests combining high-resolu-
tion spiral CT scanning with deep learning techniques 
(HRSCT-DLT) for effective and trustworthy diagnosis of 
auriculotemporal and ossicle-related disorders.

Propoced system model
The proposed research intends to change otolaryngology 
by increasing the accuracy and efficiency of diagnostic 
procedures by combining High-Resolution Spiral Com-
puted Tomography scanning with Deep Learning Tech-
niques (HRSCT-DLT). The CNN-UNet deep learning 
model is at the heart of this groundbreaking method, and 
it has been fine-tuned to excel in capturing minute details 
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in medical photos. This integration of cutting-edge sci-
ence and medical practice gives doctors and researchers 
access to diagnostic technologies that promise previously 
unattainable levels of understanding.

With High-Resolution Spiral Computed Tomography 
scanning and the CNN-UNet deep learning model, the 
HRSCT-DLT model helps doctors and scientists cap-
ture sensitive data in medical images. This method can 
improve the treatment of patients and diagnostic time 
by automating ossicle categorization, fracture diagno-
sis, and disruption cause categorization. Automation of 
clinical decision-making improves diagnosis accuracy 
and reduces medical staff workload. Cutting-edge medi-
cal imaging and diagnostics tools like the HRSCT-DLT 
model help clinicians make accurate diagnoses and cus-
tomize patient care.

Figure  1 portrays the system architecture of the sug-
gested HRSCT-DLT approach.

Figure 1 shows how the HRSCT-DLT plans to revolu-
tionize otolaryngology by making diagnostics more pre-
cise and faster. With a major focus on auriculotemporal 
and ossicular illnesses, this study will develop a data-
base of CT scans of the temporal bones. The collection 
contains detailed information about the middle ear’s 
anatomy, acquired using HRSCT imaging. The accuracy 
of the deep learning model relies heavily on the annota-
tions provided by medical professionals. These experts 

separate relevant data into its component parts, such as 
ossicles, fracture sites, and disruption triggers. When 
working with medical picture data, data preparation is 
absolutely necessary. Prior to training your Convolu-
tional Neural Network-UNet (CNN-UNet) model, you 
must conduct data preprocessing on your High-Resolu-
tion Spiral Computed Tomography (HRSCT) scans using 
deep learning techniques. The fundamental objective of 
these rigorous preparation steps is to meticulously get 
your data ready for the next CNN-UNet model training. 
The CNN-UNet model excels at precise segmentation in 
medical images, which are particularly useful for depict-
ing the intricate anatomy and subtle disorders affecting 
the middle ear. For the best results in picture segmenta-
tion, try using the CNN-UNet technique, which com-
bines CNN with U-Net. When using high-resolution CT 
data to segment anatomical components in the middle 
ear, the HRSCT-DLT model relies heavily on CNN-UNet. 
Because of its well-calibrated convolutional layers, the 
CNN-UNet model is able to pick up on the tiniest of ana-
tomical details.

Data collection and preparation
A database of CT scans of temporal bones will be created 
for this study, with a primary focus on auriculotemporal 
and ossicular disorders. Detailed anatomical information 
regarding the middle ear may be found in the dataset, 

Table 1  Literature survey
Author Method Application Limitation
Neves et al. 
[21]

CNN-based auto-
mated system for 
segmenting CT scans

Automatic temporal bone CT segmentation using CNN. The models 
learned to segment the cochlea, its ossification facial nerve, and sigmoid 
sinus.

Error and misclassification 
analysis, as well as the creation of 
intuitive user interfaces, still have 
space for development.

Li et al. [22] 3D-DSD Net The highly connected network uses 3D multi-pooling feature fusion. Dice 
factor, precision, sensibility, and Hausdorff distance evaluate efficacy.

3D-DSD Net’s generalizability, 
clinical integration, and error 
analysis need more research.

Fujima et al. 
[24]

DL analysis for identi-
fying otosclerosis

DL systems like AlexNet, and ResNet to evaluate their examination data and 
develop a diagnostic model.

Need more attention on in 
generalizability, error assessment, 
clinical impact, and data variety.

Ke et al. [23] CNN based auto 
segmentation

The impetus was automatic temporal bone CT segmentation in adults and 
children.

Maintain limits in real-time clinical 
circumstances, produce accurate 
predictions, and expand the da-
taset to include individuals with 
more characteristics and diseases.

Wang et al. 
[25]

Diagnose persistent 
middle ear diseases 
using DL.

MESIC used a “region of interest” (ROI) area search network and a classifica-
tion network to provide reliable diagnoses.

Not efficient and trustworthy

Khan et al. 
[26]

CNN-Medical 
imaging

An innovative use of CNNs, including state-of-the-art models like DenseNet, 
to automatically identify TM and ME infections in medical imaging.

Need attention on clinical validity, 
data diversity, and interpretability

Erolu et al. 
[27]

AI –CT scans AI modeling was utilized to determine if CT scans of chronic otitis media 
(COM) patients could distinguish cholesteatoma from non-cholesteatoma.

Need AI for correct diagnosis 
Acute cholesteatoma

Duan et al. 
[28]

DL-PCD screening Deep learning’s capacity to distinguish OME-related otitis media (OM) from 
PCD-related OM.

Limited accuracy and reliability

Jeevakala et 
al. [29]

Automated method 
for IAC location and 
nerve separation

The Mask R-CNN and U-Net-powered approach located and segmented 
the IAC and nerves, studies indicated.

Computational complexity
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which was gathered via HRSCT imaging. Congenital 
abnormalities, concussions, and recurrent ear infections 
are just some of the many medical conditions addressed. 
The purpose of this comprehensive dataset is to simplify 
the field of otolaryngology by illuminating all aspects of 
auriculotemporal and ossicle-related illnesses. Since it 
encompasses such a large and comprehensive dataset, 
this study is ideal for tackling the complexity and nuances 
that drive the discipline of otolaryngology since it offers 
a bird’s-eye view of auriculotemporal and ossicle-related 
problems.

Data annotation
Medical experts’ annotations are crucial to the perfor-
mance of the deep learning model. These specialists iso-
late and define data subsets of interest, such as ossicles, 
fracture locations, and disruption triggers. The ground 
truth labels provided by these annotations are crucial to 
the success of the deep learning procedure. The CNN-
UNet model requires these labels for thorough training 
and validation. Using these comparisons, the deep learn-
ing model can be trained to become a reliable diagnostic 
tool in the context of the study.

Data preprocessing
Data preprocessing is essential in preparing your data, 
especially in medical image analysis. Auriculotemporal 
and ossicular illnesses will be the focus of this study’s 
temporal bone CT scan database. The collection contains 
HRSCT-imaged middle ear anatomy. Congenital defects, 

concussions, and recurring ear infections are among the 
medical issues treated. This comprehensive dataset sim-
plifies otolaryngology by revealing all auriculotemporal 
and ossicle-related diseases. This study provides a s-eye 
view of auriculotemporal and ossicle-related issues. It is 
perfect for confronting the complexity and nuances that 
drive otolaryngology due to its big and thorough data-
set. Using deep learning techniques with High-Resolu-
tion Spiral Computed Tomography (HRSCT) scans, you 
must first perform some preprocessing to get the data 
into shape for your Convolutional Neural Network-UNet 
(CNN-UNet) model. Consider the following pre-analysis 
steps for your data:

(i)	Data Cleaning: Noise in high-resolution medical 
images like CT scans can have many causes, 
including human error, faulty equipment, and the 
surrounding environment. Diagnostic accuracy and 
image analysis precision are both susceptible to 
noise. Gaussian and other noise reduction filters can 
reduce background noise without losing valuable 
diagnostic information. Images obtained from CT 
scanners can benefit from these filters’ improved 
clarity and resolution.

(ii)	Image Resizing: Reduce the images’ size until they 
fit your CNN-UNet’s criteria. Computing-intensive 
high-resolution scans can benefit from scaling, 
which also helps to standardize the data. The new 
pixel values in the scaled image are determined 
using a weighted average of surrounding pixels from 

Fig. 1  HRSCT-DLT system model
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the original image due to the resampling technique 
of bilinear interpolation. This method lowers the 
image’s size without degrading its overall quality.

(iii)	 Histogram Equalization: This method can 
improve the contrast of medical images by shifting 
the relative brightness of individual pixels. Enhancing 
the clarity of finer details is one area where it can 
be beneficial. High-resolution CT scan images can 
improve their contrast and overall visual quality 
with the help of histogram equalization. Contrast 
Limited Adaptive Histogram Equalization (CLAHE) 
is a widespread method for histogram equalization. 
CLAHE improves classic histogram equalization 
since it accounts for regional differences within an 
image, making it ideal for diagnostic tools like CT 
scans.

(iv)	 Noise Reduction: Noise in medical images might 
degrade the quality of any subsequent analysis. 
Reduce noise with methods like median filtering 
and Gaussian smoothing. Non-local means (NLM) 
Denoising is an efficient method for reducing noise 
in high-resolution CT scan pictures. The NLM 
approach is frequently utilized in the medical 
imaging processing industry to reduce noise while 
maintaining image features.

(v)	Cropping: Cropping images to isolate the area 
of interest can simplify processing by removing 
extraneous data. Manual or semi-automated region-
of-interest (ROI) selection is typical for cropping 
high-resolution CT scan pictures. A radiologist or 
other medical professional analyzes the image to 
pinpoint the location of any pathology or anatomical 
structures of interest.

The primary goal of such stringent preprocessing pro-
cesses is to methodically prepare your data, setting a firm 
groundwork for the upcoming training of the CNN-UNet 
model. Ossicle segmentation, fracture identification, and 
disruption cause categorization are complex and diverse 
procedures requiring meticulous data preparation in 
auriculotemporal and ossicle-related disorders. These 
steps in preparation guarantee that the data is polished to 
perfection, ready to provide the best training and valida-
tion results possible for the model.

CNN-UNet model development
The proposed methodology centres on the creation and 
refinement of the CNN-UNet deep learning model, 
which is essential to the diagnostic framework of the 
research. Medical images, such as those showing the 
complex anatomy and subtle diseases of the middle ear, 
are ideal candidates for the CNN-UNet model’s exact 
segmentation. The CNN-UNet model’s greatest asset is 
its well-calibrated convolutional layers, which allow it 

to catch even the minutest anatomical information. Due 
to its complexity and relative fragility, medical imaging 
analysis of the middle ear is of the utmost relevance. The 
CT scans can reveal even the tiniest of abnormalities, 
but the convolutional layers were built with sensitivity 
to ensure nothing was overlooked. CNN-UNet’s training 
phase is rigorous to ensure the model is up to the task of 
recognizing and segmenting important structures inside 
CT scans, and this step is crucial to the model’s even-
tual success. The use of the meticulously documented 
dataset facilitates this procedure. During training, the 
model absorbs information from the dataset to improve 
its knowledge and ability to identify target areas inside 
images. The model improves at detecting and outlining 
critical structures through this iterative learning process, 
making it more useful for precise diagnosis.

The CNN-UNet model is a sophisticated deep-learning 
technique capable of precisely delineating ossicles, which 
are small and fragile bones located in the middle ear. This 
process dramatically aids in the detection and examina-
tion of anomalies or disorders. Additionally, it can accu-
rately identify fractures in the temporal bone, which is 
vital for auditory function and overall well-being. The 
proposed model employs deep learning techniques to 
evaluate CT images and effectively identify regions that 
suggest fractures. It enables doctors to focus on these 
specific locations for subsequent assessment. Addition-
ally, it aids in categorizing the reasons for disruption in 
the temporal bone, which can arise from factors such as 
trauma, infection, or congenital anomalies. This infor-
mation assists healthcare professionals in making pre-
cise diagnoses and developing personalized treatment 
strategies. The incorporation of the CNN-UNet model 
into high-resolution CT images improves the effective-
ness and precision of diagnostic procedures in the field of 
otolaryngology. This integration automates several activi-
ties: segmentation, fracture identification, and categoriz-
ing disruption causes. This novel methodology enables 
healthcare professionals to make well-informed choices 
that maximize patient results.

Convolutional neural network model
The visual data processing and analysis tasks that CNNs, 
a subset of deep neural networks, excel at include image 
classification, segmentation, and object detection. CNNs 
are excellent at jobs involving patterns, such as those 
observed in medical imaging, since they are made up of 
layers that automatically acquire features from the data. 
CNNs play the role of feature extractors in the HRSCT-
DLT framework. They perform an in-depth analysis of 
the provided CT scans, deciphering essential patterns 
and structures that are fundamental to grasping the com-
plex anatomy of the middle ear. Edges, textures, forms, 
and spatial interactions between image components are 
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all potential candidates for such patterns. Consider the 
CT picture X  to be the input. Convolutional neural net-
works (CNNs) examine X  as an input image and extract 
features F  that describe salient aspects of the image. This 
operation can be mathematically expressed by Eq. (1).

	 F = CNN (X)� (1)

The extracted features are denoted by F , while CNN 
indicates the Convolutional Neural Network. Convolu-
tional layers are the building blocks of CNNs, and they 
use a set of learnable filters or kernels to process the 
input image. To make things easier, this study refers to 
the input image (X ) and the convolution procedure (∗ ). 
The filters are portrayed as K  (kernels), while the output 
feature maps are denoted as Y . The mathematical expres-
sion for this convolution is shown in Eq. (2).

	 Y = X ∗ K � (2)

Here, X  is the input picture, Y  are the feature maps, 
and K  are the convolutional kernels. Sliding the kernels 
about the input image systematically is what the convolu-
tional process does to pick up on local patterns like edges 
and corners. It is common practice to downsample the 
data using pooling layers following the convolutional lay-
ers. For example, max-pooling takes a small area within 
each feature map and picks its maximum value. Equa-
tion (3) is a symbolic illustration of the pooling process.

	 Y = Max − Pool (X)� (3)

Here, Y  is the feature map after downsampling, and 
Max-Pool is the maximum pooling operation. Each con-
volutional layer generates feature maps, which represent 
various picture features. These feature maps stand in 
for data abstractions. Equation (4) provides an algebraic 
model for a layer with N  feature mappings.

	 F = (F1, F2, . . . , FN)� (4)

An ith  the variable denotes the feature map Fi . The 
HRSCT-DLT model uses convolutional neural networks 
(CNNs) to segment middle ear anatomy. The CNN’s 
learned characteristics form the basis for the segmenta-
tion procedure. As shown in Eq. (5), the input CT image 
X  generates the segmented output S .

	 S = Segmentation − CNN (X) � (5)

Where S  is the image after segmentation, and the convo-
lutional neural network (CNN) employed for segmenta-
tion is denoted here as Segmentation − CNN . Training 
a CNN takes a lot of time and labelled data. Training the 

HRSCT-DLT model requires the use of labelled data. To 
make things easier to understand, we’ll refer to the anno-
tated dataset as D = (Xi, Yi) , where Xi,is the input CT 
image, and Yi , are the ground truth labels identifying the 
location of structures. Using a loss function (typically 
represented by the letter L) during training is common 
practice to decrease the gap between the model’s predic-
tions and the truth. This method fine-tunes the model 
to generate the correct segmentations, as indicated in 
Eq. (6).

	
θ∗ = arg min θ

1
|D|

∑
(X,Y ∈D)

L(Segmentation − CNN (X) , Y )� (6)

Here, θ  stands for the original model parameters, L for 
the loss function, and * for the optimal set of values. 
The CNN can make inferences about novel, unseen CT 
images following training. It accepts an image as input 
and produces a segmented output focusing on specific 
features (such as ossicles or fractures) inside that pic-
ture. The segmented output produced by CNN supports 
healthcare practitioners in making diagnostic decisions. 
It expedites clinical care by improving accuracy and effi-
ciency through automated examination of critical ana-
tomical structures and diseases.

CNN-UNet algorithm in HRSCT-DLT framework
The CNN-UNet strategy is a CNN and U-Net hybrid 
optimized for image segmentation. CNN-UNet is criti-
cal in the HRSCT-DLT model for segmenting middle 
ear anatomical structures from high-resolution CT data. 
The U-shaped design of the U-Net design is a defining 
feature of the encoder and decoder. The encoder downs-
amples the input image to capture relevant components; 
the decoder then upsamples these features to produce 
the segmentation map. The CNN-UNet starts by operat-
ing as a feature extractor. As input, it accepts high-res-
olution CT images, such as those of the temporal bone. 
The U-Net uses convolutional layers to process the input 
image in the encoder, which is a convolutional neural 
network. These layers identify specific details, structures, 
and patterns in the image. Let’s call this first step in the 
process “feature extraction,” and let’s refer to the input 
image as Iin , in Eq. (7).

	 Fcnn = CNN (Iin)� (7)

Here, Fcnn , stands for CNN’s gleaned feature maps. These 
feature maps represent small-scale variations in the input 
image’s overall structure, colour, and texture. The image’s 
spatial dimensions are decreased while the encoder’s fea-
ture channel count rises. The encoder’s successive layers 
can record increasingly abstract characteristics. Convo-
lutional layers using max-pooling or strided convolutions 
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accomplish this. Let’s use Eq. (8) to represent the encod-
ing procedure.

	 Ecnn = Encoder (Fcnn) � (8)

High-level feature maps are encoded and stored in 
the variable Ecnn . The model takes the most essential 
features from the U-Net’s bottleneck and keeps their 
high-level representation. Equation (9) is a graphical rep-
resentation of the bottleneck property.

	 Bcnn = Bottleneck (Ecnn) � (9)

The U-Net’s decoder starts upsampling the bottleneck’s 
high-level characteristics. Upsampling raises the num-
ber of spatial dimensions, enabling the identification of 
features inside an image that may be described using the 
formula (10).

	 Dcnn = Decoder (Bcnn)� (10)

Where, Dcnn, is a variable that stores the decoded feature 
maps. The presence of skip connections is an essential 
part of the U-Net design. These bridges open the encod-
er’s data to the decoder on various levels. Equation (11) 
depicts the importance of skip connections in preventing 
the loss of fine-grained information during the encoding 
and decoding processes.

	 Scnn = SkipConnections(Ecnn, Dcnn)� (11)

The Scnn , variable represents enriched feature maps 
achieved by skip connections. The decoder creates the 
final segmentation map as the features are upsampled 
with skip connections. This map emphasizes the regions 
that are intriguing within the supplied image. Equa-
tion (12) is a valuable representation of the segmentation 
procedure.

	 Soutput = Segmentation(Dcnn, Scnn)� (12)

Here, Soutput ​, represents the segmented output, a map 
highlighting regions of interest, such as ossicles or frac-
tures. The CNN-UNet model is trained using annotated 
datasets that contain input CT images (Iin ​) and ground 
truth labels for segmentation (GT ). At the heart of the 
training process is a loss function (usually a pixel-wise 
cross-entropy loss or a dice loss), whose goal is to reduce 
the discrepancy between the model’s forecasts and the 
ground truth labels (Eq. (13).

As a map emphasizing regions of interest like ossi-
cles or fractures, Soutput , depicts the segmented output. 
Input CT images (Iin ) and ground truth labels for seg-
mentation (GT) are used to train the CNN-UNet model 

from annotated datasets. Preparing the model entails 
optimizing its parameters with a loss function (usually 
a pixel-wise cross-entropy loss or a dice loss) to reduce 
the discrepancy between the model’s predictions and the 
ground truth labels, as shown in Eq. (13).

	 Loss = Loss(Soutput, GT )� (13)

The model is fine-tuned through this optimization pro-
cess to produce reliable segmentations. After training 
the CNN-UNet, it can infer information from fresh CT 
scans. It accepts an image as input and produces a seg-
mented result with relevant parts. By applying Eq.  (14) 
to an image input (Iin ), it has a segmented image output 
(Soutput ).

	 Soutput = Inference (Iin) � (14)

The CNN-UNet model provides a segmented output 
(Soutput) sound for medical diagnosis. It expedites clini-
cal care by improving accuracy and efficiency through 
automated examination of critical anatomical structures 
and diseases. Algorithm 1 (Table  2) exemplifies how 
this comprehensive pipeline uses convolutional neu-
ral networks and the U-Net architecture to improve the 
HRSCT-DLT model’s picture segmentation and diagnos-
tic capabilities.

A Convolutional Neural Network - U-Net (CNN-
UNet) model and the steps required to construct, train, 
and employ it for semantic image segmentation. Medi-
cal image analysis frequently involves segmenting images 
into various classes, such as segmenting anatomical 
components in high-resolution CT scans. Image size, 
segmentation class count, learning rate, batch size, and 
training iterations are all important hyperparameters to 
tweak. The CNN-UNet model consists of an input layer, 
a hidden layer for decoding, and an output layer. The 
algorithm reads the training data, cleans it up, creates an 
Adam optimizer, loss function, and evaluation measure 
(in this case, accuracy), trains the model for a given num-
ber of iterations, and stores the result. For applying the 
trained model to the segmentation of brand-new, unseen 
images, the method additionally defines the function seg-
ment_new_images. They are combining the capabilities 
of CNNs for feature extraction with those of the U-Net 
architecture for image segmentation results in the CNN-
UNet architecture. It is an essential part of the HRSCT-
DLT model for accurate and automated segmentation 
and detection of auriculotemporal and ossicle-related 
disorders in the middle ear because of its ability to cap-
ture delicate anatomical details inside high-resolution 
CT scans.

The proposed methodology relies heavily on a deep 
learning model called CNN-UNet that was built from 
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the ground up to meet the specific challenges of this 
research. Owing to its design, fine-tuned convolutional 
layers, and rigorous training on the annotated dataset, 
it can adequately identify and segment essential struc-
tures inside temporal bone CT scans, improving preci-
sion and insight into otolaryngology. This concept has 
the potential to change otolaryngology (ENT) diagnos-
tics and bring about significant improvements in patient 
treatment.

In this section, we outline the methodology and frame-
work that will enable High-Resolution Spiral Computed 
Tomography scanning and Deep Learning Techniques 
(HRSCT-DLT), and especially the CNN-UNet deep 
learning technique, to revolutionize otolaryngology. This 
tool was developed to aid otolaryngologists in their work 

by giving them a synopsis of all the disorders that might 
affect the auricle, temporal bone, and ossicles. This novel 
approach has the potential to revolutionize the ENT 
industry because of the architecture and training tech-
nique of the CNN-UNet model.

Compared to more traditional forms of chest imaging, 
high-resolution computed tomography (HRCT) allows 
for a clearer view of the lungs’ complex structures and 
the detection of subtle disease changes. By excluding 
variations caused by gravity or dependent atelectasis, 
upright HRCT imaging is helpful for individuals with 
basal illness.

Methodology chosen for the purpose of identifying 
and selecting studies that will further improve diagnostic 
skills by exploring how high-resolution CT images com-
plement the CNN-UNet model. Obssicle segmentation, 
fracture recognition, and disruption cause categorization 
are some of the important tasks that this inquiry focuses 
on.

Experimental results and analysis
Setup
Due to its high diagnostic accuracy, the HRSCT-DLT 
Dataset relies heavily on HRSCT imaging of the temporal 
bone. Traumatic injuries, chronic otitis media, congenital 
disabilities, and auriculotemporal and ossicle-related ill-
nesses constitute only a few of the many middle ear con-
ditions included in the dataset [35, 36]. This study uses a 
randomized stratified split depending on the prevalence 
of various illnesses to separate the dataset into training, 
test and validation sets of 80%, 10% and 10%, respec-
tively. The study uses standard image segmentation mea-
sures like Dice Coefficient, Recall, Precision, F1 Score, 
Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), Hausdorff Distance, and Intersection over Union 
(IoU) to assess CNN-UNet’s performance. We evalu-
ate the proposed model’s efficacy and utility inside the 
HRSCT-DLT framework by contrasting it against several 
other deep learning models, such as CNN-GoogLeNet, 
CNN-DenseNet, CNN-ResNet, and Mask-R-CNN-UNet.

A detailed description of the tests, together with the 
results and data obtained, is provided in this section. The 
paper describes the experimental framework that was 
created, the dataset that was utilized, and the method 
used to partition the dataset into training and testing 
sets. Also included are comparisons to other models of 
its kind and an explanation of the criteria used to assess 
the HRSCT-DT model. Several metrics pertinent to 
medical image segmentation, including accuracy, recall, 
F1 score, dice coefficient, IoU and error measures like 
RMSE and MAE, demonstrate outstanding performance 
by the HRSCT-DT model. It delves deep into the ramifi-
cations of the HRSCT-DT model’s effectiveness for medi-
cal image analysis, specifically looking at how significant 

Table 2  Algorithm 1 - HRSCT-DLT model
Algorithm 1: HRSCT-DLT Model
Begin
Step 1: Define hyperparameters
input_shape = (img_height, img_width, img_channels) # Define image 
dimensions
n_classes = num_classes # Define the number of segmentation classes
learning_rate = 0.001
batch_size = 32
epochs = 50
Step 2: Define a function to build the CNN-UNet model
function build_cnn_unet(input_shape, n_classes)
  inputs = Input(input_shape)
  # Encoding Path
  conv1 = Convl2D(64, 3, activation=’relu’, padding=’same’)(inputs)
  conv1 = Convl2D(64, 3, activation=’relu’, padding=’same’)(conv1)
  pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
  # Including more encoding layers
  # Decoding Path
  up6 = UpSampling2D(size=(2, 2))(conv6)
  up6 = Convl2D(64, 2, activation=’relu’, padding=’same’)(up6)
  merge6 = Concatenate(axis = 3)([conv3, up6])
  conv6 = Convl2D(64, 3, activation=’relu’, padding=’same’)(merge6)
  conv6 = Convl2D(64, 3, activation=’relu’, padding=’same’)(conv6)
  # Including more decoding layers…
  # Output Layer
  out = Convl2D(n_classes, 1, activation=’softmax’)(conv10)
  return Model(inputs = inputs, outputs = out)
Step 3: Load and preprocess your dataset
X_train, Y_train = load_and_preprocess_data(data_path)
X_train, X_val, Y_train, Y_val = split_train_and_validation_data(X_train, 
Y_train, validation_ratio)
Step 4: Build and compile the model
model = build_cnn_unet(input_shape, n_classes)
model.compile(optimizer = Adam(learning_rate),
loss=’categorical_crossentropy’, metrics=[‘accuracy’])
Step 5: Train the model and save
model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, valida-
tion_data=(X_val, Y_val))
model.save(‘HRSCT-DLT_model.h5’)
Step 6: Perform segmentation on the test dataset
function segment_new_images(new_images, model)
  predictions = model.predict(new_images)
  return predictions
Step 7: End
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it is. By demonstrating how the model outperforms com-
peting deep-learning algorithms, this section emphasizes 
the model’s promise in otolaryngology and other medical 
fields.

Radiologykey’s quick search function solves clinical 
questions quickly.Radiologykey fits everyone.For clini-
cians, Radiologykey provides the most reliable knowledge 
and audiovisual across radiological specialties, updated 
regularly.For Students: Radiologykey supports the most 
important decisions from classroom to patient bedside.
Lecturers: Radiologykey makes it easy for lecturers to 
find radiological concerns, helping them create the best 
lectures quickly.Radiologykey customizes to the sched-
ule, procedure, and content demands, rendering it easier 
to find and use vital data.

The petrous temporal bone contains the air-filled 
middle ear cavity, often known as the tympanic cavity or 
tympanum (plural: tympanums/tympana). The tympanic 
membrane and medial wall separate it from the exterior 
and inner ears. The three auditory ossicles transport and 
enhance sound vibrations from the tympanic membrane 
to the oval window of the inner ear’s lateral wall.

Results
The Dice Coefficient, also known as the Srensen-Dice 
Coefficient, is a critical measure for gauging the segmen-
tation efficacy of the HRSCT-DT model. Values 0 and 1 
indicate how much the ground truth mask matches the 
model’s expected segmentation mask. If the value is 0, 
there is no spatial overlap; if it’s 1, there is perfect align-
ment. The higher spatial agreement, as seen by a more 
significant Dice Coefficient in Fig. 2, indicates the model’s 
efficacy in segmenting problematic regions across sev-
eral medical pictures. Otolaryngologists rely heavily on 

this statistic since it is essential for establishing informed 
diagnoses and treatment plans. A higher Dice Coefficient 
suggests better spatial agreement in the context of many 
processed images.

Precision and Recall emerge as central metrics for eval-
uating the model’s proficiency in detecting correctly clas-
sifying pathological regions during image segmentation 
tasks (see Figs. 3 and 4 for an illustration of the high-per-
formance HRSCT-DT model’s use of extensive training 
epochs). Precision measures how accurate the model is at 
making positive predictions, or “true positives.” A higher 
Precision score indicates that the model is more likely to 
predict diseased locations accurately. Recall (sensitivity 
or true positive rate) measures how well it can spot and 
include all truly problematic regions when assessing a 
model’s predictive power. When the Recall score is high, 
the model is very good at spotting and includes difficult 
areas of its predictions. Precision and Recall are essential 
metrics for validating the HRSCT-DT model’s efficacy 

Fig. 4  Recall Rate (%) of the HRSCT-DT Model

 

Fig. 3  Precision Rate (%) of the HRSCT-DT Model

 

Fig. 2  Dice Coefficient Value of the HRSCT-DT Model
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in identifying and classifying challenging regions using 
many training epochs. This skill is critical in medical 
image segmentation, especially in otolaryngology, where 
a thorough and precise diagnosis is paramount.

It is essential to recognize a common difficulty in image 
segmentation, the intrinsic trade-off between precision 
and Recall, within the effective HRSCT-DT model, which 
flourishes with many training epochs. Improving one 
of these indicators could lead to a decline in the other. 
Therefore, the F1 Score, a helpful indicator, becomes an 
attractive option. The F1 Score is the harmonic mean of 
accuracy and Recall, successfully integrating each aspect 
of model performance. In the context of the HRSCT-DT 
model, where optimal segmentation is crucial, the F1 
Score is an indispensable single metric, harmoniously 
harmonizing precision and Recall, enabling a full assess-
ment of the model’s performance, as seen in Fig. 5.

The Intersection over Union (IoU), also known as the 
Jaccard Index, is a crucial metric in the extraordinary 
performance of the HRSCT-DT model. As the number 
of training iterations grows, so does the quality of the 
results. IoU expertly determines the degree of overlap 
between the ground-truth regions and the model’s pre-
dictions using exact measurements of the intersection 
and union of the two sets. Figure  6 shows that as the 
number of training epochs for the HRSCT-DT model 
increases, the IoU value rises progressively, highlighting 
the impressive degree to which the predicted and ground 
truth regions overlap. The IoU value for the HRSCT-
DT model steadily increases as the number of training 
epochs increases, attesting to its superior performance. 
An IoU of 0 indicates poor segmentation, while an IoU 
of 1 indicates an exact match. This metric becomes 
extremely useful when evaluating overlap in intricate seg-
mentations or working with regions of varying shapes.

Figure  7 displays the decreased MAE and RMSE val-
ues that can be achieved using the HRSCT-DT model as 
more epochs pass. The mean absolute error (MAE) shows 
how off the model is, on average, from the actual pixel 
values. As the number of epochs used in the HRSCT-DT 
model grows, the MAE score constantly decreases, sug-
gesting an impressively high level of agreement between 
the predicted and observed values. The RMSE is a more 
comprehensive measure of the model’s performance. 
It gives a rough estimate of the forecast error standard 
deviation. In particular, RMSE’s ability to retain the 
same units as the pixel values makes it easy to relate to 
the images’ features directly. In addition, the HRSCT-
DT model improves performance with more training 
iterations.

Figure  8 shows how the Hausdorff distance emerges 
as a critical metric in the proposed HRSCT-DT model, 
which offers impressive performance with increased 
training epochs. This precision distance measure Fig. 7  Intersection Over Union Metric of the HRSCT-DT Model

 

Fig. 6  RMSE and MAE Rate of the HRSCT-DT Model

 

Fig. 5  F1 Score (%) of the HRSCT-DT Model
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accurately calculates the most significant possible gap 
between the model’s anticipated and the real-world seg-
mentation borders. The Hausdorff distance within the 
HRSCT-DT model continually decreases as the number 
of epochs grows, demonstrating the model’s accuracy. If 
the projected and ground-truth bounds are similarly near 
in size, then the model has done an excellent job of delin-
eating the borders.

The proposed HRSCT-DT model, created over several 
training epochs, outperforms competing deep learn-
ing models across various metrics (including accuracy, 
Recall, F1 score, Dice Coefficient, and Intersection over 
Union; see Table  3). Its recall score is impressive and 
shows good accuracy in predicting problematic regions. 
The model achieves a remarkable F1 score by striking 
a delicate balance between precision and Recall. IoU 
intensely beats other models in evaluating the degree 
of intersection between predicted and ground truth 
regions, and its superior Dice Coefficient illustrates its 
ability to align these regions precisely. This model excels 
at analyzing medical images. Examining cost-effective-
ness with diagnostic accuracy metrics demonstrates a 
distinct pattern of enhanced efficacy as more sophisti-
cated models are implemented. The baseline accuracy of 
CNN-GoogLeNet is 0.7496, followed by CNN-DenseNet 
at 0.7951 and CNN-ResNet at 0.8463. The Mask R-CNN-
UNet model demonstrates a significantly improved accu-
racy rate of 0.8749. Nevertheless, the HRSCT-DT model 
reveals the most notable improvement in accuracy, with 

an outstanding accuracy rate of 0.9624. It implies that 
although all models exhibit usefulness, the HRSCT-DT 
model significantly improves diagnosis accuracy, which 
could lead to improved patient outcomes and cost reduc-
tions in healthcare provision.

Figure  9 displays the superior performance of the 
HRSCT-DT model in medical image analysis using the 
RMSE, MAE, and Hausdorff Distance Calculation met-
rics after extensive training. The root-mean-squared 
error (RMSE) measures how near predicted values are to 
the real ones. The MAE estimates how far off predictions 
are from the actual values, with smaller values represent-
ing more accurate predictions. Calculating the Hausdorff 
Distance is a method for determining how near a forecast 
is to the ground-truth segmentation borders. Accurate 
border delineation is critical in the processing of medical 
images.

Discussion
The suggested HRSCT-DT model is a deep learning 
model that has undergone rigorous testing and evalua-
tion. The spatial agreement between the predicted and 
ground truth masks is what the Dice Coefficient uses to 
determine how well it performs. Accurate diagnosis and 
clinical decision-making in otolaryngology rely on the 
model’s steadily rising Dice Coefficient as training epochs 

Table 3  Comparative analysis of the HRSCT-DT with other deep learning models
Methods Precision Recall F1-Score Dice Coefficient IoU Diagnostic Accuracy
CNN-GoogLeNet 86.52 85.23 86.45 0.8724 0.8893 0.7496
CNN-DenseNet 89.41 88.47 89.27 0.9006 0.9024 0.7951
CNN-ResNet 92.56 93.64 92.98 0.9421 0.9451 0.8463
Mask R-CNN-UNet 94.27 95.47 94.91 0.9674 0.9689 0.8749
HRSCT-DT 98.01 98.97 99.12 0.9897 0.9924 0.9624

Fig. 9  Comparative Analysis of the HRSCT-DT and Other Models with 
Error Metrics

 

Fig. 8  Hausdorff Distance Metric of the HRSCT-DT Model

 



Page 14 of 16Cai et al. BMC Medical Imaging          (2024) 24:102 

accumulate. During effectively detecting and classifying 
problematic regions, the HRSCT-DT model scores highly 
on two crucial metrics: Precision and Recall. Its excellent 
Precision and Recall rates guarantee precise predictions 
of difficult areas, and its high Recall rate indicates its suc-
cess in locating and including actual pathological regions 
of its forecasts. The F1 Score is a comprehensive measure 
of the model’s efficacy that takes into account the trade-
off between accuracy and Recall, a typical challenge 
in image segmentation. Intersection over Union (IoU) 
scores highly for the HRSCT-DT model, too, showing 
an impressive overlap between the model’s predictions 
and the truth. The model maintains higher IoU values as 
training epochs grow, demonstrating its superior perfor-
mance. Predicting pixel values close to the ground truth 
is essential in medical image analysis, and error metrics 
like RMSE, MAE, and Hausdorff Distance demonstrate 
the model’s outstanding accuracy. The model also reflects 
its precision in border delineation using the Hausdorff 
Distance measure, which indicates its excellent boundary 
delineation capabilities. This paper presents a compara-
tive study between the proposed HRSCT-DT model and 
several existing deep learning models, demonstrating the 
superiority of the HRSCT-DT model. Compared to com-
peting models, it has superior accuracy, Recall, F1 score, 
Dice Coefficient, and IoU. The model demonstrates its 
prowess by accurately highlighting sick spots and prop-
erly syncing them with ground truth predictions.

d. It is highly suited for complex segmentations and 
asymmetrical regions since it can detect sick areas effec-
tively while balancing precision and Recall. The model’s 
efficacy in predicting outcomes down to the pixel level, as 
measured by RMSE, also contributes to its usefulness in 
medical image analysis. The model’s proficiency in delin-
eating boundaries is also evident, with distances increas-
ing smaller and smaller as the number of training epochs 
increases. Its impressive results suggest it has the poten-
tial to greatly improve patient care, especially in areas 
like otolaryngology, where precise picture segmentation, 
assessment, and boundary delineation are essential for 
clinical decision-making and treatment planning.

In this section, we present a comprehensive account of 
the experiments conducted, the data collected, and the 
conclusions drawn. It details the experimental frame-
work we developed, the dataset we used, and the way we 
divided the dataset into training and testing sets. It also 
describes the evaluation criteria used to evaluate the 
HRSCT-DT model and provides comparisons to simi-
lar models. In this section, we will discuss and assess the 
findings. In particular, it examines the significance of the 
efficacy of the HRSCT-DT model and its implications 
for medical picture analysis. This section highlights the 
model’s potential in otolaryngology and related medical 

domains by highlighting how it excels above other deep-
learning models.

Conclusion
This research presents a diagnostic paradigm for oto-
laryngology incorporating High-Resolution Spiral 
Computed Tomography scanning and Deep Learning 
Techniques (HRSCT-DLT). Auriculotemporal and 
ossicular disorders can be challenging to diagnose, so 
our project aims to simplify the process for patients and 
medical professionals. Traditional diagnostic approaches 
are inadequate for elucidating such diseases. Clinicians 
and researchers may better capture subtle information 
within medical pictures thanks to the HRSCT-DLT mod-
el’s combination of High-Resolution Spiral Computed 
Tomography scanning and the CNN-UNet deep learning 
model. Using automation for essential functions, includ-
ing ossicle segmentation, fracture diagnosis, and disrup-
tion cause categorization, this method can take patient 
care to new heights and speed up the diagnostic process. 
Improved diagnosis accuracy and decreased workload 
for medical professionals are two direct benefits of this 
automation of clinical decision-making. The HRSCT-
DLT model is cutting-edge in medical imaging and 
diagnostics, giving doctors more tools to make accurate 
diagnoses and tailor care to each patient. This strategy 
aims to improve patient outcomes and raise the bar for 
otolaryngology care overall. High-resolution spiral CT 
scanning’s radiation exposure, contrast sensitivity, arte-
fact generation, limited functional information, expense, 
and accessibility are drawbacks. Radiation exposure is 
hazardous for youngsters and pregnant women, who are 
more vulnerable. CT doses depend on scan parameters, 
patient size, and method. CT scans may lack soft tissue 
contrast, making diseases and soft tissues hard to distin-
guish. Beam hardening, metal, and motion artefacts can 
impair image quality and hide key anatomical features or 
pathology. CT imaging may lack functional or dynamic 
data, making it less useful for some disorders. High-reso-
lution spiral CT scanners are expensive to buy and main-
tain, which may limit their use in particular healthcare 
settings and patient access to diagnostic services. Future 
research should integrate multimodal imaging methods 
like MRI and ultrasound with the HRSCT-DLT architec-
ture for a comprehensive diagnostic approach.

This section details the experiments, data, and findings. 
It describes the experimental methodology, dataset, and 
training and testing sets. It also outlines the HRSCT-DT 
model’s evaluation criteria and compares it to others. The 
HRSCT-DT model excels in medical image segmenta-
tion metrics like precision, recall, F1 score, Dice Coeffi-
cient, IoU(98.01, 98.97, 99.12, 0.9897, 0.9924), and error 
measures like RMSE and MAE. It focuses on HRSCT-DT 
model efficacy and medical picture analysis. The section 
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shows how the model outperforms existing deep-learn-
ing models in otolaryngology and related medical fields.
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