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Abstract 

Background  Tumor mutational burden (TMB) is one of the most significant predictive biomarkers of immuno-
therapy efficacy in non-small cell lung cancer (NSCLC). Radiomics allows high-throughput extraction and analysis 
of advanced and quantitative medical imaging features. This study develops and validates a radiomic model for pre-
dicting TMB level and the response to immunotherapy based on CT features in NSCLC.

Method  Pre-operative chest CT images of 127 patients with NSCLC were retrospectively studied. The 3D-Slicer soft-
ware was used to outline the region of interest and extract features from the CT images. Radiomics prediction model 
was constructed by LASSO and multiple logistic regression in a training dataset. The model was validated by receiver 
operating characteristic (ROC) curves and calibration curves using external datasets. Decision curve analysis was used 
to assess the value of the model for clinical application.

Results A total of 1037 radiomic features were extracted from the CT images of NSCLC patients from TCGA. LASSO 
regression selected three radiomics features (Flatness, Autocorrelation and Minimum), which were associated 
with TMB level in NSCLC. A TMB prediction model consisting of 3 radiomic features was constructed by multiple logis-
tic regression. The area under the curve (AUC) value in the TCGA training dataset was 0.816 (95% CI: 0.7109–0.9203) 
for predicting TMB level in NSCLC. The AUC value in external validation dataset I was 0.775 (95% CI: 0.5528–0.9972) 
for predicting TMB level in NSCLC, and the AUC value in external validation dataset II was 0.762 (95% CI: 0.5669–
0.9569) for predicting the efficacy of immunotherapy in NSCLC.

Conclusion The model based on CT radiomic features helps to achieve cost effective improvement in TMB classifica-
tion and precise immunotherapy treatment of NSCLC patients.
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Introduction
Lung cancer is the leading cause of cancer-related deaths 
worldwide [1]. Non-small cell lung cancer (NSCLC) 
accounts for about 85% of all lung cancers. Lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC) are the most predominant types of NSCLC [2]. 
Patients with early-stage NSCLC can be treated by sur-
gical resection, but about 75% of patients are already 
in advanced stages when they are first diagnosed [3]. 
Although progress on molecular targeted therapy and 
immunotherapy has been made to substantially improve 
the survival of advanced NSCLC, the overall 5-year sur-
vival rate is still low (~ 20%) [4]. For NSCLC patients 
harboring actionable mutations (EGFR, ALK or ROS1 
etc.), targeted therapy is more effective than other ther-
apies [5]. However, for the selection of NSCLC patients 
responsive to immunotherapy, there is no effective, eas-
ily-detectable and low-cost predictive biomarker.

Despite rapid advances of immunotherapy in NSCLC, 
only a minority of patients respond to immune check-
point blockade with anti-PD-1 and PD-L1 antibodies. 
PD-L1 expression detected by immunohistochemistry 
(IHC), and tumor mutational burden (TMB) measured 
by next generation sequencing (NGS) are the best-stud-
ied biomarkers for the response to immunotherapy in 
NSCLC [6]. For NSCLC patients whose tumors have high 
PD-L1 expression, overall survival (OS) and progression-
free survival (PFS) of patients treated by immune check-
point inhibitor are thought to be superior to first-line 
chemotherapy regimens [7]. But a previous study has 
indicated that only 44.8% of NSCLC patients achieved 
an objective response when treated with PD-L1 anti-
body pembrolizumab monotherapy, even in a highly 
selected patient population (PD-L1 expression ≥50%) [8]. 
Another study showed that for NSCLC patients (PD-L1 
expression ≥5%), median PFS was 4.2 months for patients 
treated with PD-1 antibody nivolumab and 5.9 months 
for patients treated with chemotherapy [9]. These studies 
show that high PD-L1 expression could not be an effec-
tive biomarker to delineate the beneficiary population for 
immunotherapy.

TMB is defined as the total number of somatic non-
synonymous mutations detected per million bases [10]. 
If tumors have more somatic non-synonymous mutations 
that are transcribed and translated with more neoanti-
gens that the body does not recognize, these neoantigens 
will activate T lymphocytes and other relevant immune 
cells. Therefore, TMB is considered a biomarker of 
immune response to PD-1/PD-L1 inhibitors in NSCLC 
patients [11]. Studies have indicated that NSCLC patients 
with higher TMB had a better prognosis compared to 
those with relatively lower TMB, when treated with 
immunotherapy. Pan et al. demonstrated a median OS of 

18 months for NSCLC patients (TMB ≥ 10) treated with 
pembrolizumab (11 months for TMB < 10) [12]. Carbone 
et al. also indicated that NSCLC patients with high TMB 
treated with nivolumab had a median PFS of 9.7 months, 
which was longer than those treated with chemotherapy 
(5.8 months) [9]. Another study showed that for NSCLC 
patients with high TMB (TMB ≥ 10) and negative PD-L1 
expression, patients treated with nivolumab in combina-
tion with ipilimumab had longer median PFS than those 
treated with chemotherapy (7.7 months vs 5.3 months) 
[13]. The PD-1 monoclonal antibody pembrolizumab has 
been approved by the US Food and Drug Administration 
(FDA) for the treatment of solid tumors with high TMB 
levels [14] . Although TMB is thought to predict the 
response to PD-1/PD-L1 blockade in NSCLC patients, 
TMB needs to be accurately calculated by whole exome 
sequencing (WES), a method that is expensive and unaf-
fordable for most patients [15]. It may be impractical for 
clinical use because clinical samples are not available for 
advanced inoperable patients [16]. With the development 
of second-generation sequencing, although panel-based 
sequencing of tumor tissues is common in clinical prac-
tice, there are differences in panel size [17]. Therefore, 
it is of clinical significance to develop non-invasive and 
cost-effective predictive biomarkers for immunotherapy 
in NSCLC.

The radiomics technique is inexpensive, non-inva-
sive, time-consuming and easy to perform, overcoming 
the above-mentioned shortcomings [18]. The images 
obtained from computed tomography (CT) scans show 
a potential correlation between deep tumor features and 
TMB status that can be quantitatively analyzed [19]. In 
addition, the machine learning approaches can link the 
molecular and imaging characteristics of patients’ tumors 
[20]. Therefore, in this study, a model to predict TMB 
levels in NSCLC patients was developed by using CT 
images-based radiomics techniques, and the predictive 
value of this model for the response of immunotherapy in 
NSCLC patients was also evaluated.

Methods
Study population and image acquisition
This retrospective study included three datasets, a train-
ing dataset and two external validation datasets. The 
training dataset was NSCLC patients from The Cancer 
Genome Atlas (TCGA). Chest CT images of NSCLC 
patients from TCGA were downloaded from The Can-
cer Imaging Archive database (TCIA) [21]. TMB and 
clinical data of NSCLC patients with same TCIA patient 
identifiers were downloaded from TCGA database [22]. 
The inclusion criteria were: 1) pathological diagnosis of 
NSCLC; 2) preoperative CT scan of the chest and good 
quality of preoperative CT images of the chest; 3) CT 
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images of the chest in the non-contrast-enhanced period; 
4) TMB information can be obtained. Finally, 62 eligi-
ble NSCLC patients from the TCIA-LUAD and TCIA-
LUSC cohorts were selected as the training set (Fig. 1A 
and B). Using the same CT image inclusion criteria, 18 
and 47 NSCLC patients were recruited from the Hefei 
Cancer Hospital (HFCH), Chinese Academy of Sciences 
as validation set I and validation set II, respectively. 
NSCLC patients in validation set I had the targeted NGS 
sequencing, and NSCLC patients in validation set II had 
the immunotherapy from July 31, 2021-August 30, 2022. 
All CT images were retrieved from the Picture Archiving 
and Communication System (PACS; CAREstream Medi-
cal Ltd.) and all data were stored in Digital Imaging and 
Communications in Medicine (DICOM) format.

CT imaging parameters
In the training set, non-contrast enhanced CT images of 
the chest were obtained from three different manufac-
turers: Philips (https:// www. phili ps. com. cn/ healt hcare), 
General Electric (GE, https:// www. gehea lthca re. cn) and 
Siemens (https:// www. sieme ns- healt hinee rs. cn) Medical 
Systems, respectively. In the validation set, CT images 
were acquired using a 256-layer Brilliance iCT scanner 
from Philips. CT image scanning parameters: tube volt-
age, 110–120 kV; tube current, 100–150 mAS; rotational 
speed, 0.5 s; reconstructed slice thickness, 1–5 mm; 
matrix, 512*512; kernel function, standard.

Region of interest segmentation and features extraction
The CT images were imported into the 3D-Slicer soft-
ware (version 5.1.0, https:// www. slicer. org/) [23] and read 
using a longitudinal window (window width 400, win-
dow position 40). The image dataset was very diverse in 
terms of manufacturers, scanning parameters (modes), 
etc. In order to standardize the images, we reconstructed 
the CT images using a soft tissue algorithm. The resam-
pling voxel size was 3*3*3 mm and LoG kernel size was 
4*5 mm. A respiratory physician and a thoracic surgeon 
used the software’s built-in mapping tool to manually 
delineate the location of tumors in the training and vali-
dation sets, respectively. The regions of interest (ROI) 
of all images were checked by a radiologist. If there was 
an obvious inconsistency of opinions between the three 
observers, an agreement was reached through a discus-
sion. Then, the 3D reconstruction function of the soft-
ware was used to reconstruct the segmented 2D ROI into 
a 3D stereo state. This study used coronal, sagittal and 
cross-sectional reconstructed images. Next, radiomics 
features were extracted from the ROI using the built-in 
plug-in of 3D-Slicer software, SlicerRadiomics (version 
a57d142) [23]. The radiomics features were classified into 
four catalogues as follows: 1) morphological features; 2) 

first-order grayscale histogram features; 3) second-order 
and higher-order texture features; and 4) wavelet-based 
features. All radiomics features were normalized by 
z-score, and mapped to around 0.

Calculation of TMB
In the training set, the NSCLC tumors of TCGA sam-
ples were sequenced by WES. TMB was calculated as the 
number of somatic nonsynonymous mutations divided 
by the full exon chip size (38 Mb). Based on the median 
TMB of all samples, all patients were divided into a high 
TMB cohort (n = 30, TMB > 6.711, range 6.842–25.500) 
and a low TMB cohort (n = 32, TMB < 6.711, range 
0.526–6.711).

In the validation set I, the tumor samples of NSCLC 
patients were subjected to NGS using cancer-related 
targeted genes panel. TMB was estimated by the num-
ber of base mutations per megabase, which was cal-
culated by the number of somatic nonsynonymous 
mutations divided by total panel size of target sequenc-
ing region (0.26 Mb).

The determination of immunotherapy response
In validation set II, each patient was treated by immuno-
therapy with PD-L1 inhibitor tislelizumab. Immunother-
apy response was assessed by an experienced physician, 
according to the iRECIST criteria. Immune complete 
response (iCR), immune partial response (iPR) and 
immune stable disease (iSD) were defined as response to 
immunotherapy. Immune confirmed progression (iCPD) 
was defined as non-response to immunotherapy [24].

Feature selection and radiomics feature model 
construction
In order to keep the parameters as simple as possible 
while ensuring the best fit error and making the model 
generalizable, the least absolute shrinkage and selec-
tion operator (LASSO) regression was used to perform 
dimensionality reduction on high-dimensional data 
and select radiomics features as independent TMB pre-
dictors. Wilcoxon rank-sum test was used to show the 
potential association between selected radiomics features 
and TMB levels. Finally, a multivariate logistic regression 
algorithm was used to construct a model to predict TMB 
level. The model was presented in the form of a nomo-
gram. Variance inflation factors (VIF) were calculated 
to determine whether each independent predictor has 
multicollinearity.

Model evaluation and statistical analysis
The receiver operating characteristic (ROC) curve was 
plotted and the area under the curve (AUC) was calcu-
lated to evaluate the accuracy of the model prediction. 

https://www.philips.com.cn/healthcare
https://www.gehealthcare.cn
https://www.siemens-healthineers.cn
https://www.slicer.org/
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Fig. 1 The study workflow and datasets. A The study workflow. B The training sets. The preoperative chest CT images and TMB data are available 
in 62 NSCLC patients from TCGA. C Validation set I. The preoperative chest CT images and estimated TMB data are available in 18 NSCLC patients 
from Hefei Cancer Hospital (HFCH), Chinese Academy of Sciences. D Validation set II. The preoperative chest CT images and immunotherapy 
response data are available in 47 NSCLC patients from Hefei Cancer Hospital (HFCH), Chinese Academy of Sciences
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The maximum point of the Youden index (ie, sensitivity 
+ specificity - 1) was used to define the optimal thresh-
old of the ROC curve. Sankey energy shunt diagrams 
were drawn online using the BioLadder bioinformat-
ics cloud platform (https:// www. biola dder. cn/ web/#/ 
chart/ 59). Calibration curve was used to determine 
the agreement between predictions and observations. 
A decision curve analysis (DCA) was performed to 
observe the overall net benefit of the prediction model 
to assess clinical usability. The Pearson’s Chi-squared 
test, Fisher’s exact test and Wilcoxon rank sum test 
were used to determine whether there was a significant 
difference between data that obeyed or did not obey 

a normal distribution (two-sided p-value< 0.05). The 
statistical analyses and machine learning algorithms 
involved in this study were performed using R software 
(Version: R 4.1.3; http:// www.R- proje ct. org).

Result
The clinical characteristics of NSCLC patients
The flowchart of this study was shown in Fig.  1A. The 
clinicopathological features of all NSCLC patients from 
the training dataset and the two validation datasets were 
shown in Table 1. In the TCGA training dataset, non-con-
trast enhanced CT images of the chest and TMB values 
were available in 62 NSCLC patients. The WES data of 62 

Table 1  Clinicopathological features of NSCLC patients in the training and validation datasets

Characteristics Overall
N = 127

Training set N = 62 Validation I set
N = 18

Validation II set
N = 47

Gender
 Female 34 (27%) 24 (39%) 6 (33%) 4 (8.5%)

 Male 79 (62%) 24 (39%) 12 (67%) 43 (91%)

 Unknow 14 (11%) 14 (22%) 0 (0.0%) 0 (0.0%)

Clinical T stage
 T1-T2 54 (43%) 39 (63%) 7 (39%) 8 (17%)

 T3-T4 39 (31%) 9 (14%) 8 (44%) 22 (47%)

 Unknow 34 (27%) 14 (23) 3 (17%) 17 (36%)

Clinical N stage
 N0-N1 50 (39%) 40 (64%) 5 (28%) 5 (11%)

 N2-N3 44 (35%) 8 (13%) 11 (61%) 25 (53%)

 Unknow 33 (26%) 14 (23%) 2 (11%) 17 (36%)

Clinical M stage
 M0 57 (45%) 39 (63%) 2 (11%) 16 (34%)

 M1 29 (23%) 2 (3.0%) 13 (72%) 14 (30%)

 Unknow 41 (32%) 21 (34%) 3 (17%) 17 (36%)

Clinical TNM stage
 Stage I-II 33 (26%) 31 (50%) 0 (0.0%) 2 (4.0%)

 Stage III-IV 68 (54%) 16 (26%) 15 (83%) 37 (79%)

 Unknow 26 (20%) 15 (24%) 3 (17%) 8 (17%)

Age, median (range) 66 (39–84) 66 (39–84) 64 (50–79) 66 (54–79)

Histology
 LUAD 56 (44%) 19 (31%) 18 (100%) 19 (40%)

 LUSC 57 (45%) 29 (47%) 0 (0.0%) 28 (60%)

 Unknow 14 (11%) 14 (22%) 0 (0.0%) 0 (0.0%)

(See figure on next page.)
Fig. 2  Three TMB-associated radiomics features are selected. A Radiomics workflow for the study. The ROI of the tumor is segmented 
and reconstructed to extract high-dimensional radiomics features. B The unsupervised clustering heatmap shows all the radiomic features 
extracted from the tumor ROI of 62 NSCLC patients in the training set. C The LASSO regression was used to select the radiomics features associated 
with TMB. The left panel shows the tuning parameter (λ) of the LASSO regression model selected by the 10-fold cross-validation method based 
on the minimum criterion. The right panel shows the LASSO coefficient profile consisting of 1037 radiomics features. The dashed vertical upper 
x-axis represents the average number of radiomics features and the dashed vertical lower x-axis corresponds to a log(λ) value of − 2.117. D The 
Z-score values for three features of NSCLC patients between high TMB and low TMB. E The heatmap of the correlation between radiomics features 
and TMB in the training set

https://www.bioladder.cn/web/#/chart/59
https://www.bioladder.cn/web/#/chart/59
http://www.r-project.org


Page 6 of 13Wang et al. BMC Medical Imaging           (2024) 24:45 

NSCLC tumors were downloaded from the TCGA data-
base and their TMB values were calculated, and the median 
TMB value of all samples was 6.711. The median TMB was 
used as a criterion for dichotomous classification. When 

the TMB was greater than 6.711, it was considered high 
TMB, otherwise it was considered low TMB (Fig. 1B).

In Validation Set I, non-contrast enhanced CT images 
of the chest were available in 18 NSCLC patients from 

Fig. 2 (See legend on previous page.)
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Hefei Cancer Hospital (HFCH), Chinese Academy of 
Sciences. The tumor samples of NSCLC patients were 
subjected to targeted NGS detection. The estimated 
TMB was calculated by the number of somatic nonsyn-
onymous mutations divided by total panel size of tar-
get sequencing region (0.26 Mb). The estimated median 
TMB value of all samples was 11.5. The median TMB was 
used as a criterion for dichotomous classification. When 
the estimated TMB was greater than 11.5, it was consid-
ered high TMB, otherwise, and when the estimated TMB 
was less than 11.5, it was considered low TMB (Fig. 1C).

In validation set II, non-contrast enhanced CT images 
of the chest were available in 47 NSCLC patients from 
Hefei Cancer Hospital (HFCH), Chinese Academy of Sci-
ences. The 47 NSCLC patients were subjected to immune 
checkpoint inhibitor therapy. 35 patients responded 
to immunotherapy, and the remaining patients did not 
respond to immunotherapy (Fig. 1D).

Selection of radiomics features associated with TMB levels
Figure 2 a illustrated the radiomics workflow for this study. 
In the TCGA training dataset (n = 62), we segmented 
the tumor areas at each layer of the NSCLC patient’s CT 
images. The tumor areas were manually outlined using 3D 
Slicer software, and then reconstructed in three dimen-
sions (Fig. 2A). A total of 1037 different radiomics features 
were extracted from the tumor simulation images (Sup-
plementary Table 1). These 1037 radiomics features were 
divided into six major categories, including first-order, gray 
level co-occurence matrix (GLCM), gray level dependence 
matrix (GLDM), gray level run-length matrix (GLRLM), 
gray level size zone matrix (GLSZM) and neighbouring 
gray tone difference matrix (NGTDM) (Fig. 2B).

We then used LASSO regression algorithm to select 
the radiomics features, which were associated with TMB 
level (Fig.  2C). The three radiomics features, includ-
ing Flatness (shape of original feature), Autocorrelation 
(GLCM) and Minimum (first order of wavelet features), 
were the most associated with TMB levels. The three 
radiomics features exhibited significant differences 
between high and low TMB groups (Fig. 2D).

In Fig. 2E, the three radiomics features showed signifi-
cant correlations between high and low levels of TMB in 
all NSCLC samples. In LUAD, Flatness (shape of original 

feature) exhibited a strong negative correlation with the 
TMB level, and Minimum (first order of wavelet features) 
exhibited a strong significant positive correlation with 
the TMB level. On the contrary, Autocorrelation (GLCM) 
showed a strong positive correlation in LUSC (Fig.  2E). 
These results suggest that, for the TMB correlation, Flat-
ness (shape of original feature) and Minimum (first order 
of wavelet features) have a greater contribution in LUAD, 
while Autocorrelation (GLCM) has a greater contribu-
tion in LUSC. Therefore, the three radiomics features 
were used to build a TMB predictive model in NSCLC.

Development and validation of the TMB predictive model
Using the three radiomics features, we built a TMB 
predictive model by a multivariate logistic regression 
algorithm. The model was presented as a nomogram 
(Fig.  3A). The regression coefficients of the three inde-
pendent variables of the model were shown in Fig.  3B, 
with larger coefficients indicating its greater weight in 
the model. These three radiomics features ranked the 
degree of influence on the prediction model as Autocor-
relation, Minimum and Flatness. The VIF of Flatness, 
Autocorrelation and Minimum were 1.098090, 1.500746 
and 1.600343, respectively, indicating that there was no 
multicollinearity among them. The low Pearson’s correla-
tion analysis indicated that there was no over-fitting and 
interaction among the three radiomics features (Fig. 3C).

We then evaluated the predictive power and accu-
racy of the model according to ROC curve analysis. In 
the TCGA training dataset, the model demonstrated 
good predictive power with an AUC of 0.816 (95% CI: 
0.7109–0.9203). The optimal predictive probability cut-
off value for TMB classification (High or Low) was 0.387 
(specificity: 71.9%, sensitivity: 80.0%) based on the maxi-
mum Youden index (Fig. 3D). In order to show whether 
the model may predict the response of immunother-
apy, TIDE scores were calculated for tumor samples of 
NSCLC patients in the TCGA training set to assess the 
potential clinical efficacy of immunotherapy [25]. The 
spearman correlation test revealed a significant nega-
tive correlation between TIDE scores and TMB levels 
(R = 0.365, P < 0.05) (Fig.  3D), indicating that as TMB 
levels increased, the TIDE scores decreased and the effi-
cacy of immunotherapy increased. The data suggest that 

Fig. 3  Development of the radiomics model and its performance. A The radiomics dynamic nomogram was constructed using the three radiomics 
features, Flatness (shape of original feature), Minimum (first order of wavelet features) and Autocorrelation (GLCM). B Histogram of feature weights 
for logistic regression. C Pearson’s rank correlation among the three radiomic features. D ROC curve of the CT-based nomogram to predict TMB 
in the training set (Left panel). The spearman correlation test between TMB values and TIDE scores. Red dots indicate the NSCLC samples predicted 
high TMB by the radiomics model. Blue dots indicate the NSCLC samples predicted low TMB by the radiomics model. E ROC of the radiomics 
predictive model in two validation sets. F The Sankey diagram shows the patients correctly and incorrectly classified by the radiomics prediction 
model in the training dataset and two validation datasets

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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NSCLC patients with predicted low TMB are more likely 
to benefit from immunotherapy.

In the validation set I, the model was used to predict 
the TMB with an AUC of 0.775 (95% CI: 0.5528–0.9972, 
cutoff: 0.489), indicating its satisfactory TMB classifica-
tion capacity (Fig.  3E). Since higher TMB levels have a 
better response to immune checkpoint inhibitor treat-
ment [26], the model was used to predict the efficacy 
of immunotherapy. In the validation set II, the radiom-
ics model exhibited a high AUC value of 0.762 (95% CI: 
0.5669–0.9569, cutoff: 0.445) to predict the response of 
immunotherapy, with the sensitivity of 77.1% and speci-
ficity of 75.0% (Fig. 3E). The classification results for the 
training and two validation datasets are presented in the 
Sankey diagram (Fig. 3F). Therefore, the radiomics model 
corrects the overfitting problem and demonstrates good 
discrimination and satisfactory performance for predict-
ing TMB and the response of immunotherapy.

Clinical usefulness of the radiomics predictive model
The calibration curves of the radiomics predictive model 
in both the training set and validation sets were shown in 
Fig.  4A. The predicted probabilities of the classification 
model were demonstrated to be very close to the actual 
observed probabilities in the training set and two vali-
dation sets (Fig. 4A). The decision curve analysis (DCA) 
showed that the net benefit of intervening in clinical use 
for any range of threshold probabilities was better than 
either treat-all-patients or treat-none-patients strategies 
in the training set and validation sets (Fig. 4B). As shown 
in Fig.  4C, patient 1# who responded immunotherapy 
was predicted to be high TMB and responsive to immu-
notherapy (predictive probability: 0.761). Patient 2# who 
did not respond immunotherapy was predicted to be low 
TMB and non-responsive to immunotherapy (predic-
tive probability: 0.123). The results demonstrate that the 
model has clinical utility and can help clinicians make 
better clinical decisions.

Discussion
As the treatment of tumors enters the era of immu-
notherapy, immunotherapy is playing an increasingly 
important role in NSCLC. However, the efficiency of 
immunotherapy (mainly immune checkpoint inhibitors) 
in unselected populations is relatively low, and only a 

small proportion of patients can benefit from immuno-
therapy [27]. Therefore, our study developed a radiomics 
models based on preoperative CT images to efficiently 
predict TMB levels and immunotherapy response in 
NSCLC patients.

Our study demonstrated that the radiomics model 
had high AUC values in training set (AUC = 0.816) and 
two validation sets (AUC = 0.775 and AUC = 0.762), sug-
gesting that it is a reliable model for identifying NSCLC 
patients who may benefit from immune checkpoint 
inhibitor therapy. A previous study in advanced NSCLC 
used five radiomic features to construct a model to pre-
dict TMB status with the AUC values of the training 
set and the validation set, 0.795 and 0.731, respectively 
[19]. He et al. combined deep learning and CT images to 
develop a model that can effectively distinguish high and 
low TMB groups in advanced NSCLC. The AUC values 
for the training and test cohorts reached 0.85 and 0.81 
[20]. He et al. developed a CT-based radiomics model to 
predict the response of immunotherapy in patients with 
advanced NSCLC by building a deep learning network. 
The AUCs of prediction performance were 0.81 and 0.78 
in the training and test cohorts, respectively [28]. Com-
pared with these previous studies that used a larger num-
ber of features for establishing a model, our model was 
built using only three radiomics features. This reduces 
the effect of overfitting issue. Furthermore, a previ-
ous study by Yang et  al. investigated the association of 
intra-tumor and peri-tumor areas with TMB level in CT 
images of NSCLC. The study found that nine radiomic 
features in intra-tumor area was associated with TMB, 
while only one radiomic features in peri-tumor area was 
associated with TMB [29]. Therefore, radiomic features 
in intra-tumor area were used to construct TMB predic-
tive model in our study. Moreover, a previous study used 
PET/CT images of NSCLC patients to establish a radi-
omics model, which was able to predict TMB level [30]. 
However, a few patients are required to perform PET/CT 
imaging in clinic, due to its high cost. In addition, previ-
ous studies have use the CT images of pulmonary nod-
ules to construct a model to predict TMB level in early 
stage patients with resectable NSCLC [31, 32]. Gener-
ally, the determination of TMB is to predict the progno-
sis for early stage patients with resectable NSCLC, who 
are usually not treated by immunotherapy. In a word, our 

(See figure on next page.)
Fig. 4 The potential for clinical applications of the radiomics model. A Calibration curve of radiomics prediction model in the training set and two 
validation sets. The solid red line is bias correction by bootstrapping (1000 replicates), indicating the observed radiomics prediction model 
performance. B DCA of radiomics prediction model. The horizontal axis is the threshold probability and the vertical axis is the standard net benefit. 
C CT images of patients who respond and do not respond to immunotherapy. The upper panel shows the CT image before immunotherapy 
and the lower panel shows the CT image after receiving a certain course of immunotherapy. Probabilities of high TMB predicted by the radiomics 
model are indicated
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Fig. 4 (See legend on previous page.)
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and previous studies indicate that the radiomics model is 
an efficient, non-invasive and convenient tool to predict 
TMB and immunotherapy response in NSCLC.

Our study indicated that Flatness (shape of original fea-
ture), Autocorrelation (GLCM) and Minimum (first order 
of wavelet features) were associated with TMB levels in 
NSCLC. Flatness (shape of original feature) is the fea-
ture of tumor morphology, which shows the inconsistent 
degree of each part of the tumor. For example, the edges 
of the lesions may be uneven and lobulated. The fine and 
short burrs, spiny protrusions and jagged changes may 
be at the edges of the lesions. Autocorrelation (GLCM) 
shows the similarity between the grey levels of the ROIs. 
Our study shows that Autocorrelation (GLCM) is posi-
tively correlated with TMB, implying that high TMB may 
be associated with uniform density in tumors. The Mini-
mum (first order of wavelet feature) indicates the mini-
mum value of the grey scale value in the ROIs, implying 
that TMB may be associated with the presence of the 
necrosis region of tumors [33]. A previous study showed 
a significant difference between vacuole sign and TMB 
status in CT image morphology. This is consistent with 
our conjecture [19]. Thus, tumor TMB level is reflected 
in radiomic characteristics. However, the biological 
mechanisms of the relationships between TMB and radi-
omic characteristics remain largely unexplained and need 
to be further explored.

An important issue for the diagnostic models is the 
potential clinical application. This study performed a 
decision curve analysis to assess the overall net benefit, 
which can further show that our prediction model can 
provide guidance to clinicians. The advantage of the 
model is not only that the data is relatively easy to obtain, 
but also that it is non-invasive for patients. Nomogram 
can visualize each patient’s overall score, providing guid-
ance for clinicians to choose the right treatment decision. 
Therefore, CT-based biological predictive models can 
serve as a non-invasive, reliable and easily accessible tool 
for distinguishing high and low TMB to guide immune 
checkpoint inhibitors treatment.

Our study also had some limitations. First, this is a ret-
rospective study with a relatively small sample size. This 
study was only validated in Chinese patients based on a 
single medical center. Further validation is required in 
large-sample, multi-center, multi-ethnic prospective ran-
domized clinical trials. Secondly, manual segmentation of 
the region of interest by doctors is time-consuming and 
labor-intensive, and an algorithm for automatic segmen-
tation should be developed in the future. Finally, the bio-
logical mechanism behind radiomics prediction of TMB 
levels in NSCLC remains unexplained and requires fur-
ther study.

Conclusion
We first found that three radiomic features of pre-
treated CT imaging were associated with TMB levels 
in NSCLC patients. Second, based on the three radi-
omics features, we developed and validated a model 
to predict TMB and immunotherapy response. The 
model could be developed as a non-invasive, reliable, 
and fast tool to assist clinical decision-making for 
immunotherapy in NSCLC.
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