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Abstract 

Purpose The tumor immune microenvironment is a valuable source of information for predicting prognosis in breast 
cancer (BRCA) patients. To identify immune cells associated with BRCA patient prognosis from the Cancer Genetic 
Atlas (TCGA), we established an MRI-based radiomics model for evaluating the degree of immune cell infiltration 
in breast cancer patients.

Methods CIBERSORT was utilized to evaluate the degree of infiltration of 22 immune cell types in breast cancer 
patients from the TCGA database, and both univariate and multivariate Cox regressions were employed to determine 
the prognostic significance of immune cell infiltration levels in BRCA patients. We identified independent prognostic 
factors for BRCA patients. Additionally, we obtained imaging features from the Cancer Imaging Archive (TCIA) data-
base for 73 patients who underwent preoperative MRI procedures, and used the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) to select the best imaging features for constructing an MRI-based radiomics model for evaluat-
ing immune cell infiltration levels in breast cancer patients.

Results According to the results of Cox regression analysis, M2 macrophages were identified as an independent 
prognostic factor for BRCA patients (HR = 32.288, 95% CI: 3.100–357.478). A total of nine significant features were 
selected to calculate the radiomics-based score. We established an intratumoral model with AUCs (95% CI) of 0.662 
(0.495–0.802) and 0.678 (0.438–0.901) in the training and testing cohorts, respectively. Additionally, a peritumoral 
model was created with AUCs (95% CI) of 0.826 (0.710–0.924) and 0.752 (0.525–0.957), and a combined model 
was established with AUCs (95% CI) of 0.843 (0.723–0.938) and 0.744 (0.491–0.965). The peritumoral model demon-
strated the highest diagnostic efficacy, with an accuracy, sensitivity, and specificity of 0.773, 0.727, and 0.818, respec-
tively, in its testing cohort.

Conclusion The MRI-based radiomics model has the potential to evaluate the degree of immune cell infiltration 
in breast cancer patients, offering a non-invasive imaging biomarker for assessing the tumor microenvironment in this 
disease.
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Introduction
Breast cancer is a prevalent cancer worldwide and the 
second leading cause of cancer-related deaths [1]. In 
recent years, it has become increasingly evident that 
breast cancer involves not only tumor cells but significant 
changes in the surrounding tumor microenvironment 
(TME) as well. These changes are now recognized as cru-
cial factors in the development and progression of breast 
cancer, as well as potential targets for treatment. The 
TME comprises proliferating tumor cells and a range of 
non-cancerous cells, including fibroblasts, immune cells, 
endothelial cells, infiltrating inflammatory cells, adipo-
cytes, as well as signaling molecules and extracellular 
matrix (ECM) components [2]. Tumor cells interact sym-
biotically with multiple cellular components of the TME 
to form a more complex organoid structure than normal 
healthy tissue, with the tumor immune microenviron-
ment consisting of immune-infiltrating cells becoming a 
significant area of research [3–5]. Studies have indicated 
that tumor infiltration lymphocytes (TILs), dendritic cells 
(DC), tumor-associated macrophages (TAM), tumor-
associated neutrophils (TAN), and many other cells have 
relevance to tumor treatment and prognosis [6–8].

Currently, the assessment of immune infiltration typi-
cally requires tissue samples obtained post-surgery. How-
ever, the dynamic nature of the immune response means 
that non-invasive methods for evaluating the tumor 
microenvironment (TME) would be helpful, provid-
ing the ability to assess immune infiltration throughout 
the course of treatment [9]. Therefore, the establish-
ment of a validated system for the in vivo evaluation of 
the immune microenvironment has become an urgent 
issue. “Radiogenomics” explores links between imaging 
phenotypes (image data) and disease genotypes (genomic 
patterns) [10, 11]. Two data resources, The Cancer 
Genome Atlas (TCGA) and the Cancer Imaging Archive 
(TCIA), provide cancer genome profiles and medical 
imaging information, respectively, to facilitate interdis-
ciplinary research, including imaging genomic studies 
[12–14]. An important advantage of MRI over molecular 
data obtained by biopsy is that imaging provides a global, 
unbiased view of the entire tumor and its surrounding 
tissue. In addition to visual assessment by radiologists, 
quantitative image analysis may reveal other useful bio-
markers in cancer [15–18]. Furthermore, tumor biology 
changes over time, and treatment may lead to alterations 
in the tumor immune microenvironment. As a result, 
imaging-based biomarkers can be beneficial for non-
invasive and systemic quantification of the expression of 
immune-related parameters.

In this study, we utilized the CIBERSORT algorithm 
[19] to estimate the degree of infiltration of 22 immune 
cell types from RNA sequencing (RNA-seq) data in a 

cohort of BRCA patients. Our goal was to establish MRI-
based radiomic features to non-invasively evaluate the 
level of immune cell infiltration.

Materials and methods
Genetic data acquisition and immune cell correlation 
analysis
The TCGA database (https:// portal. gdc. cancer. gov/) [12], 
which is the largest database of cancer genetic informa-
tion available, contains data on gene expression, miRNA 
expression, copy number variants, DNA methylation, 
SNPs, and more. For this study, we downloaded the raw 
mRNA expression data of processed BRCA, including 
a normal group (n = 113) and a tumor group (n = 1109). 
RNA-seq data from various subgroups of patients were 
analyzed using the CIBERSORT algorithm to infer the 
relative proportions of the 22 immune infiltrating cells. 
We performed Spearman correlation analysis on gene 
expression levels and immune cell content, with p < 0.05 
considered statistically significant. After excluding the 
samples without survival information, 1089 patients 
were obtained after shortening the long sample. Univari-
ate and multivariate Cox regression analyses (survival 
time and survival status were used for two dependent 
variables) were applied to evaluate the prognostic value 
of immune cell infiltration levels in BRCA patients, and 
independent prognostic factors were identified via Cox 
regression analysis.

MRI acquisition and Radiomics features extraction
For this study, we analyzed breast cancer imaging 
data from the TCGA, using the following inclusion 
criteria: (1) complete clinical information on breast 
cancer，including age and sex, pathological classification, 
TNM stage, clinical stage, immunohistochemistry(IHC)
type; (2) complete MRI data in axial position，including 
T2-weighted imaging, diffusion weighted imaging, T1 
-weighted imaging and dynamic contrast-enhanced 
magnetic resonance imaging, excluding those with only 
sagittal enhanced images and images with low resolu-
tion. The second phase of the enhanced images (arterial 
phase) is selected to extract the radiomic features; and 
(3) oncogene expression data from RNA sequencing and 
mutation data from whole exome sequencing. A total of 
73 patients were recruited, and both clinical and imag-
ing data are publicly available from the Cancer Imaging 
Archive (TCIA) (www.cancerimagingarchive.net) [13]. 
Detailed imaging protocols for the TCGA cohort have 
been reported elsewhere [20]. In summary, scans were 
performed between September 1999 and June 2006 at 
three centers using 1.5-T or 3.0-T GE Healthcare, Sie-
mens or Philips whole-body MRI systems with standard 
double breast coils. The volume of interest (VOI) from 

https://portal.gdc.cancer.gov/
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MRI data was manually segmented using ITK-SNAP 
(version 3.80; http:// www. itksn ap. org) [21], with a breast 
MRI radiologist (5 years of experience) completing the 
delineation of the lesions. The VOI was segmented layer 
by layer along the perimeter of the tumor contour on the 
DCE image (arterial phase at the second scan) (Fig.  1). 
An internal procedure implemented in Deepwise Multi-
modal Research Platform (version 1.6.3.6; http:// keyan. 
deepw ise. com/) was used to obtain infiltrative margin 
data, with a ring formed around the primary tumor and 
the tumor margin automatically expanded outwards by 
5 mm [22] to obtain a volume of interest in the peritumor 
region (peritumor VOI) (large vascular systems, adjacent 
organs, and gases were excluded). Afterward, a second 
breast MRI radiologist (22 years of experience) reviewed 
all VOIs segmented by the first radiologist. Intraobserver 
and interobserver intraclass correlation coefficients 
(ICCs) were calculated by radiologists A and B, and fea-
tures with ICC > 0.75 for both intraobserver and interob-
server agreement were considered repeatable and used 
for further feature selection.

A total of 1648 radiomics features, including first-
order features, shape features, and texture features such 
as grey-level co-occurrence matrix (GLCM), grey-level 
travel matrix (GLRLM), grey-level size zone matrix 
(GLSZM), and grey-level dependence matrix (GLDM), 
were extracted using the Pyradiomics package (ver-
sion 3.0.1; https:// www. radio mics. io/ pyrad iomics. html; 
Python [version 3.7.3; https:// www. python. org/ down 
loads/]) after logarithmic and wavelet filtering [23]. All 
radiomics features were normalized by zero-mean (i.e., 
subtracted from the mean and divided by the standard 
deviation) and the sample was randomly divided into 

training and testing cohorts in a ratio of 7:3. The impor-
tant radiomics features of each model were then screened 
using the LASSO method.

Predictive model construction based on Radiomics
To investigate the correlation between the level of 
immune cell infiltration and disease prognosis, we first 
classified the level of immune cell infiltration into high 
and low infiltration levels based on median values [24]. 
Next, we constructed a model using LASSO-logistics 
regression analysis, based on selected peritumoral radi-
omics features as the independent variable, and the level 
of immune cell infiltration as the dependent variable. 
We inferred the level of immune cell infiltration from 
the imaging histological features. The performance of 
each model was evaluated using the area under the curve 
(AUC) of the receiver operating characteristic curve 
(ROC). In addition to AUC, we calculated accuracy, sen-
sitivity, and specificity and used calibration curves to 
evaluate the performance of each model.

Statistical analysis
For statistical analysis, we used the SciPy package to test 
all features for Shapiro-Wilk normality. Variables meet-
ing normality were subjected to analysis of variance 
and independent samples t-tests, while skewed features 
were subjected to Mann-Whitney U tests. LASSO (Least 
Absolute Shrinkage and Selection Operator) was per-
formed using R software (version 4.1.1, https:// www.r- 
proje ct. org/). The calibration curve was used to evaluate 
the robustness of the models. We considered a two-sided 
P value < 0.05 statistically significant.

Fig. 1 The volume of interest (VOI) from MRI data of two patients from two different groups

http://www.itksnap.org
http://keyan.deepwise.com/
http://keyan.deepwise.com/
https://www.radiomics.io/pyradiomics.html;
https://www.python.org/down
https://www.r-project.org/
https://www.r-project.org/
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Results
BRCA‑associated immune infiltration mapping
The microenvironment is mainly composed of fibro-
blasts, immune cells, extracellular matrix, multiple 
growth factors, inflammatory factors and specific phys-
icochemical features. The microenvironment signifi-
cantly influences the diagnosis, survival outcome and 
clinical treatment sensitivity of the disease. By analyz-
ing the relationship between key genes and immune 
infiltration, we further explore the potential mecha-
nisms and key genes that have an impact on tumor 
progression. The immune cell correlation heat map 
is shown in Fig.  2. Red indicates positive correlation, 

blue indicates negative correlation. The darker the col-
our, the stronger the correlation. (using the R package 
“corrplot”).

A comparative analysis of the microenvironment 
scores between the tumor and normal groups revealed 
that various immune microenvironment factors, 
including B cells naive, T cells CD4 memory resting, 
T cells follicular helper, T cells regulatory (Tregs), and 
Macrophages M0, were significantly different between 
the two groups. The normal group is represented in 
blue and the tumor group in red (Fig. 3), with the analy-
sis being conducted using the R package “vioplot”.

Fig. 2 Correlation heat map showing the correlation of 22 types of immune cells estimated by CIBERSORT
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The level of immune cell infiltration is associated 
with the survival of breast cancer patients
Clinical survival data for 1089 patients are presented in 
Supplementary Table 1. We utilized univariate and mul-
tivariate Cox regression analyses to evaluate the prog-
nostic value of the level of immune cell infiltration in 
BRCA patients. A smaller p-value indicated a stronger 
association between immune cells and prognosis. An HR 
> 1 indicated high-risk immune cells, with higher expres-
sion levels correlating with worse prognoses. Univariate 
cox regression showed that the infiltration levels of B cell 
naive, T cells CD8, Macrophages M1, Macrophages M2 
were associated with prognosis (p < 0.05), including B 
cell naive, T cells CD8, macrophages M1, macrophages 
M2. The higher the expression of Macrophages M1, the 
better the prognosis, while the higher the expression of 
Macrophages M2, the worse the prognosis (HR = 43.183). 
Multivariate cox regression analysis showed that only the 
infiltration level of Macrophages M2 cells was related to 
the prognosis (HR = 33.288, p < 0.05). Therefore, Mac-
rophages M2 cells are an independent prognostic fac-
tor in BRCA patients, with higher expression indicating 
worse prognosis (Figs.  4  and  5), with the analysis being 
conducted using the R package “survival”.

General information comparison
Figure  6 illustrates the patient survival analysis and the 
workflow for using radiomics to extrapolate the infiltra-
tion levels of immune cells. A total of 73 patients with 
preoperative MRI-based radiomic data from TCIA were 

selected from the BRCA patients with RNA-seq data for 
inclusion in this study. The median of M2 Macrophages 
infiltration levels for the 73 patients was 0.122, with 36 
patients having high M2 Macrophages infiltration levels 
and 37 patients having low infiltration levels. The patients 
were randomly assigned to the training cohort (n = 51) 
and the testing cohort (n = 22). Table 1 presents the clini-
cal and pathological characteristics of the 73 patients.

Construction of the radiomics model
Using LASSO, we selected eight peritumor high weight 
features and one intratumor high weight feature from a 
pool of 1648 features. These selected features included 
five first-order features, one grey-level correlation matrix 
feature, one grey-level region size matrix feature, and 
two grey-level travel matrix features. Table 2 provides a 
detailed list of the selected features, along with their cor-
responding coefficients.

We calculated Radscore scores for both the training 
and testing cohorts. We then plotted waterfall plots of 
Radscore (Fig. 7) for each cohort to differentiate between 
low infiltration levels (Group 0) and high infiltration lev-
els (Group 1) of Macrophages M2 cells in the immune 
microenvironment of breast cancer. Additionally, a box 
plot of Radscore in the peritumoral model is shown in 
Fig. 8. The Radscore was calculated as the product of the 
characteristic coefficient and its corresponding value.

We used nine imaging features to establish predictive 
models for the level of M2 Macrophages infiltration in 
the immune microenvironment of breast cancer, based 

Fig. 3 Violin plot showing the infiltration levels of 22 types of immune cells estimated by CIBERSORT
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on the LASSO-logistics regression analysis method. 
We plotted ROC curves (Fig.  9) to evaluate the diag-
nostic performance of the predictive individual mod-
els. We calculated AUCs, accuracy, sensitivity, and 
specificity for each model (Table 3) and found that the 
peritumor model had better predictive performance 
than the other two models. The calibration curves for 
each model showed good agreement between the pre-
dicted and actual values, with no statistical difference 
between the Hosmer-Lemeshow test (p > 0.05), indicat-
ing that the predicted and actual results were in good 
agreement. Figure 10 shows the calibration curves for 
one of the peritumoral models.

Discussion
In this study, we established MRI-based radiomics fea-
tures to evaluate the level of tumor immune cell infil-
tration in breast cancer patients. We also identified 
specific immune cell types whose infiltration levels cor-
related with the prognosis of these patients. Our find-
ings suggest that radiomics could serve as a valid and 
non-invasive method for assessing the immune status 
of breast cancer patients. Overall, our study highlights 
the potential of radiomics in improving the diagnosis 
and prognosis of breast cancer, and may pave the way 
for more personalized and effective cancer manage-
ment strategies.

Fig. 4 Univariate cox regression analysis of the forest plot, green represents the biological effect of inhibiting breast cancer, red represents 
the biological effect of promoting breast cancer, p < 0.05 is statistically significant, HR > 1 represents the inhibitory effect, HR < 1 represents 
the promoting effect of survival

Fig. 5 Multivariate cox regression analysis of forest plots, green represents the biological effect of inhibiting breast cancer, red represents 
the biological effect of promoting breast cancer, p < 0.05 is statistically significant, HR > 1 represents the inhibitory effect of survival, HR < 1 
represents the promoting effect of survival
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Recent studies have highlighted the crucial role of the 
tumor microenvironment (TME) in cancer patients. The 
immune microenvironment of the tumor is a key deter-
minant of treatment efficacy. In this study, we utilized 
CIBERSORT, an algorithm that analyses RNA sequencing 
data to estimate the proportion of immune cells, to calcu-
late the level of infiltration of 22 immune cells in breast 
cancer. The algorithm provides an alternative to immu-
nostaining and flow or mass cytometry-based methods, 
streamlining the analysis process [19]. Our study revealed 
that breast cancer patients have altered levels of multiple 
immune cell infiltration compared to healthy individu-
als. Several immune microenvironment factors, such as B 
cells naive, T cells CD4 memory resting, T cells follicular 
helper, T cells regulatory (Tregs), and Macrophages M0, 
were significantly different in breast cancer. Importantly, 
we found an independent negative prognostic value for 
M2 macrophage infiltration levels, consistent with previ-
ous studies [25]. Macrophages are the main immune cell 
type that infiltrates the tumor microenvironment. In the 
microenvironment, they are polarized into M1 or M2 
subtypes and perform a variety of functions such as tissue 
development and homeostasis, inflammation, pathogen 
clearance and wound healing [26]. M1/M2 dysregulation 
is critical in tumor development, immune escape, and 
subsequent metastasis. M2 macrophages promote tumor 

growth, while M1 macrophages inhibit proliferation 
[27], and macrophage infiltration and PD-L1 expression 
on infiltrating macrophages can inhibit tumor respon-
sive T cells, leading to resistance to immune checkpoint 
blockade therapy [28]. Therefore, the development and 
treatment of antitumor drugs that target macrophage 
polarization are a current therapeutic priority. Overall, 
our findings emphasize the importance of understanding 
the immune microenvironment in breast cancer and sug-
gest potential avenues for future treatment strategies.

Although MRI is a routine screening method for breast 
cancer patients, until now, it has only provided detailed 
images of organs and tissues and not TME. Our study, 
however, found that MRI-based radiomics features can 
reveal the level of infiltration of M2 macrophages in the 
TME of breast cancer patients. Previous literature has 
also indicated that radiomics can predict the level of 
immune cell infiltration in tumor patients. Sun et al. con-
structed a CT-based radiolabeling, which included eight 
variables to assess CD8+ T cell infiltration determined 
by RNA-seq data [29]. Additionally, other scholars have 
evaluated the degree of glioma immune cell infiltration 
by constructing a preoperative T2-weighted MRI-based 
radiomics model [30]. Radiomics has the advantage of 
non-invasive monitoring of TME and may become a new 
biomarker for predicting response to immunotherapy.

Fig. 6 Patient survival analysis and the workflow for using radiomics to extrapolate the infiltration levels of immune cells
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In our study, we extracted one intratumor feature 
and eight peritumor features, suggesting that peritu-
mor features better reflect the level of M2 macrophage 
infiltration. The peritumoral radscore box plot indicates 
that larger radscore values correspond to higher lev-
els of infiltration, and higher levels of M2 macrophage 
infiltration are biomarkers of poor prognosis in breast 

cancer. Previous studies have found that the peritumor 
secretes a large number of growth factors and cytokines 
that induce hypoxia and angiogenesis, and play an 
important role in tumor development, progression, 
or metastasis. Therefore, the integration of combined 
model features can provide a more comprehensive 
reflection of the aggressive and metastatic features 

Table 1 Clinical and pathological Characteristics for 73 Patients

Abbreviations: T the primary tumor, N regional lymph nodes, and M distant metastases, ER Estrogen receptor, HER2 Human epidermal growth factor receptor 2, HR 
Hormone receptor, PR Progesterone receptor, a Fisher’s exact test, b Lymph node stage is not available, c Metastasis cannot be measured

Tumor with high M2 Macrophages infiltrate 
(n = 36,49.3%)

Tumor with low M2 Macrophages infiltrate 
(n = 37,50.7%)

p valuea

Age

 Median 59 53

 Mean ± SD 58.0 ± 12.0 52.7 ± 11.2

T 0.710

 T1 15(45.5) 18(54.5)

 T2 19(54.3) 16(45.7)

 T3 2(40.0) 3(60.0)

N 0.466

 N0 17 (50.0) 17 (50.0)

 N1 14(48.3) 15(51.7)

 N2 1(20.0) 4(80.0)

 N3 3(75.0) 1(25.0)

  Nxb 1(100.0) 0(0)

M 0.457

 M0 23(46.0) 27(54.0)

  Mxc 13(56.5) 10(43.5)

Stage

 I 9(47.4) 10(52.6) 0.843

 II 23(52.3) 21(47.7)

 III 4(40.0) 6(60.0)

Histological Type 1.000

Invasive Ductal Carcinoma 31(49.2) 32(50.8)

Invasive Lobular Carcinoma 4(50.0) 4(50.0)

 Other 1(50.0) 1(50.0)

ER 0.189

 Positive 33(54.1) 29(45.9)

 Negative 3(27.3) 8(72.7)

PR 0.794

 Positive 27(50.9) 26(49.1)

 Negative 9(45.0) 11(55.0)

HER2 0.646

 Positive 7(58.3) 5(41.7)

 Negative 29(48.3) 31(51.7)

 Equivocal 0(0) 1(100.0)

IHC type 0.288

 HR+/HER2- 26(52.0) 24(48.0)

 HER2+ 7(58.3) 5(41.7)

 ER−/PR−/HER2- 3(27.3) 8(72.7)



Page 9 of 13Qian et al. BMC Medical Imaging           (2024) 24:31  

Table 2 Names and Coefficients of High Weight Features

Name Coefficients

(1) Names and Coefficients of High Weight Features Extracted from Peritumor

 square_firstorder_Minimum − 0.481

 wavelet.LLH_firstorder_Skewness − 0.350

 lbp.2D_glszm_ZoneVariance −0.186

 wavelet.LLL_firstorder_10Percentile −0.098

 squareroot_firstorder_10Percentile −0.064

 wavelet.HLH_gldm_DependenceVariance 0.071

 wavelet.LLH_firstorder_Kurtosis 0.093

 wavelet.LLH_glrlm_LongRunEmphasis 0.597

(2) Names and Coefficients of High Weight Features Extracted from Intratumor

 wavelet.HLL_glrlm_RunVarianc 0.389

(3) Names and Coefficients of High Weight Features Extracted from Combined

 Peri_square_firstorder_Minimum −1.071

 Peri_lbp.2D_glszm_ZoneVariance −0.464

 Peri_wavelet.LLH_firstorder_Skewness −0.409

 Peri_squareroot_firstorder_10Percentile −0.168

 Peri_wavelet.LLL_firstorder_10Percentile −0.155

 Peri_wavelet.HLH_gldm_DependenceVariance 0.132

 Intra_wavelet.HLL_glrlm_RunVarianc 0.231

 Peri_wavelet.LLH_firstorder_Kurtosis 0.257

 Peri_wavelet.LLH_glrlm_LongRunEmphasis 0.784

Fig. 7 The waterfall plots of radscore for training(A), testing(B) in peritumoral model; training(C), testing(D) in intratumoral model; training(E), 
testing(F) in combined model
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of the tumor [31, 32]. Our study confirmed that both 
the peritumor model and combined model are better 
at discriminating between low and high levels of M2 
macrophage infiltration. However, peritumoral imaging 
features that reflect the level of M2 macrophage infil-
tration are more robust, providing additional clues for 
our future studies.

Our study has several limitations that need to be 
addressed. Firstly, the size of our patient cohort is rela-
tively small, and the number of available breast cancer 
MRI images in the TCIA database and RNA information 
available in the TCGA is limited. Secondly, the scanning 
machines and protocols used at the time were not as 
advanced as they are now, and the use of data from three 

Fig. 8 The box plot of radscore for training and testing cohort in peritumoral model

Fig. 9 The ROC for training(a), testing(b) in three models
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different centers requires more sophisticated methods to 
reduce inconsistencies in radiomics features. Addition-
ally, the level of immune cell infiltration was only evalu-
ated in terms of high and low and was not quantified, and 
the relationship between quantified values and progno-
sis remains to be further investigated. Furthermore, the 
accuracy of imaging features in predicting the level of 
immune cell infiltration requires further external valida-
tion. We have only extracted enhanced second-stage MRI 
images and have not developed a model incorporating 
clinical features. Future studies with multiple sequences 
of imaging features are necessary to select the best 
model. Lastly, this is a retrospective analysis, and a mul-
ticenter prospective study with a larger dataset is needed 
to confirm our findings.

In summary, our study demonstrates that a breast 
MRI-based radiomics model has the potential to 
non-invasively assess the level of TME, particu-
larly M2 macrophage infiltration. We also found that 

peri-tumoral radiomics features better reflect the level 
of immune cell infiltration. While this study requires 
a larger cohort for further evaluation, it provides 
potential value for radiomics as a non-invasive imag-
ing biomarker in the clinical prognosis of breast can-
cer patients. Further studies are needed to quantify the 
level of immune cell infiltration using radiomics fea-
tures from larger samples.
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