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Abstract
Background To investigate the value of machine learning (ML)-based magnetic resonance imaging (MRI) radiomics 
in assessing tumor-infiltrating lymphocyte (TIL) levels in patients with oral tongue squamous cell carcinoma (OTSCC).

Methods The study included 68 patients with pathologically diagnosed OTSCC (30 with high TILs and 38 with 
low TILs) who underwent pretreatment MRI. Based on the regions of interest encompassing the entire tumor, 
a total of 750 radiomics features were extracted from T2-weighted (T2WI) and contrast-enhanced T1-weighted 
(ceT1WI) imaging. To reduce dimensionality, reproducibility analysis by two radiologists and collinearity analysis 
were performed. The top six features were selected from each sequence alone, as well as their combination, using 
the minimum-redundancy maximum-relevance algorithm. Random forest, logistic regression, and support vector 
machine models were used to predict TIL levels in OTSCC, and 10-fold cross-validation was employed to assess the 
performance of the classifiers.

Results Based on the features selected from each sequence alone, the ceT1WI models outperformed the T2WI 
models, with a maximum area under the curve (AUC) of 0.820 versus 0.754. When combining the two sequences, 
the optimal features consisted of one T2WI and five ceT1WI features, all of which exhibited significant differences 
between patients with low and high TILs (all P < 0.05). The logistic regression model constructed using these features 
demonstrated the best predictive performance, with an AUC of 0.846 and an accuracy of 80.9%.

Conclusions ML-based T2WI and ceT1WI radiomics can serve as valuable tools for determining the level of TILs in 
patients with OTSCC.
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Introduction
In the head and neck region, oral tongue squamous cell 
carcinoma (OTSCC) ranks among the most common 
cancers [1, 2]. In oncology, cancer progression has been 
associated with the immune response, and tumor eva-
sion from the immune response is a hallmark of can-
cer [3]. The immune signature, particularly the level of 
tumor-infiltrating lymphocytes (TILs), plays a key prog-
nostic role in different types of cancers [4, 5]. As part of 
the complex tumor microenvironment, the TIL level can 
have a major impact on tumor progression and treatment 
response [6]. In clinical practice, the TIL level is an estab-
lished independent prognostic factor for head and neck 
cancer [7]. However, the spatial and temporal heteroge-
neity of tumors makes routine pathological assessment of 
TIL levels difficult. Therefore, accurate and noninvasive 
determination of TIL levels before treatment remains a 
challenge for patients with OTSCC.

Magnetic resonance imaging (MRI) is frequently uti-
lized as part of the preoperative evaluation for oral can-
cers, demonstrating satisfactory diagnostic accuracy 
when compared to biopsy [8, 9]. Conventional MRI offers 
high-quality images of soft tissues and plays a significant 
role in determining the origin, location, and boundaries 
of oral cancers [10]. Functional MRI techniques, such 
as diffusion weighted imaging and dynamic contrast-
enhanced MRI, allow for the evaluation of microscopic 
histological features and microvascular parameters, 
which are crucial in guiding treatment and predicting 
the prognosis of oral cancers [11]. However, conventional 
MRI sequences such as T2-weighted (T2WI) and con-
trast-enhanced T1-weighted (ceT1WI) imaging only pro-
vide limited morphological features, which are limited by 
the detection of human eyes. In recent years, radiomics 
has expanded the capabilities of routine medical imag-
ing in clinical oncology. Radiomics involves extract-
ing high-throughput features from medical images to 
facilitate oncology predictions [12]. Conventional MRI 
radiomics has been proven to be useful in predicting his-
topathological characteristics, stage, treatment response, 
and survival in patients with head and neck cancer [13–
17]. Moreover, several studies have reported that MRI 
radiomics can stratify the tumor-immune microenviron-
ment of breast cancer [18], ductal adenocarcinoma [19], 
and rectal cancer [20]. Meyer et al. [21] reported that his-
togram features derived from T2WI and ceT1WI might 
reflect the TIL levels in head and neck cancer. However, 
their study did not incorporate second- and high-order 
texture features and transformed domain images, which 
could have overlooked crucial tumor information.

Therefore, this study aims to explore the performance 
of machine learning (ML)-based MRI radiomics for pre-
dicting TIL levels in patients with OTSCC.

Materials and methods
Patient population
This study was approved by the Institutional Review 
Board of Shanghai Ninth People’s Hospital and informed 
consent was waived due to retrospective study design. 
The study retrospectively included consecutive patients 
with OTSCC who received treatment at our hospital 
between April 2018 and December 2022. The inclusion 
criteria were as follows: (1) patients with pathologically 
diagnosed OTSCC after surgery, (2) patients who under-
went standard MRI within 14 days before surgery, and (3) 
patients with complete relevant clinical data. The study’s 
exclusion criteria were (1) patients who had undergone 
any form of treatment before undergoing MRI; (2) lesions 
deemed too small, with a minimum diameter of < 10 mm; 
and (3) MRI scans of insufficient quality due to artifacts 
or subjects’ motion.

Pathologic analysis
Complete H&E-stained sections obtained from the surgi-
cal specimens of all patients were available for analysis. 
TIL levels in the stromal compartment were evaluated 
using a scoring method recently introduced by the Inter-
national Immuno-Oncology Biomarkers Working Group 
[22]. The presence of fibrosis or central necrosis was not 
considered when assessing TILs. TIL levels were calcu-
lated as the proportion of lymphocytes infiltrated into the 
stroma, measured in increments of 10%. Patients were 
categorized into groups based on the median value of 
TILs (60%), with samples having TIL levels of ≤ 60% con-
sidered as those with low TILs and samples with TIL lev-
els of > 60% considered as those with high TILs (Fig. 1).

Image acquisition and segmentation
MRI examinations were performed using a 3.0-T scanner 
equipped with a head-and-neck array coil (Ingenia; Phil-
ips Healthcare). The imaging protocol included axial fat-
suppressed T2WI and ceT1WI. The scanning parameters 
are presented in Supplementary Table 1. A standard dose 
of 0.1 mmol/kg of gadopentetate dimeglumine (Magnev-
ist, Bayer, Mullerstrasse, Germany) was administered for 
ceT1WI.

ITK-SNAP software (www.itk-snap.org) was used for 
tumor segmentation. A radiologist with 8 years of expe-
rience in interpreting head and neck MRI carefully out-
lined the regions of interest (ROI) encompassing the 
entire tumor (Fig.  2). To assess the interobserver vari-
ability of the radiomics features in the segmentation pro-
cess, an additional radiologist with 9 years of experience 
in head and neck MRI interpretation randomly selected 
20 lesions for delineation of ROIs. Both radiologists were 
blinded to the clinical details and pathological results.

http://www.itk-snap.org


Page 3 of 9Ren et al. BMC Medical Imaging           (2024) 24:33 

Image processing and feature extraction
Before extracting radiomics features, three image pro-
cessing techniques were applied to all images: (i) gray-
level normalization by centering it at the mean with 
standard deviation (scale, 100), (ii) resampling and res-
caling of pixels (resultant pixel size, 1 × 1 mm2), and (iii) 
gray-level discretization (bin count, 64).

Radiomics features were extracted using an open-
source python package (Pyradiomics, version 3.0.1, www.
radiomics.io). A total of 14 shape- and size-based fea-
tures, 17 first-order histogram features, and 75 textural 
features were extracted from each sequence. The texture 
feature was further classified into five distinct classes: 
gray-level cooccurrence matrix (GLCM, n = 24), gray-
level run-length matrix (GLRLM, n = 16), gray-level size 
zone matrix (GLSZM, n = 16), gray-level dependence 
matrix (GLDM, n = 14), and neighboring gray tone dif-
ference matrix (NGTDM, n = 5). The Laplacian of Gauss-
ian (LoG) filtering technique was applied to the original 
images at three different scales (1, 3, and 5 mm), and the 
wavelet transform was performed on four distinct combi-
nations of high- and low-frequency bands. The processed 
images were used separately to calculate the histogram 
and textural features. In total, 750 radiomics features 

were obtained from each sequence. The algorithms used 
for acquiring radiomics features were sourced from the 
image biomarker standardization initiative [23].

Dimension reduction
The intraclass correlation coefficients (ICCs) were com-
puted for each feature, and the interpretability of repro-
ducibility for each feature was determined using the 
following scale: (i) ICC < 0.4, indicating poor reproduc-
ibility; (ii) 0.59 > ICC ≥ 0.4, indicating fair reproducibility; 
(iii) 0.75 > ICC ≥ 0.6, indicating good reproducibility; and 
(iv) ICC ≥ 0.75, indicating excellent reproducibility (20). 
Radiomics features with ICC value ≥ 0.8 were deemed 
stable and included in subsequent analyses.

Spearman correlation coefficients (r) were employed to 
detect collinearity among features, with a threshold of 0.8 
for r considered as indicative of high collinearity. When a 
pair of features had high collinearity, the one with higher 
collinearity than the other was excluded.

Machine learning
Optimal features were selected using the mini-
mum-redundancy maximum-relevance (MRMR) 
approach, which ranked the features based on their 

Fig. 2 Tumor segmentation in OTSCC. The segmentation was performed on T2WI (a) and ce-T1WI (b). The regions of interest (c) covering the entire 
tumor were acquired by stacking all slices with the tumor

 

Fig. 1 Tumor-infiltrating lymphocytes (TILs) were evaluated on full sections of OTSCC stained with HE. Representative samples classified as low (≤ 60%) 
stromal TILs (a) and high (> 60%) stromal TILs (b)

 

http://www.radiomics.io
http://www.radiomics.io
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relevance-redundancy scores, measuring mutual infor-
mation between each feature and the lesion labels, while 
being compared with the average mutual information 
with previously selected features. MRMR has the advan-
tage of selecting features with high predictive power 
while reducing the impact of redundant features on the 
model. To avoid overfitting of the model, we applied the 
principle that has been reported in previous studies [13, 
24], which states that the maximum number of features 
should be 1/10 of the number of patients. Therefore, the 
top six features were respectively chosen using T2WI, 
ceT1WI alone, and their combination. Additionally, 
clinical variables were taken into account when selecting 
features.

Due to the small sample size, three representative and 
relatively simpler classification models, namely, logis-
tic regression (LR), random forest, and support vector 
machine (SVM), were constructed based on the optimal 
subset. LR is suitable for classification of linear data and 
has strong interpretability. The RF classifier consists of a 
collection of decision trees, is robust to noises and outli-
ers, and can rapidly handle high-dimension data. Support 
vector machines are suitable for processing large-scale 
data sets and solving nonlinear problems. Support vec-
tor machines are suitable for processing large-scale data 
sets and solving nonlinear problems. The models’ perfor-
mances were evaluated through 10-fold cross-validation.

Statistical analyses
Statistical analysis was conducted using R software (ver-
sion 3.5.2; www.r-project.org). Several R packages were 
used for specific tasks: the “caret” package was employed 
to calculate the Spearman correlation coefficient, the 

“mRMRe” package was used to implement the MRMR 
algorithm, and both the “randomForest” and “e1071” 
packages were used for ML-based classification. Mann–
Whitney U tests were performed to assess the association 
between radiomics features and TILs. Receiver operat-
ing characteristic analysis was conducted for each model, 
and metrics such as the area under the curve (AUC), 
accuracy, sensitivity, and specificity were calculated. The 
DeLong test was used for comparing the performance of 
classification models. Statistical significance was deter-
mined by a P value of 0.05 for all tests.

Results
Patients
A total of 68 patients with OTSCC were eligible for our 
study, including 30 patients with high TILs. Patients with 
high TILs were significantly older than those with low 
TILs (P = 0.012). No significant differences were noted in 
sex, maximum diameter, tumor. The clinicopathological 
characteristics of all patients are presented in Table 1.

Dimension reduction
The reproducibility analysis conducted by two radiolo-
gists revealed that 66.3% (497/750) of T2WI features and 
82.8% (621/750) of ceT1WI features exhibited stability, 
with an ICC value of ≥ 0.8. Subsequently, the elimina-
tion of highly collinear features resulted in a reduction 
in the number of features to 122, including 49 T2WI and 
73 ceT1WI features. The top six features selected from 
T2WI and ceT1WI alone using MRMR are presented in 
supplementary Table 2. When the two sequences were 
combined, the selected features consisted of one T2WI 
and five ceT1WI features, and no clinical characteristics 
were included. Furthermore, two features were extracted 
from the original images, as well as from images pro-
cessed with the LoG filter and wavelet transformation. 
The classes of optimal features included three histogram 
features, two GLCM features, and one GLDM feature. All 
features from the combined sequences showed signifi-
cant differences between the two groups and had AUC 
values ranging from 0.650 to 0.751 (Table  2). The nor-
malized values (Z score transformation) of the selected 
features are displayed in Fig. 3. There was no significant 
collinearity among the selected features from the com-
bined sequences (Fig. 4).

Classification performance
When utilizing T2WI alone, the classification models 
constructed with LR, random forest, and SVM achieved 
AUCs of 0.746, 0.754, and 0.688 and accuracies of 69.1%, 
73.5%, and 70.6%, respectively, whereas when utilizing 
ceT1WI alone, the classification models achieved AUCs 
of 0.820, 0.771, and 0.782 and accuracies of 77.9%, 72.1%, 
and 77.9%, respectively. Based on the features from the 

Table 1 Detailed clinicopathological characteristics of the 
patients

Low TIL 
group 
(N = 38)

High TIL 
group 
(N = 30)

P 
value

Sex 0.686
Male 22 (57.9%) 15 (50%)
Female 16 (42.1%) 15 (50%)

Age (years) 52 (39, 61) 63 (48, 68) 0.012
Maximum diameter (mm) 34 (26, 45) 33 (27, 38) 0.897
Tumor thickness (mm) 14 (9, 18) 11 (8, 18) 0.299
Clinical T stage 0.763

T1-2 19 (50%) 17 (56.7%)
T3-4 19 (50%) 13 (43.3%)

Clinical N stage 0.161
N0 33 (86.8%) 21 (70%)
N1-3 5 (13.2%) 9 (30%)

Histological grade 0.988
I/I-II 23 (60.5%) 19 (63.3%)
II/II-III/III 15 (39.5%) 11 (36.7%)

Data are expressed as median (interquartile range) or number (percentage)

http://www.r-project.org
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combined sequences, LR demonstrated the best perfor-
mance in predicting the TILs level in OTSCCs, yielding 
an AUC of 0.846 and an accuracy of 80.9%. In compari-
son, random forest and SVM showed worse performance 
with AUCs of 0.813 and 0.822 and accuracies of 79.4% 
and 77.9%, respectively, although significant differences 
were not observed in the DeLong tests (P = 0.447 and 
0.451). The predictive performances of these classifica-
tion models are presented in Table 3; Fig. 5.

Discussion
Our preliminary study showed that the logistic regres-
sion classifier combining T2WI and ceT1WI radiomics 
features can achieve satisfactory performance in predict-
ing TIL levels in patients with OTSCC.

Radiomic features have the ability to identify tissue 
characteristics and pathological properties by analyzing 
the spatial distribution of pixel intensity within a tumor 
[25, 26]. Previous studies have confirmed correlations 
between T2WI and T1WI histogram parameters and TIL 
levels in head and neck cancer [21] and between MRI 
radiomics signatures and TIL levels in breast cancer [27]. 
In our study, the selected features from the combined 
sequences showed significant differences between the 
groups and achieved AUCs ranging from 0.650 to 0.751 
in predicting the TIL levels in patients with OTSCC. 
These features mainly consisted of two classes: histogram 
and GLCM. The histogram features analyze the gray-
levels of individual pixels without taking into account 
the context of surrounding pixels, whereas features 
derived from GLCM describe the interactions and corre-
lations between pairs of pixels. The combination of two 
classes of features characterizes image texture at differ-
ent scales and provides more informative and discrimina-
tive information. Interestingly, the optimal subsets from 
the combined sequences included more features derived 
from ceT1WI (n = 5) than those derived from T2WI 
(n = 1). Moreover, when constructing predictive mod-
els using each sequence alone, ceT1WI demonstrated 

better performance than T2WI (maximum AUC: 0.820 
vs. 0.754). These findings suggest that the heterogene-
ity of blood supply, as reflected by ceT1WI features, has 
stronger associations with TILs than the water content, 
as reflected by T2WI features. Notably, the predictive 
model built by combining the two sequences achieved 
superior performance (maximum AUC: 0.846) compared 
with that built using each sequence alone. This finding 
is consistent with previous studies showing the advan-
tage of radiomics analysis combined with multiparamet-
ric MRI in predicting lymph node metastasis [13], HPV 
status [28], and histological grade [29] in head and neck 
cancers. These results further highlight the potential of 
radiomics analysis based on different MRI sequences to 
provide supplemental information for oncology predic-
tion. However, this study only considered conventional 
MRI for the analysis. A previous study by Meyer et al. 
[30] illustrated that parameters obtained from dynamic-
contrast-enhanced MRI can reflect the expression of 
TILs in head and neck cancer. Therefore, investigating 
the integration of radiomics analysis, combining both 
conventional and functional MRI, is imperative for pre-
dicting TIL levels, specifically in cases of OTSCC.

In radiomics analysis, a large number of features are 
extracted from medical images to build predictive mod-
els. However, in our study, we only analyzed the MRI 
of 68 carefully selected OTSCCs. It is important to 
acknowledge that a limited sample size can impact the 
stability and reproducibility of the results. Firstly, insuf-
ficient sample data can introduce random errors in fea-
ture extraction. Secondly, it can lead to overfitting and 
affect the model’s generalization ability. Finally, small 
sample sizes may not allow for the detection of subtle 
but important effects. As an exploratory study, we fol-
lowed a rigorous radiomics analysis process that included 
image preprocessing, inter-observer variability analysis, 
and more. This approach aimed to minimize the impact 
of small sample sizes on result stability. Additionally, we 
employed a ten-fold cross-validation method to evaluate 

Table 2 Comparison of the radiomics features selected from combined sequences between the two groups and diagnostic 
performance of the features
Code Sequence Image 

type
Feature 
class

Feature name Low TILs High TILs P value AUC (95% CI)

RF1 ceT1WI LoG3 mm Histogram Kurtosis 3.04 (2.79, 3.48) 2.84 (2.52, 3.05) 0.011 0.681 (0.554, 0.808)
RF2 ceT1WI WaveletHH Histogram Skewness 0.11 (0.04, 0.34) −0.02 (− 0.10, 

0.06)
< 0.001 0.743 (0.621, 0.865)

RF3 ceT1WI Original GLCM ClusterShade −1032 (− 2032, 
− 146)

−110 (− 1154, 
986)

0.035 0.650 (0.5317, 
0.783)

RF4 ceT1WI Original GLDM DependenceVariance 0.68 (0.50, 1) 0.56 (0.49, 0.66) 0.025 0.660 (0.530, 0.790)
RF5 ceT1WI LoG1 mm Histogram Minimum −115 (− 143, 

− 101)
−104 (− 121, 
− 91)

0.016 0.672 (0.543, 0.801)

RF6 T2WI WaveletHL GLCM JointEntropy 8.32 (8.02, 8.68) 8.69 (8.41, 8.99) < 0.001 0.751 (0.633, 0.868)
AUC: area under the receiver operating characteristic curve; ceT1WI: contrast-enhanced T1-weighted imaging; GLCM: gray-level cooccurrence matrix; GLDM: gray-
level dependence matrix; RF: radiomics feature; T2WI: T2-weighted imaging
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our model’s performance. In this process, all samples 
were used for both training and validation, enabling us 
to assess its stability. To explore the relationship between 
clinical variables and TILs, as well as the independent 
value of radiomics in predicting TILs, clinical variables 
were included in feature selection. In feature selection, 
we found that no clinical variables were selected, which 

indirectly highlights the advantages of radiomics in 
the preoperative evaluation of TILs. Regarding model 
construction, determining the most efficient ML algo-
rithm becomes particularly valuable for this small sam-
ple research. To address this challenge, we compared 
the discriminatory capabilities of three different clas-
sifiers. Remarkably, we found that logistic regression 

Fig. 3 Comparison of the normalized (Z score transformation) features selected from the combined sequences between patients with high and low TILs. 
Boxplots of the radiomics features between the two groups (a) are shown. Significant differences between the two groups were observed in all selected 
features (*P < 0.05, **P < 0.01, ***P < 0.001). Colored heatmaps (b) show distributions and differences in the radiomics features between the two groups. TILs, 
tumor-infiltrating lymphocytes; RF, radiomics feature. Please refer to Table 2 for the code name of the selected features
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outperformed random forest and SVM (maximum 
AUCs: 0.846 vs. 0.813 and 0.822). Our data may be linear 
or linearly separable, making the LR model using a lin-
ear algorithm more effective than nonlinear approaches 
such as random forest and SVM. Furthermore, when 
dealing with small sample cohorts, LR, being a simple 
algorithm, tends to exhibit better stability than more 

complex algorithms. As indicated previously, many stud-
ies have shown that head and neck cancers with elevated 
TIL level often exhibit improved biological behavior and 
are associated with enhanced overall and disease-free 
survival rates [31, 32]. TIL level has become a prognos-
tic factor for head and neck cancer independent from 
TNM staging. While this study lacks external validation, 

Table 3 Performance of the machine learning-based classifications
AUC Accuracy Sensitivity Specificity

T2WI
Logistic regression 0.746 (0.630, 0.863) 69.1 (68.5, 69.7) 83.3 (70.0, 96.7) 57.9 (42.2, 73.6)
Random forest 0.754 (0.635, 0.872) 73.5 (73.0, 74.1) 63.3 (46.1, 80.6) 81.6 (69.3, 93.9)
SVM 0.688 (0.556, 0.820) 70.6 (70.0, 71.2) 73.3 (57.5, 89.2) 68.4 (53.6, 83.2)

ceT1WI
Logistic regression 0.820 (0.718, 0.922) 77.9 (77.4,78.4) 56.7 (38.9, 74.4) 94.7 (87.6, 100)
Random forest 0.771 (0.659, 0.884) 72.1 (71.5,72.6) 80.0 (65.7, 94.3) 65.8 (50.7, 80.9)
SVM 0.782 (0.661, 0.902) 77.9 (77.4, 78.4) 83.3 (70.0, 96.7) 73.7 (59.7, 87.7)

T2WI + ceT1WI
Logistic regression 0.846 (0.750, 0.943) 80.9 (80.4, 81.3) 80.0 (65.7, 94.3) 81.6 (69.3, 93.9)
Random forest 0.813 (0.703, 0.924) 79.4 (78.9, 79.9) 73.3 (57.5, 89.2) 84.2 (72.6, 95.8)
SVM 0.822 (0.721, 0.923) 77.9 (77.4, 78.4) 76.7 (61.5, 91.8) 78.9 (66.0, 91.9)

Data are presented as percentages except AUC; 95% CIs are included in parentheses

AUC: area under the curve; CI: confidence interval; SVM: support vector machine

Fig. 4 Auto- and cross-correlation of the features selected from the combined sequences are shown as a correlation matrix. Significant cross-correlation 
(Spearman correlation coefficient > 0.7) was not observed among features. Please refer to Table 2 for the code name of the selected features
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it represents a novel and preliminary attempt to nonin-
vasively assess TIL level in OTSCC using conventional 
MRI radiomics. Based on our research findings, patients 
are expected to achieve more precise risk stratification 
prior to surgery, leading to more personalized treatment 
decisions.

Our study had three main limitations. First, it was a 
retrospective, single-center study with a small sample. 
Sample selection bias could not be eliminated due to 
the strict enrollment criteria utilized. The value of the 
radiomics model necessitates its validation through mul-
ticenter and large-scale studies. Second, we focused only 
on conventional MRI in our study. However, we believe 
that exploring the potential of radiomics based on func-
tional sequences, such as diffusion-weighted imaging and 
dynamic-contrast-enhanced MRI, would be highly ben-
eficial. Third, many studies have reported that radiomics 
features extracted from the peritumoral regions can pro-
vide additional information to the intratumor regions 
for predicting histopathological features in breast can-
cer [33], lung cancer [34], and gliomas [35]. The value 
of radiomics information from the peri-tumor region 
for assessing TILs in OTSCCs deserves to be further 
explored. Finally, the process of manually delineating all 
ROIs is time-consuming and prone to variation between 
different observers. Hence, developing an automatic seg-
mentation approach in the future is imperative.

Conclusions
In summary, our study provided preliminary evi-
dence supporting the effectiveness of an ML-based 
MRI radiomics approach in predicting the level of 
TILs in OTSCC. The LR model based on the combined 
sequences demonstrated the best diagnostic performance 
and may facilitate clinical decision-making for patients 
with OTSCC.
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