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Abstract 

Background  To introduce a three-dimensional convolutional neural network (3D CNN) leveraging transfer learning 
for fusing PET/CT images and clinical data to predict EGFR mutation status in lung adenocarcinoma (LADC).

Methods  Retrospective data from 516 LADC patients, encompassing preoperative PET/CT images, clinical informa-
tion, and EGFR mutation status, were divided into training (n = 404) and test sets (n = 112). Several deep learning mod-
els were developed utilizing transfer learning, involving CT-only and PET-only models. A dual-stream model fusing 
PET and CT and a three-stream transfer learning model (TS_TL) integrating clinical data were also developed. Image 
preprocessing includes semi-automatic segmentation, resampling, and image cropping. Considering the impact 
of class imbalance, the performance of the model was evaluated using ROC curves and AUC values.

Results  TS_TL model demonstrated promising performance in predicting the EGFR mutation status, with an AUC 
of 0.883 (95%CI = 0.849–0.917) in the training set and 0.730 (95%CI = 0.629–0.830) in the independent test set. Par-
ticularly in advanced LADC, the model achieved an AUC of 0.871 (95%CI = 0.823–0.919) in the training set and 0.760 
(95%CI = 0.638–0.881) in the test set. The model identified distinct activation areas in solid or subsolid lesions associ-
ated with wild and mutant types. Additionally, the patterns captured by the model were significantly altered by effec-
tive tyrosine kinase inhibitors treatment, leading to notable changes in predicted mutation probabilities.

Conclusion  PET/CT deep learning model can act as a tool for predicting EGFR mutation in LADC. Additionally, it 
offers clinicians insights for treatment decisions through evaluations both before and after treatment.
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Background
Non-small cell lung cancer (NSCLC) accounts for 
nearly 85% of primary lung cancers, and adenocarci-
noma (ADC) is the most common subtype [1]. In Asia, 
epidermal growth factor receptor (EGFR) mutations are 
found in up to 50% of ADC patients [2]. In recent dec-
ades, tyrosine kinase inhibitors (TKI) have been shown 
to prolong progression-free survival and improve the 
quality of life in patients with EGFR mutations, espe-
cially those with advanced ADC [3]. Currently, molecu-
lar pathology is the gold standard for determining EGFR 
mutation status, but there are limitations. The limitations 
include sampling bias due to tumor heterogeneity, the 
requirement for invasive biopsies and related complica-
tions, slow detection speed, potentially high costs, and 
the possibility of unreliable results due to insufficient 
quantity or quality of tissue [4]. Additionally, during the 
course of disease treatment and progression, the status of 
EGFR mutations and the immune landscape may change 
[5]. Therefore, there is an urgent need for a noninvasive, 
accurate, simple, and reproducible method to predict 
EGFR mutations.

18 (18F)-fluorodeoxyglucose (FDG) PET/CT is a widely 
accepted noninvasive method for evaluating NSCLC 
[6–9]. Two recent meta-analyses confirmed the mod-
erate predictive capability of SUVmax for EGFR muta-
tions, with AUC = 0.68–0.69 [10, 11]. Recent studies have 
focused on 18F-FDG PET/CT radiomics [12, 13]. Hetero-
geneity is more likely present in tumors with EGFR muta-
tions [12, 14], which radiomics may capture. However, 
PET/CT-based radiomics features showed remarkable 
predictive power for EGFR mutations (AUC = 0.50–0.87) 
[15], yet its clinical application requires further investiga-
tion for confirmation and optimization.

Convolutional neural networks (CNNs) have per-
formed well in lesion detection, segmentation, and clas-
sification [16–18]. Few studies have used PET/CT deep 
learning models to predict EGFR mutations, mainly due 
to the data paucity. The only two PET/CT studies with 
deep learning focused on two-dimensional CNN were 
trained from scratch [19, 20]; although this method 
reduces the processing burden, it inevitably affects its 
performance. Transfer learning (TL) from the pretrained 
model using ImageNet data has been the standard for 
deep learning in medical imaging [21]. This method, 
however, has two limitations: first, the input to the 
model must be two-dimensional (2D), and thus the rich 
anatomical three-dimensional (3D) medical images are 
lost; second, due to the great difference between medi-
cal images and natural images, the performance of TL 
from natural images to medical images is not obvious. 
To overcome these limitations, we employed Models 
Genesis, a pretrained model specifically designed for 3D 

medical imaging data [22]. Unlike other transfer learning 
strategies, such as pretraining through proxy tasks like 
lung nodule segmentation or supervised metric learning 
networks [23], Models Genesis utilizes a self-supervised 
learning strategy. It focuses on learning from 3D image 
information to better utilize the spatial information 
inherent in 3D, demonstrating superiority across multi-
ple 3D medical imaging tasks.

Deep learning offers unique advantages in enhanc-
ing the accuracy of medical image diagnosis, especially 
when integrated with clinical data [24, 25]. These stud-
ies underscore the importance of clinical information in 
constructing efficient deep learning predictive models, 
highlighting the value of clinical data in understand-
ing and predicting the complex biological influences on 
EGFR mutation status in lung adenocarcinoma. In this 
study, we developed a multimodal deep learning model 
based on 18F-FDG PET/CT, which fully harnesses the 
inherent 3D characteristics of medical imaging to align 
more closely with actual clinical scenarios, potentially 
enhancing the accuracy and reliability of EGFR mutation 
prediction. This integrative approach provides a compre-
hensive fusion of radiological and clinical data [26], and 
also enables efficient classification of EGFR mutation 
status.

Methods
Adherence to checklists
This study adhered to the CLEAR checklist [27] for the 
reporting of our radiomics research. The completed 
CLEAR checklist has been listed in Table S1. To ensure 
the transparency and reproducibility of our study, we 
have made all the raw data and analysis code publicly 
available. For detailed links, please refer to Availability of 
data and materials.

Participants
This retrospective single-center cohort study used pri-
vately sourced data, obtaining information from consecu-
tive patients at the Third Affiliated Hospital of Soochow 
University. Patients with histologically confirmed lung 
cancer underwent pretreatment 18F-FDG PET/CT scans 
in our department between January 2018 and April 2022. 
The Institutional Review Board approved this study (No. 
[2022] KD 087) and waived the need for informed con-
sent from the patients. All patient data used in this study 
were fully de-identified to ensure privacy and confiden-
tiality, in accordance with international data protection 
guidelines and standards. The sample size was deter-
mined based on the consecutive patients available dur-
ing the study period. Inclusion criteria: (1) the patient 
was confirmed with lung cancer by surgery or pathologi-
cal biopsy; (2) the patient underwent 18F-FDG PET/CT 
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examination before surgery, and the interval between 
surgery and examination was less than 30 days; (3) the 
patient had definite EGFR test results; and (4) the patient 
had no history of other malignant tumors. Exclusion cri-
teria: (1) other pathological subtypes except for ADC, (2) 
lesions with poor image quality or difficulty in measure-
ment, (3) absence of routine chest CT imaging, and (4) 
severe liver disease or diabetes. Using an internal testing 
technique, we designated 404 patients from January 2018 
to April 2021 as the training set, while the independent 
test set was formed from 112 patients spanning May 2021 
to April 2022. The process of patient enrollment is out-
lined in Fig. 1. All data used in this study have not been 
published or used in any other previous publications.

In this study, we also collected clinical characteristics 
of the patients, which included: age, gender, smoking his-
tory, type of nodules, location of nodules, tumor size, 
clinical stage (I-IV), carcinoembryonic antigen (CEA), 
and maximum standardized uptake value (SUVmax).

EGFR mutation detection
The detection of EGFR mutations was conducted in tissue 
samples obtained by surgical resection or puncture. Muta-
tions in exons 18–21 of the EGFR gene were detected 
using real-time fluorescent PCR. Real-time fluorescent 
PCR was conducted per the instructions of the Shanghai 
Yuanqi EGFR gene mutation detection kit, and the details 
are described in the Supplementary Material EGFR muta-
tion detection method. EGFR mutation was defined if a 

mutation was detected in any of those exons; otherwise, 
wild-type EGFR was defined.

FDG PET/CT image acquisition
The image acquisition protocol was described accord-
ing to an acquisition protocol based on the Imaging 
Biomarker Standardization Initiative (IBSI) reporting 
guidelines [28]. The image acquisition parameters are 
listed in Table S2. The patient underwent non-contrast 
chest CT imaging and 18F-FDG PET/CT (Biograph mCT 
64, Siemens, Erlangen, Germany) within one month 
before surgical treatment. Before the administration of 
18F-FDG, the blood glucose levels of the patients were 
checked to ensure they were within the acceptable range 
(< 150  mg/dL). According to the European Association 
of Nuclear Medicine (EANM) guidelines 1.0 (version 
2.0, published in February 2015) [29], 18F-FDG PET/CT 
images were acquired 60 ± 5 min after 18F-FDG injection. 
All PET/CT images were reconstructed on a processing 
workstation (TrueD software, Siemens Healthcare).

Image segmentation and pre‑processing
A nuclear medicine physician with over 10  years of 
experience selected regions of interest on PET and CT 
images, and all images were segmented using 3D-Slicer 
(version 4.11.20200930, www.​slicer.​org). For CT images 
(3  mm), we utilized a semi-automatic method with 
NVIDIA AI-assisted annotation (3D-Slicer built-in) 
and a boundary-based CT segmentation model to pro-
cess the lung nodule images. For PET images, 3D masks 

Fig. 1  Flowchart of patient enrollment. LADC, lung adenocarcinoma; NSCC-NOS, non‑small cell carcinoma‑not otherwise specified

http://www.slicer.org


Page 4 of 13Shao et al. BMC Medical Imaging           (2024) 24:54 

were generated using a semi-automatic segmentation 
method developed by Beichel et al. [30]. Please refer to 
Supplementary Material-PET/CT image pre-processing 
for deep learning for details.

Development of the deep learning models
The overall approach to developing the deep learning 
model is summarized in Fig. 2. To initialize the encoder 
for the target classification task, we employed Mod-
els Genesis, an openly available deep learning model on 
GitHub (https://​github.​com/​MrGio​vanni/​Model​sGene​
sis.​git). We subsequently fine-tuned it in accordance with 
the specific requirements of our target task. The struc-
ture diagrams of four 3D CNNs, namely CT TL (CT_TL), 
PET TL (PET_TL), dual-stream TL (DS_TL, fusing PET 
and CT), and three-stream TL (TS_TL, adding clinical 
data to PET and CT) networks, are depicted in Fig. S1. 
Additionally, we trained two models from scratch (CT_
origin and PET_origin). Details of the model training 
and tuning are described in the Supplementary Material-
Training of deep learning models.

Visualization of deep learning models
A visualization method, Grad-CAM, was adopted to 
explain the prediction process of the deep learning 
models [31]. High-reaction regions (predicted tumor-
associated areas) were retained with a cutoff value of 
0.5. When the deep learning model predicts the EGFR 
mutation status, it informs the clinician which areas 
attracted the model’s attention (divided into wild and 
mutant type-associated activation areas). We selected 
only 3D input cross-sectional intermediate layer images 
for visualization.

Statistical analysis
Statistical analysis of clinical data and routine PET/CT 
metabolic parameters was performed using R software 

(version 3.4.3; http://​www.R-​proje​ct.​org/). The model’s 
performance was assessed using receiver operating char-
acteristic (ROC) curves and quantified by calculating 
area under the receiver operating characteristic curve 
(AUC) and 95% confidence intervals (CI). In addition, we 
further evaluated the model by calculating accuracy, sen-
sitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) to obtain comprehensive 
quantitative performance metrics. Due to the presence 
of class imbalance in the data, we chose AUC as the pri-
mary performance metric for the model. A pairwise com-
parison of the AUC values of the models was performed 
using the method proposed by Delong et al. [32]. All sta-
tistical tests were two-sided, and statistical significance 
was interpreted as p < 0.05. In this study, no missing data 
was encountered.

Results
Clinical characteristics of patients
Table  1 describes the clinical characteristics of 516 
patients, of which 202 (39.1%) were with wild-type EGFR 
and 314 (60.9%) exhibited EGFR mutations. During our 
analysis, we observed significant differences in clinical 
characteristics such as gender, smoking history, type of 
nodules, tumor long axis, and tumor short axis between 
patients with EGFR mutations and those with wild-type 
EGFR (with p < 0.05 in both the training and test sets). 
Based on these observations and informed by clinical 
prior knowledge [33, 34], we decided to incorporate these 
characteristics as clinical information in constructing 
TS_TL based on PET/CT images. During this process, 
we normalized the quantitative indicators to ensure they 
fall within the range of 0 to 1, aligning with the scale of 
the normalized PET/CT image data. For categorical vari-
ables, we retained their original binary format, allowing 
for the consideration of clinical variable diversity in the 
construction of the TS_TL model.

Fig. 2  Overall pipeline for deep learning model development

https://github.com/MrGiovanni/ModelsGenesis.git
https://github.com/MrGiovanni/ModelsGenesis.git
http://www.R-project.org/
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Diagnostic validation of several deep learning models
The predictive performance of several deep learning 
models in the test set is listed in Table 2 (see Table S3 for 
training set). In the training set, TS_TL showed the best 
predictive performance (AUC = 0.883), further confirmed 

in the independent test set (AUC = 0.730). CT_TL and 
PET_TL outperformed CT_origin and PET_origin in 
both training and test sets, with significant improvement 
in test set for CT_TL (AUC = 0.701 vs. 0.544, p = 0.027) 
and in training set for PET_TL (AUC = 0.770 vs. 0.619, 

Table 1  Clinical characteristics of patients with different EGFR mutation statuses in the training and test sets

Data in the table were expressed as Mean (SD) or Median (Q1-Q3) / N (%)

Training Set
n = 404

Test Set
n = 112

EGFR Wild-type Mutation p-value Wild-type Mutation p-value

N 161 243 41 71

Age (years) 64.8 (9.1) 63.7 (9.2) 0.210 64.2 (8.8) 63.2 (9.4) 0.556

Gender  < 0.001 0.018

Female 51 (31.7%) 162 (66.7%) 13 (31.7%) 39 (54.9%)

Male 110 (68.3%) 81 (33.3%) 28 (68.3%) 32 (45.1%)

Smoking history 87 (54.0%) 54 (22.2%)  < 0.001 18 (43.9%) 16 (22.5%) 0.018

Type of nodules  < 0.001 0.030

Solid 128 (79.5%) 147 (60.5%) 32 (78.1%) 41 (57.8%)

Subsolid 33 (20.5%) 96 (39.5%) 9 (22.0%) 30 (42.3%)

Location of nodules 0.645 0.662

Upper right 47 (29.2%) 81 (33.3%) 10 (24.4%) 21 (29.6%)

Middle right 6 (3.7%) 14 (5.8%) 4 (9.8%) 8 (11.3%)

Lower right 34 (21.1%) 50 (20.6%) 12 (29.3%) 14 (19.7%)

Upper left 44 (27.3%) 63 (25.9%) 9 (22.0%) 21 (29.6%)

Lower left 30 (18.6%) 35 (14.4%) 6 (14.6%) 7 (9.9%)

Tumor long axis (mm) 32.1
(20.7–47.2)

25.6
(20.3–37.6)

0.002 40.7 (29.5–49.5) 29.4 (23.5–38.3) 0.006

Tumor short axis (mm) 23.2 (14.6–33.2) 19.0 (14.3–27.7) 0.015 29.6 (24.1–33.4) 22.2 (16.0–28.4) 0.006

Clinical stage 0.005 0.228

I 52 (32.3%) 125 (51.4%) 8 (19.5%) 25 (35.2%)

II 12 (7.5%) 3 (1.2%) 4 (9.8%) 5 (7.0%)

III 33 (20.5%) 35 (14.4%) 8 (19.5%) 9 (12.7%)

IV 64 (39.8%) 80 (32.9%) 21 (51.2%) 32 (45.1%)

CEA (ng/ml) 5.24
(2.61–15.61)

3.23
(1.60–12.25)

0.016 5.08
(2.42–13.39)

5.28
(2.09–18.68)

0.880

SUVmax 13.03
(6.27–18.21)

10.14
(3.44–17.51)

0.005 15.60
(8.51–20.67)

13.55
(4.85–17.97)

0.114

Table 2  Predictive performance of several deep learning models in the test set

Bold numbers indicate the best results for each evaluation metric

AUC​ Area under the receiver operating characteristic curve, PPV positive predictive value, NPV Negative predictive value, CT_origin CT model from scratch, CT_TL CT 
transfer learning, PET_origin PET model from scratch, PET_TL PET transfer learning, DS_TL dual-stream transfer learning, TS_TL three-stream transfer learning

Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

CT_origin 0.544 (0.435–0.653) 0.536 0.507 0.585 0.679 0.407

CT_TL 0.701 (0.595–0.808) 0.688 0.746 0.585 0.757 0.571
PET_origin 0.573 (0.461–0.684) 0.536 0.521 0.561 0.673 0.404

PET_TL 0.645 (0.534–0.756) 0.589 0.549 0.659 0.736 0.458

DS_TL 0.722 (0.622–0.822) 0.661 0.676 0.634 0.762 0.531

TS_TL 0.730 (0.629–0.830) 0.670 0.676 0.659 0.774 0.540
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p < 0.001; Fig. 3 A, B). Also, CT_TL showed high sensitiv-
ity and low specificity in both sets, while PET_TL showed 
low sensitivity and high specificity (Table S3 and Table 2).

The tumor long axis, tumor short axis, tumor stage, 
and SUVmax showed statistical differences between 
the two sets (all p < 0.05), which might be attributed to 
the different compositions of patients at different peri-
ods in our center (Table S4). To eliminate this discrep-
ancy, we performed a hierarchical analysis to validate 
the diagnostic performance of the four TL models for 
different tumor stages (Table S5). For stage I-II tumors, 
TS_TL exhibited significant overfitting (AUC of train-
ing set vs. test set: 0.903 vs. 0.667), while DS_TL had the 

optimal performance in the test set (AUC of training set 
vs. test set: 0.862 vs. 0.708); for stage III-IV tumors, TS_
TL showed the best performance in both training and 
test sets (AUC of training set vs. test set: 0.871 vs. 0.760).

Comparisons of deep learning models and radiomics 
models
We established four radiomics models of CT, PET, 
PET/CT, and PET/CT combined with clinical features 
(CT_RS, PET_RS, DS_RS, TS_RS) and compared them 
with the proposed TL models (Table  3 and Table S6). 
The specific methods for the development of the radi-
omics model are described in the Supplementary 

Fig. 3  ROC curves of different transfer learning models in the training and test sets. AUC, area under the receiver operating characteristic curve; CT_
origin, CT model from scratch; CT_TL, CT transfer learning; PET_origin, PET model from scratch; PET_TL, PET transfer learning; DS_TL, dual-stream 
transfer learning; TS_TL, three-stream transfer learning

Table 3  Comparison of the prediction performance of deep learning models and radiomics models in the test set

Bold numbers indicate the best results for each evaluation metric

AUC​ Area under the receiver operating characteristic curve, PPV Positive predictive value, NPV Negative predictive value, CT_RS CT radiomics, CT_TL CT transfer 
learning, PET_RS PET radiomics, PET_TL PET transfer learning, DS_RS PET/CT radiomics, DS_TL dual-stream transfer learning, TS_RS PET/CT radiomics combined with 
clinical features, TS_TL three-stream transfer learning

Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

CT_RS 0.639 (0.529–0.749) 0.652 0.887 0.244 0.670 0.556

CT_TL 0.701 (0.595–0.808) 0.688 0.746 0.585 0.757 0.571
PET_RS 0.661 (0.552–0.769) 0.643 0.676 0.585 0.738 0.511

PET_TL 0.645 (0.534–0.756) 0.589 0.549 0.659 0.736 0.458

DS_RS 0.620 (0.509–0.730) 0.670 0.831 0.390 0.702 0.571
DS_TL 0.722 (0.622–0.822) 0.661 0.676 0.634 0.762 0.531

TS_RS 0.711 (0.613–0.809) 0.616 0.577 0.683 0.759 0.483

TS_TL 0.730 (0.629–0.830) 0.670 0.676 0.659 0.774 0.540
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Material-Development of four radiomics models, 
Table S7  and Table S8. ROC curves of the four radi-
omics models and SUVmax are shown in Figure S2. 
First, PET_RS outperformed SUVmax in both training 
and test sets but only showed significance in the train-
ing set (training set: AUC = 0.651 vs. 0.582, p = 0.014). 
It was subsequently validated that PET_TL performed 
significantly better in the training set but slightly infe-
rior in the test set than the PET_RS model (training set: 
AUC = 0.770 vs. 0.651, p < 0.001; test set: AUC = 0.645 
vs. 0.661, p = 0.763). CT_TL performed better than 
CT_RS in both training and test sets, with a signifi-
cant improvement in the training set only (training set: 
AUC = 0.739 vs. 0.655, p < 0.001).

Compared to single-modal radiomics models CT_RS 
and PET_RS, DS_RS performed slightly better in the 
training set and worse in the test set, but the differ-
ences were not significant (training set: AUC = 0.662 vs. 
0.655 vs. 0.651, both p > 0.05; test set: AUC = 0.620 vs. 
0.639 vs. 0.661, both p > 0.05). DS_TL performed better 
than DS_RS in both training and test sets (training set: 
AUC = 0.823 vs. 0.662, p < 0.001; test set: AUC = 0.722 vs. 
0.620, p = 0.033).

By combining DS_RS with clinical features, TS_RS out-
performed CT_RS, PET_RS, and DS_RS in both train-
ing and test sets, while statistical significance was only 
noted in the training set (training set: AUC = 0.771 vs. 
0.655 vs. 0.651 vs. 0.662, all p < 0.001). Similarly, TS_TL 
outperformed TS_RS in both training and test sets, with 
statistical significance in training set only (training set: 
AUC = 0.883 vs. 0.771, p < 0.001). When DS_TL was com-
bined with clinical features, TS_TL outperformed DS_TL 
in both training and test sets, with significance shown 
only in the training set (training set: AUC = 0.883 vs. 
0.823, p < 0.001).

TS_TL predicted tumor‑associated areas for solid 
or subsolid lesions of different mutation subtypes
Figure  4 displays six representative solid lesions (three 
wild-type and three mutant) along with TS_TL’s wild and 
mutant type-associated activation areas. In solid lesions, 
TS_TL consistently focuses on the local and peripheral 
areas of the lesion in CT images (Fig. 4a, c, e, g, i, k) and 
most metabolic areas in PET images (Fig. 4b, d, f, h, j, l), 
regardless of wild-type or mutant status.

Figure  5 displays six representative subsolid lesions 
(three wild-type and three mutant) along with TS_TL’s 
wild and mutant type-associated activation areas. For 
subsolid wild-type lesions, the wild type-associated acti-
vation areas in CT and PET images are similar to those 
in solid lesions (Fig.  5a-f ). For subsolid mutant lesions, 
the mutant type-associated activation areas in CT images 
still robustly capture the local and peripheral areas of the 

lesion (Fig.  5g, i, k), while the mutant type-associated 
activation areas in PET images do not effectively capture 
the metabolic areas of the lesion (Fig. 5, j, l).

Changes in mutant type‑associated activation areas 
before and after TKI treatment
Figure 6 shows the changes in the mutant type-associated 
activation areas and the predicted mutation probabil-
ity (P+) before and after TKI treatment in three EGFR-
mutant patients with effective TKI treatment. Both case 
1 and case 2 are solid lesions with non-ideal model pre-
dictions before TKI treatment (P+ values in Fig. 6a, b and 
c, d are both less than 0.5, indicating that the model has 
not yet captured a clear image mutation pattern). The 
P+ values of both cases significantly increase after TKI 
treatment (from 0.462 to 0.679 and from 0.299 to 0.485). 
Looking at the mutant type-associated activation areas 
after treatment (Fig.  6g, h and i, j), they are also simi-
lar to the previously mentioned subsolid mutant lesions 
(refer to Fig.  5g-l), indicating that the treatment has 
changed the image pattern captured by the model. For 
subsolid lesion case 3, there are no obvious mutant type-
associated activation areas in either CT or PET pathways 
before and after treatment (Fig. 6e, f and k, l). However, 
the P+ value increases significantly after treatment (from 
0.373 to 0.620). The changes in classical methods and P+ 
values before and after TKI treatment in 3 cases can be 
seen in Table S9.

Discussion
The development of multimodal biomarkers will be a 
trend in the field of precision oncology in the future [26]. 
Anatomical information represented by CT and func-
tional information represented by PET are naturally com-
plementary, and the integration of FDG PET/CT images 
maintains the sensitivity of CT and the specificity of PET 
[35]. In our study, CT_TL and PET_TL showed high 
sensitivity and high specificity, resulting in improved 
performance of DS_TL, particularly in predicting EGFR 
in early LADC. This might be attributed to the fact that 
the important regions available for accurately predict-
ing EGFR mutations could be better and more easily 
localized using metabolic and anatomical information 
reflected by PET and CT images, respectively [19].

Many studies have revealed clinical factors associ-
ated with EGFR mutation in LADC, such as gender, 
smoking history, and the presence of ground glass 
opacity (GGO) [33]. Before CNN training, we stand-
ardized the CT and PET images through preprocess-
ing, including resampling to match the CNN’s input 
size. This process may partially lose the original lesion 
size information, so to compensate, we specifically 
included tumor long and short axis measurements 
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as additional clinical features into the DS_TL model. 
This is aimed at preserving crucial information about 
tumor size, ensuring the model fully considers the 
actual dimensions of the lesion. By adding gender, 

smoking history, nodule type, and metadata [34], the 
performance of the TS_TL model has been improved, 
especially in predicting advanced LADC.

Fig. 4  TS_TL predicted tumor-associated areas for solid lesions with either EGFR wild-type or mutation. For each submap, the input CT or PET 
image, the attention map, and the model-predicted tumor-associated areas are from left to right. For LADC tumors, the deep learning model 
generated an attention map indicating the importance of each part of the tumor; high-reaction regions (predicted tumor-associated areas) were 
retained with a cutoff value of 0.5. P− and P+ represented the predicted probability of EGFR wild-type and mutant, respectively
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Previous research has shown that radiomic features 
extracted from PET/CT and CT images can predict gene 
expression patterns and EGFR mutation status [14, 36]. 

In their review, Ge et  al. [37] highlighted that machine 
learning-based radiomics (MLR, specifically shallow 
learning), have demonstrated high accuracy in predicting 

Fig. 5  TS_TL predicted tumor-associated areas for subsolid lesions with either EGFR wild-type or mutation. For each submap, the input CT or PET 
image, the attention map, and the model-predicted tumor-associated areas are from left to right. For LADC tumors, the deep learning model 
generated an attention map indicating the importance of each part of the tumor; high-reaction regions (predicted tumor-associated areas) were 
retained with a cutoff value of 0.5. P− and P+ represented the predicted probability of EGFR wild-type and mutant, respectively
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Fig. 6  The mutant type-associated activation areas of the TS_TL in three EGFR-mutant lesions before and after TKI treatment. Case 1 (stage 
IV): A female non-smoker in the 60–65 age range presented with a solid mass in the left lower lung (41.1 × 29.7 mm) with an EGFR mutation 
in exon 20 and received oral poziotinib treatment; through PET/CT re-examination after 21 months, the original lesion shrunk (30.2 × 24.6 mm) 
and its metabolism was lower than before (SUVmax from 14.8 to 10.2). Poziotinib is a novel targeted drug for rare insertion mutations in exon 20 
of EGFR and HER2. Case 2 (stage IV): A male smoker in the 65–70 age range presented with a solid mass in the left upper lung (40.9 × 26.7 mm) 
harboring an exon 21 EGFR mutation. The patient received oral Osimertinib treatment, and after 6 months, a follow-up PET/CT examination 
revealed a significant reduction in the size of the original lesion, which became subsolid (20.7 × 15.9 mm), and a decrease in metabolism (SUVmax 
from 11.8 to 3.9). Case 3 (stage IV): A male non-smoker in the 80–85 age range presented with a subsolid mass in the right upper lung (35.5 × 30.5 
mm) carrying an exon 19 EGFR mutation. The patient received oral Icotinib hydrochloride treatment, and after 46 months, a follow-up PET/CT 
examination revealed a slight reduction in the size of the original lesion (28.5 × 27.9 mm) and a decrease in metabolism (SUVmax from 3.1 to 1.9)
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EGFR mutations. The advantage of CT_TL and PET_TL 
over the radiomics models in this study was insignifi-
cant, possibly due to the small sample size and differ-
ent patient compositions in the training set. We further 
developed the DS_RS model through feature fusion, 
the performance of which in the test set was lower than 
expected, while DS_TL better integrated the informa-
tion of two modes, CT and PET, yielding better gener-
alization. Furthermore, we also found that the input of 
clinical information significantly improved the diagnostic 
performance of DS_RS, while the performance of DS_TL 
showed a mild improvement, which could be explained 
by performance saturation.

For predicting mutation in solid lesions, both CT and 
PET images play a stable role in the model, and similar 
findings were obtained by Yin et al. [20]. Existing studies 
have reported that the features of the edge of the lesions, 
such as spiculation sign [38] and lobulation sign [39], are 
related to EGFR mutation. TS_TL’s attention for solid 
lesions is focused on the tumor periphery with the afore-
mentioned characteristics. For wild-type predictions in 
subsolid lesions, both CT and PET images still play a role 
in TS_TL; however, in mutant predictions, CT images 
take the lead in the model, while PET images fail to cap-
ture the metabolic areas of the lesion effectively. This is 
related to the generally low metabolism of most mutant-
type subsolid lesions [40], which cannot effectively acti-
vate specific convolutional kernels.

Studies have shown that PET/CT can be used to moni-
tor TKI treatment reactions and evaluate the prognosis 
of NSCLC patients [41]. This study found that TKI treat-
ment may change the image patterns captured by the 
model, and the change in P+ value before and after treat-
ment may be superior to traditional indicators, providing 
an indication of therapeutic efficacy. This is because the 
P+ value integrates the lesion image and long-short diam-
eter information (which can be considered a weighted 
combination of these useful factors), closely related to 
efficacy assessment.

However, this study also comes with its limitations. 
(1) Being a single-center study, the wider applicabil-
ity of this model requires external validation, despite 
our methodical assignment of patients to the training 
set and independent test set based on time. (2) Some 
scholars posit that the model’s predicted tumor-asso-
ciated areas could guide clinicians to optimal biopsy 
locations within the tumor, mitigating the sampling 
bias due to tumor heterogeneity [18]. Nonetheless, this 
proposition warrants further exploration through pro-
spective studies, particularly concerning the biological 
interpretation of the said tumor-associated areas.

Conclusions
Our end-to-end deep learning model integrates CT, 
PET, and clinical data to effectively predict EGFR muta-
tion in LADC. This model could also find predicted 
tumor-associated areas strongly linked to EGFR muta-
tion status and help clinicians make patient treatment 
decisions through pre- and posttreatment qualitative 
and quantitative assessment.
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