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Abstract
Purpose Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming 
to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the 
effect of spectral shaping and tube voltage modulation on image quality.

Methods Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube 
voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 
mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-
to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent 
radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor).

Results Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct 
comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In 
ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3–3) was higher 
compared with conventional imaging at 120 kVp (2; 2–2), 100 kVp (1; 1–2), and 80 kVp (1; 1–1) (all p < 0.001). Indicated 
by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927–0.960), interrater reliability was 
excellent.

Conclusions In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image 
quality over Sn 150 kVp and conventional imaging without spectral shaping.
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Introduction
Prevalence of kidney stone disease has increased globally 
over the last decades, even among children [1–3]. Its high 
rate of reoccurrence is well documented, often requiring 
repeated imaging by computed tomography (CT), which 
is nowadays considered the diagnostic modality of choice 
[4, 5]. Although CT outperforms ultrasound with regards 
to sensitivity and specificity, focus has shifted towards 
concerns about radiation dose and possible long term 
side effects for years [6–9].

While the detection of urolithiasis constitutes a high-
contrast imaging task, abdominal imaging in general 
is challenged by the low-contrast properties of paren-
chymal organs. For CT angiography, low tube voltage 
imaging is an established approach to increase contrast 
due to the photoelectric effect [10]. Notably, some stud-
ies suggest a similar advantage at low tube voltages in 
non-contrast examinations [11]. While the relationship 
between radiation dose and tube current is known to be 
linear, i.e., doubling the tube current results in doubling 
the dose, the relationship between dose and tube voltage 
is proportional to the square of the voltage. Thus, a tube 
voltage reduction from 120 to 100 kVp is associated with 
a 33% reduction in radiation dose, and a reduction to 80 
kVp with a decrease by 65% [12]. However, a disadvan-
tage of lower tube voltage lies in the reduced tissue pen-
etration of photons and resulting increase of image noise 
and higher dependency on patient size [12, 13]. Whether 
lower tube currents allow for maintaining sufficient 
image quality particularly depends on the diagnostic task 
[12, 13].

In the last decade, the application of tin filters has 
attracted increasing attention as spectral shaping allows 
for considerable dose savings, particularly for imaging 
of the lungs und paranasal sinus [14–16]. Quantifying 
the dose reduction potential of spectral shaping remains 
difficult, however, as the results of the individual stud-
ies vary considerably [17–19]. Since the use of tin filters 
is also becoming increasingly common for abdominal 
CT examinations in recent years [18, 20, 21], a direct 
comparison between different dose saving techniques is 
warranted.

As excessive radiation reduction may render an exami-
nation diagnostically insufficient, this cadaveric study 
aimed to determine the most efficient ultralow-dose 
scan protocol for unenhanced abdominal CT. In order 
to achieve that, low-kV imaging was compared with tin 
filtration protocols at two different tube voltages on a 
third-generation dual-source CT system.

Methods
For this experimental investigation, scans were per-
formed on eight formalin-fixed cadaveric specimens 
obtained from the local university’s anatomical institute. 

As body donors had volunteered their corpses for scien-
tific and educational purposes during their lifetime, no 
further written informed consent was required. Approval 
for the study was granted by the local ethics committee.

Scan and image parameters
All examinations were performed on a commercially 
available third-generation dual-source CT scanner 
(Somatom Force, Siemens Healthcare GmbH, Forch-
heim, Germany) with an energy-integrating detector sys-
tem. Specimens were examined in supine position with 
elevated arms. Scouts were acquired with identical dose 
settings in anterior-posterior orientation. Each specimen 
was scanned with five different tube settings, of which 
two employed spectral shaping with a 0.6  mm tin filter 
(Sn 100 kVp, Sn 150 kVp). The other settings used tube 
voltages of 120, 100 and 80 kVp. With each tube setting 
used for scans at three different dose levels, a total of 15 
CT examinations were performed on each specimen. Tar-
get volume computed tomography dose indices (CTDIvol) 
were 3 mGy for standard-dose, 1 mGy for low-dose, and 
0.5 mGy for ultralow-dose examinations. Automatic dose 
modulation was activated for all scans, as is mandatory 
in clinical routine. Without repositioning of specimens, 
scan ranges were set with identical length in all 15 con-
secutive scans. All datasets were reconstructed with a 
field of view of 350 mm, a slice thickness of 3 mm and a 
regular soft tissue body kernel (Br36) employing iterative 
reconstruction at a strength level of 3. (Admire, Siemens 
Healthcare GmbH). Window settings were selected at 
400 (width) / 50 (centre) Hounsfield units, while readers 
were allowed to adjust according to personal preferences.

Objective image quality
Standardized regions of interest were placed in the 
spleen, renal cortex, vertebral body and fat tissue at kid-
ney level, each, on three consecutive slices. Mean density 
in Hounsfield units and standard deviation was measured 
to calculate a signal-to-noise ratio (SNR) for each organ 
according to the following formula:

 
SNR =

mean attenuation (organ tissue)
standard deviation (organ tissue)

Subjective image quality
All datasets were independently analysed by three radi-
ologists with at least five years of experience in CT imag-
ing using a commercially available PACS system (Merlin, 
Phönix-PACS, Freiburg, Germany) and diagnostic moni-
tors (30-inch diameter, RadiForce RX660, EIZO, Haku-
san, Japan). For each dataset, readers assessed image 
quality according to a seven-point scale: 1 = very poor; 
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2 = poor; 3 = fair; 4 = satisfactory; 5 = good; 6 = very good; 
7 = excellent.

Statistics
The statistical analysis was conducted using special-
ized software (IBM SPSS Statistics, Armonk, USA). Kol-
mogorov-Smirnov tests were used to examine the normal 
distribution of cardinal variables. If variables were nor-
mally distributed, they are presented as mean ± standard 
deviation. Nonparametric variables are reported as abso-
lute and relative frequencies, along with median values 
and interquartile ranges. Friedman tests were employed 
to compare ordinal-scaled variables, while one-way 
repeated measures ANOVA was used for comparing 
continuous data. Pairwise post-hoc tests were conducted 
with Bonferroni adjustment to account for multiple com-
parisons. The intraclass correlation coefficient (ICC) was 
calculated based on absolute agreement of single mea-
sures using a two-way random effects model. The ICC 
values were categorized according to established guide-
lines [22]. Statistical significance was determined at 
p-values of less than 0.05.

Results
Radiation dose
With automatic exposure control activated, the standard-
dose protocols were associated with a mean CTDIvol of 
2.93 mGy ± 0.49 mGy across the performed 40 scans. 
While the low-dose protocols resulted in a mean CTDIvol 
of 0.93 mGy ± 0.19 mGy, the ultralow-dose protocols 
resulted in a mean CTDIvol of 0.47 ± 0.09 mGy. No sub-
stantial difference in radiation dose was ascertained for 
the five individual tube voltage settings on each dose 
level (all p > 0.05). Table  1 provides a detailed display of 
the radiation dose administered in each specimen.

Objective image quality
While Sn 100 kVp provided the highest SNR within each 
dose level, SNR decreased with lower applied CTDIvol. 
In direct comparison to Sn 150 kVp, superior SNR was 
ascertained for Sn 100 kVp in spleen (p ≤ 0.004) and kid-
ney tissue (p ≤ 0.009) at all three dose levels. In contrast, 
no significant difference could be ascertained among 
the tin prefiltration protocols for bone and fat tissue. 
Detailed SNR comparisons between all protocols in every 
tissue are provided in Fig. 1 for standard dose, in Fig. 2 
for low-dose, and in Fig. 3 for ultralow-dose imaging. A 
comprehensive overview of SNR values is provided in 
Table 2.

Subjective image quality
Higher radiation dose resulted in superior image quality 
ratings regardless of tube voltage setting. For each dose 
level, Friedmans rank-based ANOVA revealed significant Ta
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Fig. 2 Irrespective of tissue, images acquired with Sn 100 kVp resulted in the highest signal-to-noise ratio at a low dose level (CTDIvol = 1 mGy)
Note. CI– conventional imaging protocol without tin prefiltration

 

Fig. 1 Boxplots illustrate differences in quantitative image quality assessment. At a standard dose level (CTDIvol = 3 mGy), image acquisition with tin 
filtration at 100 kVp generated the highest signal-to-noise levels of all scan protocols in every tissue
Note. CI– conventional imaging protocol without tin prefiltration
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differences between the five individual scan settings (all 
p < 0.008). On a standard dose level, pairwise post-hoc 
analyses demonstrated superior image quality of Sn 100 
kVp (median score 7; interquartile range 6–7; p = 0.001) 
and Sn 150 kVp (6; 6–7; p = 0.019) compared to 80 kVp 
imaging (6; 6–6). Only Sn 100 kVp was found to be supe-
rior to 100 kVp (p = 0.009), however. In ultralow-dose 
scans, subjective image quality of Sn 100 kVp (3; 3–3) was 
deemed higher compared to conventional imaging at 120 
kVp (2; 2–2), 100 kVp (1; 1–2), and 80 kVp (1; 1–1) (all 
p < 0.001). Sn 150 kVp (3; 2–3) was considered superior 
to 100 kVp and 80 kVp imaging (both p < 0.001), albeit 
equal to 120 kVp (p = 0.071). Among the three tube set-
tings without spectral shaping, no significant difference 
was ascertained at any dose level (p ≥ 0.156). Detailed 
results of the subjective image quality analyses are given 
in Table  3. Figure  4 provides representative CT images 
for the five different tube settings at an ultralow-dose 
level of 0.5 mGy. An ICC of 0.945 (95% confidence inter-
val: 0.927–0.960) indicated excellent interrater reliability.

Discussion
This experimental study aimed to evaluate the benefits of 
spectral shaping versus conventional and low-kV imaging 
for radiation dose reduction in unenhanced abdominal 
CT. We were able to ascertain the superiority of tin-
filtered scans at 100 kVp over all other voltage settings, 

Table 2 Signal-to-noise ratios were calculated for all 
scan protocols and tissues. Results are presented as mean 
values ± standard deviations
Tissue Tube voltage Standard-dose 

protocol
Low-dose 
protocol

Ultralow-
dose 
protocol

Spleen Sn 100 kVp 4.74 ± 1.32 3.04 ± 0.92 2.33 ± 0.77
Sn 150 kVp 3.76 ± 1.22 2.54 ± 0.83 1.98 ± 0.55
120 kVp 3.88 ± 1.26 2.68 ± 0.84 1.73 ± 0.52
100 kVp 4.04 ± 1.14 2.54 ± 0.89 1.78 ± 0.60
80 kVp 3.42 ± 1.25 2.25 ± 1.04 1.33 ± 0.47

Kidney Sn 100 kVp 4.45 ± 1.22 2.79 ± 0.74 2.20 ± 0.82
Sn 150 kVp 3.57 ± 1.13 2.17 ± 0.72 1.66 ± 0.53
120 kVp 3.67 ± 1.35 1.96 ± 0.63 1.57 ± 0.64
100 kVp 3.84 ± 1.43 2.37 ± 0.87 1.47 ± 0.41
80 kVp 3.45 ± 1.30 2.36 ± 1.11 1.22 ± 0.46

Bone Sn 100 kVp 4.61 ± 2.36 3.88 ± 1.97 3.26 ± 1.49
Sn 150 kVp 3.97 ± 2.24 3.34 ± 1.95 2.85 ± 1.66
120 kVp 4.28 ± 2.18 3.40 ± 1.58 3.03 ± 1.76
100 kVp 4.24 ± 2.04 3.54 ± 1.57 2.91 ± 1.37
80 kVp 4.05 ± 1.83 3.43 ± 1.64 2.98 ± 1.37

Fat Sn 100 kVp 10.19 ± 6.19 6.44 ± 4.10 5.00 ± 4.41
Sn 150 kVp 8.24 ± 7.70 4.62 ± 2.17 3.51 ± 2.35
120 kVp 8.08 ± 3.74 5.90 ± 4.54 3.61 ± 1.97
100 kVp 9.47 ± 5.91 6.12 ± 4.48 4.21 ± 4.08
80 kVp 9.09 ± 4.96 5.67 ± 3.15 3.45 ± 1.94

Fig. 3 At an ultralow dose level (CTDIvol = 0.5 mGy), spectral shaping at 100 kVp produced the highest SNR levels for each investigated tissue
Note. CI– conventional imaging protocol without tin prefiltration
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with advantages being most pronounced at the ultralow-
dose level of 0.5 mGy. Notably, while the radiation dose 
of all investigated protocols was far below the national 
diagnostic reference standard for abdominal CT, i.e. 15 
mGy [23], the dedicated ultralow-dose protocols realized 
a thirtyfold decrease, yet still providing sufficient image 
quality with spectral shaping at 100 kVp.

Although the results of this study concur with other 
publications that advocate spectral shaping for abdomi-
nal low-dose CT imaging [18, 21, 24, 25], protocols with-
out tin filtration are still commonly applied by many 
radiologists as standard of care [26, 27]. Our findings are 
generally in line with an experimental study by Karma-
zyn et al., who reported that merely decreasing the tube 
voltage is insufficient for adult sized phantoms, especially 
in ultralow-dose imaging [28]. While this investigation 
lacked the assessment of additional tin prefiltration, our 
study included two different voltages settings with spec-
tral shaping. Results indicate that the use of a tin filter at 
150 kVp bears no decisive advantage over conventional or 
low-kV imaging. Therefore, in synopsis with the current 
literature, we postulate that this setting should rather be 
considered for obese patients or in cases where artefacts 
are to be expected due to the presence of metal implants 
[29–31]. Similarly, our findings do not support the supe-
riority of 100 kVp versus 120 kVp, which has been sug-
gested by some authors [27, 32].

On the other side of the spectrum, it is known that 
lowering the tube voltage leads to a redistribution of the 
effective radiation exposure with a higher surface dose 
and increased peripheral absorption of x-ray beams [33]. 
In an earlier patient study comparing a 120 kVp with a 90 
kVp protocol, Nakayama et al. suggested a cut-off value 
of 70 kg for the latter to prevent a significant drop in SNR 
[34]. In contrast to similar studies comprising either Sn 
150 kVp or Sn 100 kVp settings, our investigation bears 
the advantage of comprehensive comparisons between 
all relevant voltage settings at different dose levels for 
various tissues [24, 35]. Taking into account that none of 
the cadaveric samples was of obese stature, the reported 
advantages of Sn 100 kVp protocols regarding SNR and 
subjective image quality at all dose levels are in line with 
current literature [25, 27, 36]. As the detection of urinary 
calculi represents a high-contrast imaging task, suchlike 
examinations are ideally combined with dedicated low-
dose and ultralow-dose scan protocols. In this context, 
prior studies have suggested dose saving potentials rang-
ing from 30% to as much as 50% with regards to kidney 
stone imaging and by as much as 90% in chest imaging 
when combined with automatic tube current modulation 
and iterative reconstruction algorithms [25, 36, 37].

Some limitations must be considered for the pres-
ent study: First, the body donors examined were of nor-
mal constitution, neither being morbidly obese nor Ta
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cachectic. Since the selection of cadavers in this study 
was performed at random, the presence of urinary cal-
culi could not be controlled. Despite this limitation, our 
study provides valuable insights into potential radia-
tion dose reduction strategies in unenhanced abdomi-
nal CT, offering a basis for further investigations with 
larger patient samples. Second, the minimal applicable 
tube current with the employed dual-source scanner in 
a 120 kVp setting is 5 mAs. Although this setting was not 
selected in the current study, the limited tube current 
lowering potential could lead to a dose disadvantage in 
slim patients, while rendering a dose-comparable study 
at 150 kVp technically impossible. In clinical practice, 
however, it can be assumed that the automatic tube volt-
age selection prevents this constellation. Third, the dual-
source scanner hardware and tin prefiltration technique 
are exclusive to one particular vendor. However, other 
manufacturers also rely on pre-patient beam filtration 
for hardening of the x-ray spectrum (albeit with different 
materials), enhancing the relevance and generalizability 
of our findings to a broader context. Finally, the present 
study was limited to investigations on energy-integrating 
detector technology. Novel photon-counting detectors 
may provide additional advantages when combined with 
dedicated low-dose protocols for abdominal imaging 
[35].

Conclusion
Ultralow-dose scans of the abdomen, e.g. for the detec-
tion of urinary calculi, benefit from the application of 
spectral shaping with tin filtration at 100 kVp. Com-
pared with low-kV or conventional imaging, both sub-
jective and quantitative image quality were superior with 
Sn 100 kVp. In contrast, employing tin filtration at 150 
kVp did not provide a similar advantage in the investi-
gated sample of cadaveric specimens with normal body 
constitution.

Abbreviations
CTDIvol  Volume computed tomography dose index
Sn  Marks a voltage setting with additional tin prefiltration
SNR  Signal-to-noise ratio
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