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Abstract
Background  Lung cancer is the second most common cancer worldwide, with over two million new cases per year. 
Early identification would allow healthcare practitioners to handle it more effectively. The advancement of computer-
aided detection systems significantly impacted clinical analysis and decision-making on human disease. Towards this, 
machine learning and deep learning techniques are successfully being applied. Due to several advantages, transfer 
learning has become popular for disease detection based on image data.

Methods  In this work, we build a novel transfer learning model (VER-Net) by stacking three different transfer learning 
models to detect lung cancer using lung CT scan images. The model is trained to map the CT scan images with four 
lung cancer classes. Various measures, such as image preprocessing, data augmentation, and hyperparameter tuning, 
are taken to improve the efficacy of VER-Net. All the models are trained and evaluated using multiclass classifications 
chest CT images.

Results  The experimental results confirm that VER-Net outperformed the other eight transfer learning models 
compared with. VER-Net scored 91%, 92%, 91%, and 91.3% when tested for accuracy, precision, recall, and F1-score, 
respectively. Compared to the state-of-the-art, VER-Net has better accuracy.

Conclusion  VER-Net is not only effectively used for lung cancer detection but may also be useful for other diseases 
for which CT scan images are available.

Keywords  Lung cancer detection, CT scan, Transfer learning, Image processing, Stacking, VGG19, EfficientNetB0, 
ResNet101
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Introduction
Lung cancer is one of the leading causes of cancer-related 
deaths globally. It is broadly classified as small and non-
small-cell lung cancer [1]. Lung cancer is a significant 
contributor to cancer-related deaths worldwide, with 
the highest mortality rate among all types of cancer. 
According to the World Health Organization1, cancer 
is a significant contributor to global mortality, result-
ing in approximately 10 million fatalities in 2020, which 
accounts for roughly one out of every six deaths. WHO 
estimated that one in 16 people would be diagnosed with 
lung cancer worldwide by 2022. Figure  1 represents the 
incidence cases and deaths of cancers for both sexes 
and all age groups worldwide2. The x-axis represents the 
number of people, while the y-axis denotes the types of 
cancers. Amongst all cancers, lung cancer has a signifi-
cantly higher mortality rate. Additionally, when consid-
ering the number of incident cases, lung cancer ranks 
second among all types of cancer.

Roughly one-third of cancer-related deaths can be 
attributed to tobacco usage, a high body mass index, alco-
hol consumption, inadequate consumption of fruits and 
vegetables, and a lack of physical activity [2]. In addition, 
international agencies for cancer research have identified 
several risk factors that contribute to the development 
of various cancers, including alcohol, dietary exposures, 
infections, obesity, radiation, and many more that con-
tribute towards cancer diseases. Lung cancer is caused by 
the abnormal growth of cells that form a tumour and can 
have serious consequences if left untreated. Early detec-
tion and effective treatment can lead to successful cures 
for many forms of cancer. Also, it is crucial for improving 
the survival rate and reducing mortality [3].

Lung cancer is a respiratory illness that affects people 
of all ages. Symptoms of lung cancer include changes in 

1 https://www.who.int/news-room/fact-sheets/detail/cancer.
2 https://www.iarc.who.int/.

voice, coughing, chest pain, shortness of breath, weight 
loss, wheezing, and other painful symptoms [4]. Non-
small-cell lung cancer has various subtypes, including 
Adenocarcinoma, squamous cell cancer, and large cell 
carcinoma, and is frequently observed [5]. However, 
small-cell lung cancer spreads faster and is often fatal.

Over the decades, clinical pathways and pathological 
treatments for lung cancer have included chemotherapy, 
targeted drugs, and immunotherapy [6]. In hospitals, 
doctors use different imaging techniques; while chest 
X-rays are the most cost-effective method of diagnosis, 
they require skilled radiologists to interpret the images 
accurately, as these can be complex and may overlap with 
other lung conditions [7]. Various lung diagnosis meth-
ods exist in the medical industry that use CT (computed 
tomography), isotopes, X-rays, MRI (magnetic resonance 
imaging), etc. [8, 9].

Manual identification of lung cancer can be a time-con-
suming process subject to interpretation, causing delays 
in diagnosis and treatment. Additionally, the severity 
of the disease infection may not be apparent on X-ray 
images.

As artificial intelligence (AI) has advanced, deep 
learning has become increasingly popular in analyz-
ing medical images. Deep learning is a technique that 
can automatically discover high dimensionality, as com-
pared to the more intuitive visual assessment of images 
that is often performed by skilled clinicians [10–12]. 
Convolutional neural networks (CNNs) are promising 
for extracting more powerful and deeper features from 
these images [13]. Significant improvements have been 
achieved in the potential to identify images and extract 
features inside images due to the development of CNN 
[14, 15]. Advanced CNNs have been shown to improve 
the accuracy of predictions significantly. In recent years, 
the development of computer-aided detection (CAD) has 
shown promising results in medical image analysis [16, 
17]. Deep learning techniques, particularly transfer learn-
ing, have emerged as a powerful technique for leveraging 
pre-trained models and improving the performance of 
deep learning models [18].

Transfer learning has gained significant attention and 
success in various fields of AI, including medical image 
diagnosis [19], computer vision [20], natural language 
processing [21], speech recognition [22], and many 
more. Transfer learning involves using pre-trained neu-
ral networks to take the knowledge gained from one 
task (source task) and apply it to a different but related 
task (target task) [23]. In transfer learning, a model pre-
trained on a large dataset for a specific task can be fine-
tuned on similar datasets for different tasks.

Transfer learning has recently shown much promise in 
making it easier to detect lung cancer from medical imag-
ing data. Integrating transfer learning methodologies 

Fig. 1  Incident cases and mortality rate of different cancers
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into pipelines for lung cancer detection has demon-
strated enhanced accuracy and efficiency across multiple 
research investigations. It offers a practical and effec-
tive way to leverage existing knowledge and resources 
to develop accurate and efficient models for lung cancer 
detection. It starts with a pre-trained CNN model and 
fine-tunes its layers on a dataset of lung images. This 
allows the model to quickly learn to identify relevant 
features associated with lung cancer without requiring 
extensive labelled lung cancer images. The advantages of 
transfer learning for lung cancer detection are listed in 
Fig. 2.

In this paper, we employed different transfer learning 
models for lung cancer detection using CT images. We 
proposed a hybrid model to enhance the prediction capa-
bility of the pre-trained models. The key contributions of 
this paper are:

1.	 The original image dataset is resized into 
460 × 460 × 3.

2.	 Random oversampling is applied to fuse synthetic 
images in the minority class.

3.	 Data augmentation is applied by applying shear_
range, zoom_range, rotation_range, horizontal_flip, 
and vertical_flip.

4.	 Eight transfer learning models, viz. NASNetLarge, 
Xception, DenseNet201, MobileNet, ResNet101, 
EfficientNetB0, EfficientNetB4, and VGG19 are tried 
with the processed dataset.

5.	 A novel transfer learning model (VER-Net) is built 
by stacking VGG19, EfficientNetB0, and ResNet101. 
The outputs of all three models are individually 
flattened and concatenated afterwards.

6.	 Seven deep dense layers are added to optimize the 
performance of VER-Net.

7.	 The performance of VER-Net is validated on eight 
different matrices (accuracy, loss, precision, recall, 
F1-score, macro average, weighted average, and 
standard deviation) and compared with the other 
eight considered models.

Fig. 2  Advantages of transfer learning for lung cancer detection
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8.	 The accuracy of VER-Net is compared with the 
state-of-the-art.

The rest of the paper is organized as follows. Simi-
lar recent research addressing identifying lung cancer 
through transfer learning is discussed in Sect.  2. The 
working principle, details of the dataset preparation, 
and considered transfer learning models are discussed 
in Sect. 3. Section 4 presents the details of the proposed 
stacking model, including architecture and parameters. 
Section  5 presents the proposed model’s experimental 
details, results, and performance analysis. Section 6 con-
cludes the paper, mentioning the limitations of this study 
and future scopes.

Related work
Deep learning techniques provide reliable, consistent, 
and accurate results. Due to this, they are widely applied 
across multiple domains to solve real-world problems 
[24–27]. Researchers have carried out diverse literature 
that includes datasets, algorithms, and methodology to 
facilitate future research in the classification and detec-
tion of lung cancer. Some of the prominent attempts to 
detect lung cancer using transfer learning are discussed 
in this section.

Wang et al. [28] experimented with a novel residual 
neural network with a transfer learning technique to 
identify pathology in lung cancer subtypes from medi-
cal images for an accurate and reliable diagnosis. The 
suggested model was pre-trained on the public medical 
image dataset luna16 and fine-tuned using their intel-
lectual property lung cancer dataset from Shandong 
Provincial Hospital. Their approach accurately identifies 
pathological lung cancer from CT scans at 85.71%. Han 
et al. [29] developed a framework to assess the poten-
tial of PET/CT images in distinguishing between dif-
ferent histologic subtypes of non-small cell lung cancer 
(NSCLC). They evaluated ten feature selection tech-
niques, ten machine learning models, and the VGG16 
deep learning algorithm to construct an optimal classi-
fication model. The VGG16 achieved the highest accu-
racy rate of 84.1% among all the models. Vijayan et al. 
[30] employed three optimizers with six deep learning 
models. These models included AlexNet, GoogleNet, 
ResNet, Inception V3, EfficientNet b0, and SqueezeNet. 
While evaluating the various models, their effectiveness 
is measured by comparing their results with a stochas-
tic gradient, momentum, Adam, and RMSProp opti-
mization strategies. According to the findings of their 
study, GoogleNet using Adam as the optimizer achieves 
an accuracy of 92.08%. Nóbrega et al. [31] developed 
the classification model using deep transfer learning 
based on CT scan lung images. Several feature extrac-
tion models, including VGG16, VGG19, MobileNet, 

Xception, InceptionV3, ResNet50, Inception-ResNet-
V2, DenseNet169, DenseNet201, NASNetMobile and 
NASNetLarge, were utilized to analyze the Lung Image 
Database Consortium and Image Database Resource 
Initiative (LIDC/IDRI). Among all the algorithms, 
the CNN-ResNet50 and SVM-RBF (support vector 
machine– radial basis function) combination was found 
to be the most effective deep extractor and classifier for 
identifying lung nodule malignancy in chest CT images, 
achieving an accuracy of 88.41% and an AUC of 93.19%. 
The authors have calculated the other performance evalu-
ation matrices to validate the proposed model. Dadgar & 
Neshat [32] proposed a novel hybrid convolutional deep 
transfer learning model to detect three common types 
of lung cancer - Squamous Cell Carcinoma (SCC), Large 
Cell Carcinoma (LCC), and Adenocarcinoma. The model 
included several pre-trained deep learning architectures, 
such as VGG16, ResNet152V2, MobileNetV3 (small and 
large), InceptionResNetV2, and EfficientNetV2, which 
were compared and evaluated in combination with fully 
connected, dropout, and batch-normalization layers, 
with adjustments made to the hyper-parameters. After 
preprocessing 1000 CT scans from a public dataset, 
the best-performing model was identified as Inception-
ResNetV2 with transfer learning, achieving an accuracy 
of 91.1%, precision of 84.9%, AUC of 95.8%, and F1-score 
of 81.5% in classifying three types of lung cancer from 
normal samples. Worku et al. [33] proposed a denoising 
first two-path CNN (DFD-Net) for lung cancer detec-
tion. During preprocessing, a residual learning denois-
ing model (DR-Net) is used to remove the noise. Then, a 
two-path convolutional neural network was used to iden-
tify lung cancer, with the denoised image from DR-Net 
as an input. The combined integration of local and global 
aspects is the main emphasis of the two pathways. Fur-
ther, the performance of the model was enhanced, and 
a method other than the traditional feature concatena-
tion techniques was employed, which directly integrated 
two sets of features from several CNN layers. Also, the 
authors overcame image label imbalance difficulties and 
achieved an accuracy of 87.8% for predicting lung can-
cer. Sari et al. [34] implemented CAD system using deep 
learning on CT images to classify lung cancer. They used 
transfer learning and a modified ResNet50 architecture 
to classify lung cancer images into four categories. The 
results obtained from this modified architecture show 
an accuracy of 93.33%, sensitivity of 92.75%, precision 
of 93.75%, F1-score of 93.25%, and AUC of 0.559. The 
study found that the modified ResNet50 outperforms the 
other two architectures, EfficientNetB1 and AlexNet, in 
accurately classifying lung cancer images into Adenocar-
cinoma, large carcinoma, normal, and squamous carci-
noma categories.
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Overall, these studies show that transfer learning has 
the potential to improve how well medical imaging data 
can be used to find lung cancer. Using pre-trained deep 
neural networks can significantly reduce the need for 
large datasets and reduce training time, making them 
more accessible for clinical applications. However, more 
research is needed to find the best architecture for trans-
fer learning and the best fine-tuning strategy for spotting 
lung cancer. Further studies can focus on improving the 
interpretability and generalization of transfer learning 
models for real-world applications.

Research methodology
The details of the requirements and experimental steps 
carried out in this paper are discussed in this section.

Framework
The proposed model follows seven phases of struc-
ture, as shown in Fig.  3. After acquiring the chest CT 
scan images, they were preprocessed and augmented to 
make the experiment suitable. The processed dataset is 
divided into training, validation, and testing sets. Eight 
popular transfer learning models were executed based 
on this data. Among them, the top three were selected 
and stacked to build a new prediction model. The model 
was fine-tuned repeatedly to improve the classification 
accuracy while reducing the required training time. The 
model was trained and validated to classify three cancer 
classes and a normal class. Finally, the model was tested.

Fig. 3  Framework of the proposed methodology
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Dataset description
The chest CT images utilized in this study were obtained 
from Kaggle3. The dataset contains CT scan images of 
three types of lung cancers: Adenocarcinoma, Large cell 
carcinoma, and Squamous cell carcinoma. During the 

3 https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images.

cancer prediction process, the lung cancer image data-
set taken from Kaggle consists of 1653 CT images, of 
which 1066 images are used for training, 446 images for 
testing and the remaining 141 for validation purposes 
to determine the efficiency of the cancer prediction 

Fig. 4  Sample images from chest CT imaging dataset (a) large cell, (b) squamous cell, (c) adenocarcinoma, and (d) normal

 

https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images
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system. Class-wise samples of lung cancer CT images are 
depicted in Fig. 4. The detailed distribution of the dataset 
in terms of the total images, number of images in each 
class, number of classes, and labelling in each category is 
elucidated in Table 1.

Adenocarcinoma  Lung adenocarcinoma4 is the most 
common form of lung cancer, accounting for 30% of 
all cases and about 40% of all non-small cell lung can-
cer occurrences. Adenocarcinomas are found in several 
common cancers, including breast, prostate and colorec-
tal. Adenocarcinomas of the lung are found in the outer 
region of the lung in glands that secrete mucus and help 
us breathe. Symptoms include coughing, hoarseness, 
weight loss and weakness.

Large cell carcinoma  Large-cell undifferentiated carci-
noma5 lung cancer grows and spreads quickly and can be 
found anywhere in the lung. This type of lung cancer usu-
ally accounts for 10 to 15% of all cases. Large-cell undif-
ferentiated carcinoma tends to grow and spread quickly.

Squamous cell carcinoma  Squamous cell carcinoma6 
is found centrally in the lung, where the larger bronchi 
join the trachea to the lung or in one of the main airway 
branches. Squamous cell lung cancer is responsible for 
about 30% of all non-small cell lung cancers and is gener-
ally linked to smoking.
The last category is the normal CT scan images.

Data preprocessing
To develop a robust and reliable automated system, 
data preprocessing plays a crucial role in the model-
building process [35–37]. Preprocessing is an essential 
step to eliminate the distortions from the images. In 
this study, data preprocessing, image resizing, and data 

4 https://www.cancercenter.com/cancer-types/lung-cancer/types/adenocar-
cinoma-of-the-lung.
5 https ://www.ver ywellhealth.com/large-cel l-carcinoma-of- the-
lungs-2249356.
6 https://www.mayoclinic.org/diseases-conditions/squamous-cell-carci-
noma/.

augmentation were used for better classification and 
detection of lung cancer, as discussed in the subsections 
below.

Image resizing
The loaded images are standardized and normalized 
using a standard scaler and min-max scaler as the nor-
malization functions. The files are resized from 224 × 224 
to 460 × 460 using a resize function. The classes undergo 
label encoding, i.e., 0 for class Adenocarcinoma, 1 for 
class Large cell carcinoma, 2 for class Normal and 3 for 
class Squamous cell carcinoma.

Data augmentation
Random oversampling was applied afterwards to add 
randomly duplicate examples in the minority class by 
adding additional images to the classes containing fewer 
samples in the dataset. Initially, the dataset comprised 
1000 images, with each class containing 338, 187, 260 
and 215 images. The final dataset after oversampling con-
tains 1653 images, with each class containing 411, 402, 
374 and 466 images, as shown in Table 2.

After that, data augmentation was applied by applying 
shear_range = 0.2, zoom_range = 0.2, rotation_range = 24, 
horizontal_flip = True, and vertical_flip = True. Finally, 
the dataset is split into training, testing and validation in 
64.48%, 26.98% and 8.52%, respectively. After the prepro-
cessing followed by the Train-test split, the data is fed to 
models for training.

Transfer learning models
Transfer learning models play a significant role in health-
care for medical image processing [23, 31]. Medical 
imaging technologies, such as X-rays, CT scans, MRI 
scans, and histopathology slides, generate vast amounts 
of visual data that require accurate and efficient analysis. 
Transfer learning enables the utilization of pre-trained 
models trained on large datasets from various domains, 
such as natural images, to tackle medical image process-
ing tasks [28]. The transfer learning models that are con-
sidered in this experiment are described in this section.

Table 1  Detailed sample-wise distribution of dataset before resampling
Dataset Total images Image properties Adenocarcinoma Large cell carcinoma Normal Squamous cell carcinoma
Chest CT scan images 
dataset

1000 No. of images 338 187 260 215
Class 1 2 3 4
Label 0 1 2 3

Table 2  Detailed sample-wise distribution of dataset after resampling
Total images Image properties Adenocarcinoma Large cell carcinoma Normal Squamous cell carcinoma
1653 No. of images 411 402 374 466

Class 1 2 3 4
Label 0 1 2 3

https://www.cancercenter.com/cancer-types/lung-cancer/types/adenocarcinoma-of-the-lung
https://www.cancercenter.com/cancer-types/lung-cancer/types/adenocarcinoma-of-the-lung
https://www.verywellhealth.com/large-cell-carcinoma-of-the-lungs-2249356
https://www.verywellhealth.com/large-cell-carcinoma-of-the-lungs-2249356
https://www.mayoclinic.org/diseases-conditions/squamous-cell-carcinoma/
https://www.mayoclinic.org/diseases-conditions/squamous-cell-carcinoma/
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NasNetLarge
Google created the NasNetLarge [38], a neural architec-
ture search network designed for powerful computational 
resources. This model addresses the issue of crafting an 
ideal CNN architecture by formulating it as a reinforce-
ment learning challenge. NasNetLarge introduces an 
approach where a machine assists in designing neural 
network architecture and constructing a deep neural 
network without relying on traditional underlying mod-
els that concentrate on tensor decomposition or quanti-
zation techniques. Notably, NasNetLarge demonstrated 
exceptional performance in the ImageNet competition, 
showcasing its state-of-the-art capabilities. The model is 
tailored to a specific image input size of 331 × 331, which 
remains fixed and unmodifiable.

The unique advantages of NasNetLarge are:

 	• Efficient architecture design using neural 
architecture search.

 	• Achieves state-of-the-art performance on various 
image classification tasks.

 	• Good balance between accuracy and computational 
efficiency.

Xception
The Xception architecture is a popular and strong con-
volutional neural network through various significant 
principles, including the convolutional layer, depth-wise 
separable convolution layer, residual connections, and 
the inception module [39]. Additionally, the activation 
function in the CNN architecture plays a crucial role, 
where the Swish activation function has been introduced 
to enhance the conventional activation function. The 
foundation of Xception is rooted in the Inception mod-
ule, which effectively separates cross-channel correla-
tions and spatial relationships within CNN feature maps, 
resulting in a fully independent arrangement.

The unique advantages of Xception are:

 	• Deep and efficient convolutional neural network 
architecture.

 	• Achieves high accuracy on image classification tasks.
 	• Separable convolutions reduce the number of 

parameters and operations.

DenseNet201
DenseNet201 [40] is a CNN with 201 layers. It is based 
on the DenseNet concept of densely connecting every 
layer to every other layer in a feedforward manner, which 
helps improve the flow of information and gradient prop-
agation through the network. It is a part of the DenseNet 
family of models, designed to address the problem of 

vanishing gradients in very deep neural networks. The 
output of densely connected and transition layers can be 
calculated using Eq. 1 and Eq. 2.

	 Hi = f (H0, H1, H2, H3, . . . , Hi−1)� (1)

	 Hi+1 = f (BN(Wi+1 ×Hi ))� (2)

where Hi is the output of the current layer, f is the activa-
tion function, and [H0, H1, H2, …, Hi−1] are the outputs 
of all previous layers concatenated together. Also, Wi+1 is 
the set of weights for the convolutional layer, BN is the 
batch normalization operation, f is the activation func-
tion, and Wi+1 is the output of the transition layer.

The unique advantages of DenseNet201 are:

 	• Dense connectivity pattern between layers, allowing 
for feature reuse.

 	• Reduces the vanishing gradient problem and 
encourages feature propagation.

 	• Achieves high accuracy while using fewer parameters 
compared to other models.

MobileNet
MobileNet [38] is a popular deep neural network archi-
tecture designed for mobile and embedded devices with 
limited computational resources. The architecture is 
based on a lightweight building block called a MobileNet 
unit, which consists of a depth-wise separable convolu-
tion layer followed by a pointwise convolution layer. The 
depth-wise separable convolution is a factorized con-
volution that decomposes a standard convolution into 
a depth-wise convolution and a pointwise convolution, 
which reduces the number of parameters and computa-
tions. The output of a MobileNet unit and inverted resid-
ual block can be calculated using Eq. 3 to Eq. 7.

	 Y = BN (σ(Conv1∗1 (DW (X )) )) � (3)

	 Xin = X � (4)

	 X = BN (σ(Conv1∗1 (DW (X )) )) � (5)

	 X = BN (σ(Conv1∗1 (X) ))� (6)

	 Y = Xin +X � (7)

where X is the input tensor, DW is the depth-wise con-
volution operation, Conv1 × 1 is the pointwise convolution 
operation, σ is the activation function, BN is the batch 
normalization operation, and Y is the output tensor. 
Also, Xin is the input tensor, X is the output tensor of the 



Page 9 of 18Saha et al. BMC Medical Imaging          (2024) 24:120 

bottleneck layer, Conv1 × 1 and DW are the pointwise and 
depthwise convolution operations.

The unique advantages of MobileNet are:

 	• Specifically designed for mobile and embedded 
vision applications.

 	• Lightweight architecture with depth-wise separable 
convolutions.

 	• Achieves a good balance of accuracy and model 
size, making it ideal for resource-constrained 
environments.

ResNet101
Residual Neural Networks (ResNets) are a type of deep 
learning model that has become increasingly popular 
in recent years, particularly for computer vision appli-
cations. The ResNet101 [41] model allows us to train 
extremely deep neural networks with 101 layers suc-
cessfully. It addresses the vanishing gradient problem by 
using skip connections, which allow the output of one 
layer to be added to the previous layer’s output. This 
creates a shortcut that bypasses the intermediate lay-
ers, which helps to preserve the gradient and makes it 
easier to train very deep networks. This model architec-
ture results in a more efficient network for training and 
provides good performance in terms of accuracy. Math-
ematically, the residual block can be expressed as given 
by Eq. 8

	 y = F (x, {Wi} + x)� (8)

where x is the input to the block, F is a set of convolu-
tional layers with weights Wi, and y is the block output. 
The skip connection adds the input x to the output y to 
produce the final output of the block.

The unique advantages of ResNet101 are:

 	• Residual connections that mitigate the vanishing 
gradient problem.

 	• Permits deeper network architecture without 
compromising performance.

 	• It is easy to train and achieves excellent accuracy.

EfficientNetB0
EfficientNetB0 [42] is a CNN architecture belonging to 
the EfficientNet model family. These models are specifi-
cally crafted to achieve top-tier performance while main-
taining computational efficiency, rendering them suitable 
for various computer vision tasks. The central concept 
behind EfficientNet revolves around harmonizing model 
depth, width, and resolution to attain optimal perfor-
mance. This is achieved through a compound scaling 

technique that uniformly adjusts these three dimensions 
to generate a range of models, with EfficientNetB0 as the 
baseline. The network comprises 16 blocks, each charac-
terized by its width, determined by the number of chan-
nels (filters) in every convolutional layer. The number of 
channels is adjusted using a scaling coefficient. Addition-
ally, the input image resolution for EfficientNetB0 typi-
cally remains fixed at 224 × 224 pixels.

The unique advantages of EfficientNetB0 are:

 	• Achieve state-of-the-art accuracy on image 
classification tasks.

 	• Use a compound scaling method to balance model 
depth, width, and resolution.

 	• A more accurate and computationally efficient 
architecture design.

EfficientNetB4
The EfficientB4 [43] neural network, consisting of blocks 
and segments, has residual units and parallel GPU uti-
lization points. It is a part of the EfficientNet family of 
models, designed to be more computationally efficient 
than previous models while achieving state-of-the-art 
accuracy on various computer vision tasks, includ-
ing image classification and object detection. The CNN 
backbone in EfficientNetB4 consists of a series of convo-
lutional blocks, each with a set of operations, including 
convolution, batch normalization, and activation. The 
output of each block is fed into the next block as input. 
The final convolutional block is followed by a set of fully 
connected layers responsible for classifying the input 
image. The output of a convolutional block can be calcu-
lated using Eq. 9.

	 yi = f (BN(Wi × xi−1 ))� (9)

where xi−1 is the input to the current block, Wi is the set 
of weights for the convolutional layer, BN is the batch 
normalization operation, f is the activation function, and 
yi is the block output.

Being in the same family, EfficientB4 shares the advan-
tages of EfficientNetB0.

VGG19
Visual Geometry Group (VGG) is a traditional CNN 
architecture. The VGG19 [44] model consists of 19 layers 
with 16 convolutional layers and three fully connected 
layers. The max-pooling layers are applied after every two 
or three convolutional layers. It has achieved high accu-
racy on various computer vision tasks, including image 
classification, object detection, and semantic segmenta-
tion. One of the main contributions of the VGG19 net-
work is the use of very small convolution filters (3 × 3) in 
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each layer, which allows for deeper architectures to be 
built with fewer parameters. The output of the convolu-
tional layers can be calculated using Eq. 10.

	 y = f (W ∗x + b)� (10)

where x is the input image, W is the weight matrix of the 
convolutional layer, b is the bias term, and f is the acti-
vation function, which is usually a rectified linear unit 
(ReLU) in VGG19. The output y is a feature map that cap-
tures the important information from the input image.

The unique advantages of VGG19 are:

 	• Simple and straightforward architecture.
 	• Achieves good performance on various computer 

vision tasks.
 	• Its simplicity and ease of use make it a favourite 

among educators.

Proposed VER-Net model
To find out the best-performing models among the 
ones discussed in the previous section, we ran them 
and assessed their performance individually. Among 
them, VGG19 and EfficientNetB0 were the best per-
formers in all metrics. However, EfficientNetB4 and 
ResNet101 competed with each other to take the third 
spot. In some metrics, EfficientNetB4 did better, while 
in some, ResNet101 was better. Nevertheless, we picked 
ResNet101 over EfficientNetB4 because it has better test-
ing accuracy and precision, which is crucial for detect-
ing life-threatening diseases like cancer. Therefore, we 
stacked VGG19, EfficientNetB0, and ResNet101 in our 
proposed VER-Net model. The complete algorithm for 
this procedure is shown in Algorithm 1.

Algorithm 1: Building the VER-Net model
Input: Training dataset, validation dataset, test dataset, train-
ing epochs, input shape, and batch size.
Output: The output is classified into four categories: Adeno-
carcinoma, Large cell carcinoma, Squamous cell carcinoma 
and normal class. The model will return the prediction 
performance metrics.

Algorithm 1: Building the VER-Net model
// Read data from image folder
1. data ← data_read (“chest CT images”)
// Perform preprocessing to improve quality assessment of 
the dataset
2. preprocessing_function (rotation, width shift, hight shift, 
shear range, flipping)
//Perform data augmentation to remove the biasness in the 
dataset
3. data_augmentaion (resizing, rescaling, padding, random 
flipping, random rotation)
// Perform data splitting for model building process
4. data splitting (training set, testing set, validations set, 
ratio = 64.48:26.98%:8.52
// Apply pre-trained transfer learning models
5. NasNetLarge = tf.keras.applications. NasNetLarge (weights 
= ‘imagenet’, include_top = False, input_shape = None, pool-
ing = None, classifier activation = ‘softmax’)
6. Xception = tf.keras.applications. Xception (weights = 
‘imagenet’, include_top = False, input_shape = None, pool-
ing = None, classifier activation = ‘softmax’)
7. DenseNet201 = tf.keras.applications. DenseNet201 
(weights = ‘imagenet’, include_top = False, input_
shape = None, pooling = None, classifier activation = 
‘softmax’)
8. MobileNet = tf.keras.applications. MobileNet (weights = 
‘imagenet’, include_top = False, input_shape = None, pool-
ing = None, classifier activation = ‘softmax’)
9. ResNet101 = tf.keras.applications. ResNet101 (weights = 
‘imagenet’, include_top = False, input_shape = None, pool-
ing = None, classifier activation = ‘softmax’)
10. EfficientNetB4 = tf.keras.applications. EfficientNetB4 
(weights = ‘imagenet’, include_top = False, input_
shape = None, pooling = None, classifier activation = 
‘softmax’)
11. EfficientNetB0 = tf.keras.applications. EfficientNetB0 
(weights = ‘imagenet’, include_top = False, input_
shape = None, pooling = None, classifier activation = 
‘softmax’)
12. VGG19 = tf.keras.applications. VGG19(weights = ‘imagen-
et’, include_top = False, input_shape = None, pooling = None, 
classifier activation = ‘softmax’)
// Combine the top 3 models for the base layer based on their 
individual performance over the dataset
13. Stacking_base_models.append (get_model 
(VGG19 + EfficientNetB0 + ResNet101))
// Training and validation of the proposed hybrid model
14. model_hybrid1_Fit (d_train, b, e) ← Train the Stcaked 
Model (training set)
// Testing of the proposed hybrid model
15. Result ← model_evaluate
// Performance evaluation metrics of the proposed hybrid 
model
16. Accuracy, loss, precision, recall, f1-score, macro avg, 
weighted avg ← model_hybrid_Evaluate (testing set)
17. return accuracy, loss, precision, recall, f1-score, macro avg, 
weighted avg

Model Architecture
The architecture of the proposed VER-Net model is 
shown in Fig. 5. The input shape is 460 × 460 × 3, which is 
mapped to four classes as output. We used three different 
dense layers for three stacked transfer learning models 
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in the model. Thereafter, the same convolution layers of 
7 × 7 × 1024 for all three and three different max-pooling 
layers are used. The outputs are flattened before sending 
to three 3 fully connected layers (1024 × 512 × 256). The 
three outputs of these connected layers are then concat-
enated using majority voting, and accordingly, the classi-
fied outputs are generated. The architectural description 
of VER-Net is shown in Table 3.

Model parameters
The details of hyperparameters settings for VER-Net are 
listed in Table 4. In Table 5, the details of data augmenta-
tion are listed. Here, we used the RandomFlip and Ran-
domRotation functions available in TensorFlow.Keras for 
data augmentation.

Table 3  Description of the VER-Net model’s architecture
Layer (type) Output 

shape
Param Connected to

input_3 (InputLayer) (None, 
460, 
460, 3)

0 -

modelvgg19(Functional) (None, 
7, 7, 
512)

14,714,688 Input_3[0][0][0]

modelefficientnetB0 
(Functional)

(None, 
7, 7, 
1280)

4,049,571 Input_3[0][0][0]

modelresnet101(Functional) (None, 
7, 7, 
2048)

18,875,392 Input_3[0][0][0]

flatten (Flatten) (None, 
4608)

0 modelvgg19[0]
[0][0]

flatten_1 (Flatten) (None, 
11,520)

0 modelefficient-
netB0[0][0][0]

flatten _2 (Flatten) (None, 
18,432)

0 modelre-
senet101[0][0][0]

concatenate (Concatenate) (None, 
33,408)

0 flatten[0][0][0]
flatten_1[0][0][0]
flatten_2[0][0][0]

dense (Dense) (None, 
1024)

4,719,616 concatenate[0]
[0][0]

dropout (Dropout) (None, 
1024)

0 dense[0][0][0]

dense_1 (Dense) (None, 
512)

524,800 dropout [0][0][0]

dropout_1 (Dropout) (None, 
512)

0 dense_1[0][0][0]

dense_2 (Dense) (None, 
256)

131,328 dropout [0][0][0]

Dropout_2 (Dropout) (None, 
256)

0 dense_2[0][0][0]

Table 4  Hyperparameter settings of VER-Net
Hyperparameter Value
Optimizer 1 Adam
Optimizer 2 RMSprop
Learning rate 0.001
Loss function Categorical cross-entropy
Dropout probability 0.3
Batch size 32
Number of epochs 100

Table 5  Data augmentation details of VER-Net
Particular Value
Shear range 0.2
Zoom range 0.2
Rotation range 24
Vertical flip True
Horizontal flip True
Vertical shearing 0.2
Horizontal shearing 0.2

Fig. 5  VER-Net’s architecture
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Experiment, results and performance analysis
In this section, the experimental details, including sys-
tem setup and evaluation metrics, are covered. Also, the 
results are elaborately presented, and the performance of 
the proposed model is extensively assessed.

Experimental system setup
The experiment was conducted on a Dell worksta-
tion with a Microsoft Windows environment. Python 
was used to program on the Anaconda framework. The 
details of the system are given in Table 6.

Evaluation Metrics
Evaluation metrics are used to assess the performance 
of a model on a problem statement. Different evaluation 
metrics are used depending on the problem type and the 
data’s nature. In this study, the experimental findings for 
the presented models are evaluated using various perfor-
mance metrics, summarised in Table 7.

VER-Net model implementation
After background and designing the VER-Net model, 
we implemented it. The results are discussed in the 
following.

Confusion matrix
The classification performance of VER-Net is evalu-
ated using a confusion matrix, as shown in Fig. 6. Since 
there are four output classes, the confusion matrix is 
a 4 × 4 matrix. Every column in the matrix represents a 
predicted class, whereas every row represents an actual 
class. The principal diagonal cells denote the respective 
classes’ correct predictions (TP). Besides the TP cell, all 
other cells in the same row denote TN. For example, in 
the first row, except the first column, five of the Adeno-
carcinoma were falsely classified as large cell carcinoma, 
and four were categorized as Squamous cell carcinoma. 

So, 9 (5 + 0 + 4) are TN classifications for the Adenocar-
cinoma class. Similarly, all other cells in the same column 
denote FP besides the TP cell. For example, in the first 
column, except the first row, four Large cell carcinoma, 
four normal cells, and 21 Squamous cell carcinoma are 
falsely classified as Adenocarcinoma. So, 29 (4 + 4 + 21) 
FN classifications exist for the Adenocarcinoma class. 
The rest of the cells denote FN predictions.

Accuracy and loss of VER-Net
The accuracy and loss of our VER-Net model are plotted 
in Figs. 7 and 8, respectively. The x-axis denotes the num-
ber of epochs (100), while the y-axis reflects accuracy in 
Fig. 7 and loss in Fig. 8. The training curve suggests how 
well VER-Net is trained. It can be observed that both 
accuracy and loss for validation/testing converge approx-
imately after 20 epochs. It is further noticed that the 
model did not exhibit significant underfitting and overfit-
ting upon hyperparameter tuning. In our experiment, we 
tried with different epoch numbers (40, 60, 100, and 200). 
We got the best results with 100 epochs.

Performance analysis of VER-Net
In this section, we exhaustively analyze the performance 
of VER-Net model. For this, we adopted a comparative 

Table 6  System’s hardware and software specifications for the 
experiment
Component Specification
Processor Intel(R) Core(TM)- i9-10900 K CPU @3.70 GHz
GPU NVIDIA GeForce RTX 2080 TI (11 GB DDR6)
RAM 64 GB (DDR4)
SSD 500GB (NVMe)
Hard Disk 2 TB (HDD)
Operating System Windows 11 Pro
Platform (IDE) Anaconda-Jupyter Notebook
Programming Language Python

Table 7  Performance evaluation metrics
Metrics Calculation Description
Accuracy TP+TN

TP+TN+FP+FN
Gives the classification success of the model, where TP, TN, FP and FN denote true 
positives, true negatives, false positives, and false negatives.

Precision TP
TP+FP

Gives a positive estimate value.

Recall TP
TP+FN

Gives the number of positive estimates that are correctly classified.

F1-score 2×TP
2×TP+FP+FN

Relates the sensitivity and precision measures.

Loss 1
n
×

∑n
i=1

∑k
c=1 [yic × log (yic)] Measures how well a model is performing by comparing its predictions with the ac-

tual target values, where n is the number of samples (4), k is the number of classes (4), 
yij is the true label (one-hot encoded), and ŷij is the predicted probability for class c.

Macro average 1
4

∑3
c=0A

m
c

The arithmetic mean of the individual class for precision, recall, and f1-score, where c 
denotes classes 0 to 3 and m denotes either precision or recall or F1-score.

Weighted average ∑3
c=0w

m
c × 1

4

∑3
c=0A

m
c

The arithmetic mean of the individual class multiplied by respective weights for 
precision, recall, and F1-score, where w0 + w1 + w2 + w3 = 1.

Standard deviation
√

∑3
c=0 (S

m
c −1

4

∑3
c=0A

m
c )

2

n

Deviation of the values or data from an average mean for precision, recall, and F1-
score, where n is the number of samples (4).
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analysis approach. We compared VER-Net with other 
transfer learning models and the results of similar 
research works.

Comparing VER-Net with other transfer learning models
First, we compare the performance of VER-Net with 
the individual transfer learning models, mentioned in 
Sect. 3.4. All the models were trained and tested on the 
same dataset and validated with the same parameters.

Figures 9 and 10 present the accuracy and loss compar-
isons. VER-Net and VGG19 both achieved the highest 
accuracy of 97.47% for training, but for testing, VER-Net 
emerged as the sole highest accuracy achiever with 91%. 
NASNetLarge got the lowest accuracy on both occa-
sions, with 69.51% and 64% training and testing accuracy, 
respectively. Similar to accuracy, VER-Net and VGG19 
both managed the lowest loss of 0.07% for training, and 
VER-Net was the sole lowest loss achiever with 0.34%. 
Here also, NASNetLarge performed worst on both occa-
sions with 0.66% and 0.80% training and testing loss, 
respectively.

Table 8 notes all classes’ precision, recall and F1-score 
values to compare VER-Net with other models. The 
macro average of these metrics for all four classes is 
shown in Fig.  11. For all three instances, i.e., precision, 
recall and F1-score, VER-Net outperformed with 0.920, 
0.910, and 0.913, respectively. VGG19 and Eficient-
NetB0 emerged as the second and third-best perform-
ers, whereas NASNetLarge was the worst performer with 
0.693, 0.645, and 0.645 for precision, recall and F1-score, 
respectively.

In Fig. 12, VER-Net is compared with others in terms 
of weighted average for precision, recall and F1-score. 
Here, we used a uniform weight of 1.5 for all classes. Like 
the macro average, VER-Net was the top performer for 

Fig. 8  Training and validation/test loss VER-Net model

 

Fig. 7  Training and validation/test accuracy VER-Net model

 

Fig. 6  Confusion matrix of VER-Net
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Fig. 11  Macro average comparison of VER-Net and other models

 

Fig. 10  Loss comparison of the proposed ensemble method (VER-Net) with other transfer learning models

 

Fig. 9  Accuracy comparison of the proposed ensemble method (VER-Net) with other transfer learning models
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Fig. 12  Weighted average comparison of VER-Net and other models

 

Table 8  Class-wise values of precision, recall and F1-score for VER-Net and other models
Model Class Precision Recall F1-score
NasNetLarge Adenocarcinoma 0.49 0.76 0.59

Large cell carcinoma 0.62 0.32 0.42
Normal 1 1 1
Squamous cell carcinoma 0.66 0.5 0.57

Xception Adenocarcinoma 0.62 0.78 0.69
Large cell carcinoma 0.56 0.7 0.63
Normal 1 0.93 0.96
Squamous cell carcinoma 0.78 0.47 0.59

DenseNet201 Adenocarcinoma 0.79 0.62 0.70
Large cell carcinoma 0.73 0.93 0.82
Normal 0.81 0.93 0.87
Squamous cell carcinoma 0.82 0.76 0.79

MobileNet Adenocarcinoma 0.66 0.86 0.75
Large cell carcinoma 0.80 0.67 0.73
Normal 1 0.98 0.99
Squamous cell carcinoma 0.85 0.70 0.77

ResNet101 Adenocarcinoma 0.70 0.86 0.77
Large cell carcinoma 0.85 0.80 0.82
Normal 1 0.98 0.99
Squamous cell carcinoma 0.86 0.70 0.77

EfficientNetB4 Adenocarcinoma 0.74 0.82 0.78
Large cell carcinoma 0.76 0.95 0.84
Normal 0.97 0.98 0.97
Squamous cell carcinoma 0.88 0.63 0.74

EfficientNetB0 Adenocarcinoma 0.88 0.77 0.82
Large cell carcinoma 0.83 0.96 0.89
Normal 1 0.95 0.98
Squamous cell carcinoma 0.82 0.86 0.84

VGG19 Adenocarcinoma 0.91 0.79 0.85
Large cell carcinoma 0.78 0.96 0.86
Normal 1 0.95 0.98
Squamous cell carcinoma 0.90 0.91 0.90

VER-Net Adenocarcinoma 0.81 0.93 0.87
Large cell carcinoma 0.91 0.96 0.93
Normal 1 0.93 0.96
Squamous cell carcinoma 0.96 0.82 0.89
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all three metrics, followed by VGG19 and EficientNetB0, 
and NasNetLarge was the worst performer. As shown in 
Table  8, NasNetLarge classifies the non-cancerous cells 
with 100% accuracy; in fact, it performs the best among 
all models but performs very poorly for the cancerous 
cells.

To assess the performance variations of VER-Net, we 
calculated the standard deviation to calculate the mean-
variance across the classes for precision, recall and 
F1-score. A lower value suggests that the model is effec-
tive for all classes equally. In contrast, a higher varia-
tion suggests bias to a certain class. From Fig. 13, it can 
be observed that VER-Net has the lowest variations for 
recall and F1-score of 0.062 and 0.04, respectively. How-
ever, as an exception in the case of precision, VER-Net is 
bettered by DenseNet201 with a margin of 0.042 varia-
tions. This can be reasoned as VER-Net attained 100% 
precision for the Normal class. Nevertheless, VER-Net 
has significantly lower variance across three metrics than 
DenseNet201.

Comparing VER-Net with literature
In the previous section, we established the superiority of 
VER-Net over other established transfer learning models. 
To prove the ascendency of VER-Net further, we com-
pared it with the results of some similar recent experi-
ments, available in the literature pertaining to detecting 
lung cancer based on CT scan images using transfer 
learning methods. A comparative summary is given in 
Table 9.

Discussion
The above experiments and results clearly show that the 
proposed VER-NET performed well in detecting lung 
cancer in most of the performance testing. It is the over-
all best performer among the nine transfer learning mod-
els. One of the reasons for this is that we incorporated 
the best three models (considered in this experiment) 
into the VER-NET. Besides, we optimally designed the 
VER-NET architecture for its best performance. Further-
more, to make the model more generalized, we generated 

Table 9  Comparing VER-Net with recent literature
Ref Model Dataset Accuracy
Wang et 
al. [28]

AlexNet, VGG16, 
DenseNet, and DRNN

CT images of 
lung cancers 
collected from 
Shandong Pro-
vincial Hospital

85.71% with 
DRNN

Han et al. 
[29]

Ten machine learning 
models and VGG16

Department 
of Nuclear 
Medicine, Pe-
king University 
cancer hospital

84.10% with 
VGG16

Nóbrega 
et al. [31]

VGG16, VGG19, 
MobileNet, Xception, 
InceptionV3, ResNet50, 
Inception-ResNet-
V2, DenseNet169, 
DenseNet201, NASNet-
Mobile, NASNetLarge, 
multilayer perceptron, 
SVM, k-nearest neigh-
bors, and random forest.

LIDC/IDRI 88.41% 
with CNN-
ResNet50 + SVM-
RBF

Worku et 
al. [33]

Denoising first two-
path CNN (DFD-Net)

Kaggle Data 
Science Bowl 
2017 challenge 
(KDSB) and 
LUNA 16

87.80%

Chon et 
al. [45]

Linear, Vanilla 3D CNN, 
and 3D GoogLeNet

KDSB 75.10% with 
GoogLeNet

This 
paper

VER-Net 
(VGG19 + Efficient-
NetB0 + ResNet101)

Kaggle chest 
CT images

91.00%

Fig. 13  Standard deviation for precision, recall and F1-score of all classes
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additional synthetic lung cancer images in addition to the 
original image dataset.

To balance the dataset, we performed image augmenta-
tion, which might make slight changes in the real images. 
So, the performance of VER-Net might vary little on a 
balanced real dataset where there is no need for synthetic 
augmentation. The images were generated with 64 × 64 
pixels, which is insufficient for the analysis of medical 
images. For cancer cell detection based on cell images, 
high-resolution images are crucial.

Since VER-Net is an ensembled model compris-
ing three transfer learning, it is obvious that it should 
increase the computational complexity, requiring longer 
for training. However, this should not be a discouraging 
factor in a lifesaving application like cancer detection, 
where accuracy and precision matter most.

Conclusions and future scope
Incorporating transfer learning into lung cancer detec-
tion models has shown improved performance and 
robustness in various studies. In this paper, we con-
catenated three transfer learning models, namely, 
VGG19 + EfficientNetB0 + ResNet101, to build an ensem-
bled VER-Net model to detect lung cancer. We used CT 
scan images as input to the model. To make VER-Net 
effective, we conducted data preprocessing and data aug-
mentation. We compared the performance of VER-Net 
with eight other transfer learning models. The compara-
tive results were assessed through various performance 
evaluation metrics. It was observed that VER-Net per-
formed best in all metrics. VER-Net also exhibited better 
accuracy than similar empirical studies from the recent 
literature.

Here, we incorporated the three top-performing trans-
fer models in the hybrid VER-Net architecture. Fur-
ther experimentation can be done on this ensembling 
approach. For example, other models can be tried in dif-
ferent combinations. Also, transfer learning models of 
different families can be tried.

We plan to extend the use of the VER-Net model for 
identifying lung cancer where only chest X-ray images are 
available. Furthermore, this model can also be applied to 
assess the severity of lung cancer if the patient is already 
infested. Considering the success of VER-Net in detect-
ing lung cancer, it can be used for other diseases where 
CT scan images are useful to identify the disease.
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