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Abstract 

Background Non-invasive identification of breast cancer (BCa) patients with pathological complete response (pCR) 
after neoadjuvant chemotherapy (NACT) is critical to determine appropriate surgical strategies and guide the resec-
tion range of tumor. This study aimed to examine the effectiveness of a nomogram created by combining radiomics 
signatures from both intratumoral and derived tissues with clinical characteristics for predicting pCR after NACT.

Methods The clinical data of 133 BCa patients were analyzed retrospectively and divided into training and valida-
tion sets. The radiomics features for Intratumoral, peritumoral, and background parenchymal enhancement (BPE) 
in the training set were dimensionalized. Logistic regression analysis was used to select the optimal feature set, 
and a radiomics signature was constructed using a decision tree. The signature was combined with clinical features 
to build joint models and generate nomograms. The area under curve (AUC) value of receiver operating characteristic 
(ROC) curve was then used to assess the performance of the nomogram and independent predictors.

Results Among single region, intratumoral had the best predictive value. The diagnostic performance of the intra-
tumoral improved after adding the BPE features. The AUC values of the radiomics signature were 0.822 and 0.82 
in the training and validation sets. Multivariate logistic regression analysis revealed that age, ER, PR, Ki-67, and radi-
omics signature were independent predictors of pCR in constructing a nomogram. The AUC of the nomogram 
in the training and validation sets were 0.947 and 0.933. The DeLong test showed that the nomogram had statistically 
significant differences compared to other independent predictors in both the training and validation sets (P < 0.05).

Conclusion BPE has value in predicting the efficacy of neoadjuvant chemotherapy, thereby revealing the potential 
impact of tumor growth environment on the efficacy of neoadjuvant chemotherapy.
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Introduction
Breast cancer (BCa) is a common malignancy among 
women and one of the deadliest cancers in the world [1, 
2]. Neoadjuvant chemotherapy (NACT) is a crucial strat-
egy for treating BCa, but its efficacy varies significantly 
among patients, with some patients achieving patho-
logic complete response (pCR) while others do not. In 
contrast, BCa patients with pCR experience significantly 
longer disease-free survival and overall survival than 
those without pCR [3]. Therefore, predicting pCR is sig-
nificant for developing personalized treatment plans [4].

Radiomics is an emerging interdisciplinary field that 
combines imaging and computer science to comprehen-
sively analyze tumors from multiple aspects such as mor-
phology, metabolism, blood flow, and intensity, to predict 
patient treatment response and prognosis [5]. Traditional 
radiomics analysis focuses on primary tumor lesions, as 
their histological type is closely related to the patient’s 
treatment response and prognosis [6]. However, In recent 
years, tumor-adjacent tissue has also received increasing 
attention. Tumor adjacent tissue refers to normal tissue 
within a certain range around a tumor, whose interac-
tions with the tumor may affect its growth, invasion, 
and treatment response [7]. Earlier investigations have 
demonstrated that the radiomics features extracted from 
peritumoral tissue can also predict pCR for BCa [8, 9]. 
In addition, normal breast tissue outside the tumor can-
not be ignored, among which background parenchymal 
enhancement (BPE) refers to the enhancement degree 
and distribution characteristics of normal breast tissue 
outside the tumor in enhanced MRI images, which are 
influenced by various factors such as hormone levels, age, 
and breast tissue density [10]. New research has indicated 
that BPE is strongly tied to the occurrence and prognosis 
of BCa [11]. Hence, the evaluation of BPE is one of the 
key components of assessing the efficacy of NACT for 
BCa [12]. However, previous studies have focused on the 
BPE of the contralateral breast. Tumor growth can have 
physiological vascularization and perfusion effects on the 
ipsilateral breast tissue, thereby affecting the determina-
tion of BPE [13]. Conversely, considering the primary 
tumor tissue, radiomics may better reflect the changes 
within the tumor tissue rather than measuring it through 
conventional vascular enhancement intensity [14]. There-
fore, we hypothesize that radiomics feature extracted 
from BPE tissue on the same side of the primary tumor 
can better predict pCR in patients with BCa. Combining 
the radiomics features of the Intratumoral and peritu-
moral may further improve predictive efficiency.

Our primary objective is to explore the correlation 
between various tissue radiomics features and treatment 
response, to identify specific features to construct radi-
omics signature for predicting pCR in NACT. Secondly, 

we will use a combination of clinical features and radi-
omics signature to develop a highly accurate prediction 
model using machine learning algorithm and compare its 
predictive effectiveness with clinical indicators.

Materials and methods
Patient information
This retrospective study was approved by the Ethics 
Committee of Zhejiang Provincial People’s Hospital (No. 
QT2023380). From December 2017 to September 
2022, A total of 1060 patients with BCa were diagnosed 
through the Picture Archiving and Communication Sys-
tem (PACS), and 133 patients were eventually enrolled 
based on the following inclusion criteria: (a) non-specific 
invasive breast cancer confirmed by pre-NACT biopsy; 
(b) receive standard 6–8 cycles of NACT without prior 
treatment history; (c) surgery is performed after com-
pletion of NACT, and pCR is confirmed based on the 
postoperative pathological evaluation. Exclusion cri-
teria for this study were as follows: (a) patients did not 
complete NACT or received non-standard treatment; 
(b) No surgery was performed after NACT or surgery 
was performed in an outside hospital, and postoperative 
pathology was not evaluated; (c) poor MRI image qual-
ity (e.g., artifacts); (d) multiple lesions on one breast; (e) 
distant organ metastasis. In addition, patients diagnosed 
between December 2017 and July 2020 were grouped 
into a training set (n = 93) to build the model, while 
patients diagnosed between August 2020 and September 
2022 were grouped into a validation set (n = 40) to verify 
the reliability of the model. The recruitment path of sub-
jects and the study design for this study are shown in the 
Fig. 1.

Image preprocessing and segmentation
All breast dynamic contrast-enhanced MRI scans were 
performed using the 3.0 Tesla MRI scanner (Skyra; 
Siemens Healthineers). The imaging protocol and 
detailed parameters are provided in the Supplemen-
tary materials and Table S1. Before feature extrac-
tion, T1WI was adopted as a rigid alignment template 
for all sequences using the alignment function of the 
SPM toolkit in Matlab software. T1-weighted imag-
ing (T1WI), enhanced third-phase T1-weighted 
(T1 + C) sequences, and dynamic contrast-enhanced 
subtraction images were preprocessed and aligned to 
ensure the three sequences contained the same reso-
lution, spacing, and origin. This was done to reduce 
the potential influence of scan protocol parameters. 
The normalized T1WI images were imported into ITK 
software, and the entire tumor area, peritumoral area, 
and BPE area were segmented layer by layer to deter-
mine the volume of interest (VOI). Finally, the VOI of 
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these three regions were subjected to feature extrac-
tion using the Pyradiomics program, respectively. 
Depending on the alignment of the sequence, T1WI, 
T1 + C and dynamic contrast-enhanced subtraction 
images can share the same VOI from T1WI to extract 
features.

Clinical and radiological variables
All patients were biopsied pre-NACT. Based on biopsy 
results, we evaluated the expression of several recep-
tors and antigens, including progesterone receptor (PR), 
estrogen receptor (ER), antigen Ki67 (Ki-67), and human 
epidermal growth factor receptor 2 (HER2). Nuclear 
staining of ER and PR ≥ 1% indicates positive. Then Ki-67 
expression value > 20% was positive. For HER2 expres-
sion, an IHC score equal to 0 or 1 + is considered nega-
tive, and 3 + is considered HER2 positive. An IHC score 
equal to 2 + requires in situ hybridization (ISH), and the 
structure shows non-amplification for HER2-negative 
and amplification for HER2-positive.

Based on the expression of ER, PR, Ki-67, and HER2, 
we classified all BCa patients into 5 subtypes, includ-
ing Luminal A, Luminal B HER2 negative, Luminal B 
HER2 positive, HER2 positive non-luminal, and tri-
ple negative. Specific standards refer to the St Gallen 
International Expert Consensus [15].

All patients histopathological examinations and anal-
yses are performed by professional breast pathologists 
with more than 10  years of experience in the field of 
breast pathology. They were blind to MRI data, and all 
specimens were evaluated using the Miller-Payne sys-
tem [16]. The Miller-Payne system has five levels. pCR 
is defined as the absence of residual invasive cancer in 
the specimen (possible presence of residual ductal car-
cinoma in situ). Moreover, during axillary lymph node 
dissection, there was no lymph node invasion (yPT0/
isN0) in ipsilateral sentinel lymph nodes or resected 
lymph nodes. For additional details on pathology grad-
ing, please refer to the Supplementary materials.

Fig. 1 Flowchart showed the recruitment of patients and the overall design of this retrospective study
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Extraction of radiomic features
A total of 3396 radiomic features were extracted from 
each of the three sequences, which encompassed six cat-
egories of features, namely shape, first-order, Gray Level 
Concurrence Matrix (GLCM), Gray-Level Run-Length 
Matrix (GLRLM), gray-level size zone matrix (GLSZM), 
and Gray level co-occurrence matrix (GLDM). Three 
sequences were scanned in one patient, providing 10188 
radiomic features per patient. Moreover, to ensure the 
accuracy and stability of the radiomic features, two radi-
ologists (radiologist A and radiologist B) manually seg-
mented the tumors using ITK software, resulting in two 
sets of features, set A and set B. The Spearman’s rank 
correlation test was then performed to evaluate the cor-
relation coefficient (CC) of each feature between the two 
sets. Features with CC > 0.8 were deemed robust.

Establishment of an optimal radiomics signature based 
on machine learning
To exclude non-repeatable, redundant and irrelevant fea-
tures from the extracted features of the initial set, we per-
formed feature dimensionality reduction using mRMR 
(maximum relevance and minimum redundancy) and 
GBDT (gradient boosted decision number) ensemble 
dimensionality reduction methods for the set of radiom-
ics features extracted from the training set. Then, we used 
logistic regression to construct intratumoral, BPE, and intra-
tumoral + BPE models and used decision tree algorithms in 
machine learning to construct radiomics signatures based 
on the optimal model. The score value of each case calcu-
lated based on this signature reflects the probability of pCR, 

and these score values are named rad-score. To assess the 
performance of the radiomics signature, we plotted receiver 
operating characteristic (ROC) curves and compared the 
probability difference between pCR and non-pCR.

Construction and validation of joint models
Multivariate logistic regression analysis and backward step-
wise selection method with the stopping rule, as specified 
by Akaike’s information criterion (AIC), were conducted to 
select independent predictors from age, clinical TN stage, 
menopausal status, BI-RAD stage, ER, PR, HER2, Ki-67, 
and radiomics signature, based on which a joint model was 
built and a nomogram was generated. The model’s good-
ness of fit was assessed using the Hosmer–Lemeshow test, 
and the agreement between the predicted and actual pCR 
probability was evaluated using calibration curves. To vali-
date the improvement in model performance after includ-
ing the radiomics signature, we used area under curve 
(AUC) to assess the performance of the combined model 
and independent predictors and the DeLong test to deter-
mine the difference between the combined model and 
other independent predictors. Furthermore, we extended 
the assessment of the model’s clinical efficacy by calculat-
ing the probability of pCR in each Luminal type using the 
combined model, as pCR predictive effect can be unstable 
in triple-negative BCa patients. Finally, the optimal cutoff 
value corresponding to the Yuden index of the ROC curve 
was used as a threshold to divide the pathology in each 
Luminal fraction into a low and a high probability group, 
and their pathological pCR results were compared. The 
entire research process is illustrated in Fig. 2.

Fig. 2 Research flowchart for model construction and validation
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Statistical analysis
Statistical analyses were performed with Python (version 
3.5), SPSS software (version 24.0) and MedCalc software 
(version 11.2). The Kolmogorov–Smirnov test was used 
to test the normality of the data. Normally distributed 
data were evaluated using an independent-sample t-test, 
whereas nonnormally distributed data were evaluated 
using the Mann–Whitney U test. The difference between 
categorical variables was tested with the chi-squared 
test. The calculated AUC was used to evaluate the per-
formance of the model for the prediction of pCR. A two-
tailed P value < 0.05 indicated statistical significance.

Results
Comparison of clinical data
There was no statistically significant difference in clinical 
data between the training and test sets (P > 0.05). However, 
there was a statistical difference in the training and valida-
tion sets in ER, PR, HER2, Ki-67 and BCa subtypes between 

the pCR and non-pCR groups (P < 0.05). In addition, the BI-
RAD stage in the training set was also statistically different 
between the pCR and non-pCR groups (P < 0.05). At the 
same time, the rest of the clinical data were not statistically 
different (P > 0.05), as detailed in Table 1.

Development of the radiomics signature and assessment 
of its accuracy
We extracted 7 features to construct the radiomics signa-
ture, including 2 features from dynamic contrast-enhanced 
subtraction images and 2 from T1WI images, all from the 
intratumoral region, as well as 3 features from enhancement 
images, 1 from the intratumoral region and 2 from the BPE 
region. Detailed feature information is provided in the Sup-
plementary materials. Using logistic regression to construct 
intratumoral, BPE, and intratumoral + BPE models. Among 
signatures for a single region, intratumoral had the best 
predictive value. The diagnostic performance of the intra-
tumoral improved after adding the BPE signature. radiom-
ics signature was constructed using decision trees based on 
the optimal model of intratumoral + BPE, and the radiomics 
signature achieved AUCs of 0.822 and 0.820, sensitivities of 
0.618 and 0.733, and specificities of 0.898 and 0.880 in the 
training and testing groups, respectively. Furthermore, the 
decision tree scores were statistically different between pCR 
and non-pCR in the training and validation sets (P < 0.05). 
Please refer to Table 2, Figs. 3 and 4 for further details.

Construction and validation of joint models
Multivariate logistic regression revealed age, ER, HER2, 
Ki-67, and radiomics signature as independent predic-
tors of pCR. A joint model and a visual nomogram were 
subsequently developed, as depicted in Fig. 5 and Table 3. 
The joint model exhibited an AUC value of 0.947 and 
0.933 in the training and validation sets, respectively, with 
a sensitivity of 0.882 and 0.933, and specificity of 0.881 
and 0.8. The Delong test revealed statistically significant 

Table 2 Diagnostic performance of models from intratumoral, 
BPE and combinations of them in the training set and the 
validation set

Model AUC (95% CI) Sensitivity Specificity

Training Intratumoral 0.723 (0.621–
0.811)

0.912 0.492

BPE 0.666 (0.561–
0.760)

0.441 0.864

Intratu-
moral + BPE

0.782 (0.684–
0.861)

0.765 0.763

Validation Intratumoral 0.736 (0.573–
0.862)

0.667 0.760

BPE 0.659 (0.492–
0.801)

0.933 0.440

Intratu-
moral + BPE

0.789 (0.631–
0.902)

0.667 0.880

Fig. 3 ROC curves of models from intratumoral, BPE and combinations of them in the training set (A) and the validation set (B)
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differences (P < 0.05) between the joint model and other 
independent predictors in both the training and valida-
tion sets, indicating improved predictive performance 
of the model. The validation curve demonstrated a good 
agreement between the predicted and actual pCR state 
in both sets, as illustrated in Fig. 6. Moreover, the results 
of the Hosmer–Lemeshow test indicated an ideal fitting 
of the model in both sets (P > 0.05). Finally, utilizing the 
optimal threshold of the nomogram (cut off: 0.3333), the 
cases were categorized into four groups based on the BCa 
subtypes. Except for the Luminal A without high prob-
ability group, there were significant differences between 
the predicted and actual pCR status in the other three 

groups, indicating the clinical usefulness of the model, as 
presented in Fig. 7.

Discussion
In this study, radiomics signature based on intratumoral 
regions demonstrated excellent performance in pre-
dicting PCR, which confirms previous studies. Moreo-
ver, adding the BPE region to the intratumoral region 
increased the predictive performance of the model for 
PCR. This indicates that the tumor growth environment 
represented by BPE impacts the efficacy of neoadjuvant 
chemotherapy. In addition, a joint model based on intra-
tumoral, BPE, and clinical features provides the best 

Fig. 4 A and B show the ROC curve analysis of radiomics labels in the training and validation sets. C and D show the difference violin plots based 
on label scores in the non-pCR and pCR groups, respectively
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prediction of pCR. These results may pave the way for 
comprehensive, non-invasive evaluation of individualized 
treatment of breast cancer [17].

This study also showed that ER, HER2 and Ki-67 were 
included in the construction of the model as independ-
ent predictors, which indicated that these characteristics 
played an essential role in the efficacy evaluation of NACT 
for BCa. In fact, previous studies have already established 
the relationship between these characteristics and neoadju-
vant radiotherapy and chemotherapy. ER-positive BCa, for 
instance, is known to respond better to these treatments, 
whereas HER2-positive BCa has a worse prognosis and is 
highly sensitive to targeted therapy [18, 19], radiotherapy, 
and chemotherapy [20, 21]. Moreover, Ki-67 can reflect the 
sensitivity of tumors to treatment, and a significant decrease 
in its level can significantly improve prognosis [22]. Tak-
ing into account the findings of this study, it is advisable to 
consider the expression of ER, HER2, and Ki-67 when for-
mulating individualized treatment plans for BCa patients. 

The study also identified age as an independent predictor in 
building the model, which is consistent with the findings of 
Li et al. [23]. They used imaging characteristics of 18F-FDG 
PET/CT images to predict pCR and found that the addition 
of age greatly improved the model’s prediction performance. 
However, some studies have shown that age may be unre-
lated to the overall pCR probability. Nonetheless, this study 
partially supports the conclusion that younger women with 
triple-negative BCa have a higher probability of pCR [24].

Based on comparisons with similar studies, Pilippo et  al. 
used a combination of clinical/biological and radiomics fea-
tures of MRI to predict pCR, with the AUC (95% CI) of the 
radiomics model being 0.64. This is lower than the AUC 
value of our radiomics signature (training set: 0.822, valida-
tion set: 0.820). The AUC of the clinical/biological–radiom-
ics model was 0.83 [25], and our results were better (training 
set: 0.947, validation set: 0.933). However, incorporating BPE 
radiomics features in this study may be the reason for effi-
ciency differences. BPE has become an important area of 

Fig. 5 Nomogram constructed based on independent predictive factors

Table 3 Selection of independent predictors

*indicates statistical significant difference

Variable Univariate logistic regression Multivariate logistic regression

OR (95%CI) P value OR (95%CI) P value

Age 0.957 (0.917, 0.998) 0.042* 0.92(0.851, 0.994) 0.035*

Juejing 1.943 (0.825,4.574) 0.128 NA NA

T 0.488 (0.172,1.383) 1.1.3831.125) 0.177 NA NA

N 1.2 (0.431, 3.345) 0.859) 0.727 NA NA

ER 0.294 (0.121,0.714) 4.532) 0.007* 0.087(0.016, 0.465) 0.004*

PR 0.333 (0.139,0.797) 1.426) 0.014 NA NA

HER2 6.133 (2.427,15.501) 1.199)  < 0.001* 13.014(2.603, 65.07) 0.002*

KI67 4.792 (1.491,15.394) 3.480) 0.009* 1.789(0.114, 28.114) 3182.065) 0.040*

BI-RAD 0 vs 1 0.772 (0.079,7.532) 0.078 NA NA

0 vs 2 0.678 (0.265,1.736) 0.418 NA NA

RADSCORE 2.362 (0.236,23.578)  < 0.001* 2.472(0.476,12.827)  < 0.001*
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BCa research [12], and similar studies have confirmed that 
BPE is an important predictor of neoadjuvant chemotherapy 
response. R Rella’s research shows that early reduction of 
BPE during NAC may be an early predictor of loss of tumor 
response, showing potential as an imaging biomarker of treat-
ment response [26]. In this study, we used radiomics methods 
to demonstrate the role of BPE in neoadjuvant chemotherapy 
response. BPE is a non-tumor tissue that provides a suitable 
environment for tumor cell growth. Therefore, BPE repre-
sents the growth environment of tumors [27] and is associ-
ated with the risk of future second cancer [28]. The results of 
this study further suggest that BPE may be a predictive fac-
tor for NACT response and overall BCa treatment outcomes. 
Therefore, this suggests that the tumor growth environment 
may be related to the efficacy of neoadjuvant chemotherapy.

Several studies have investigated the utility of MRI in 
predicting pCR before NACT. Braman et  al. studied the 
intratumoral and peritumoral radiomics features of 117 
patients and developed a Bayesian classifier with a maxi-
mum AUC of 0.93 [9], which is similar to the results of 
this study. However, without using Bayes classifiers, their 
research yielded an AUC of only 0.78. This also demon-
strates the superiority of machine learning in building 
models, and our research further confirms the above con-
clusion that the efficiency of using decision trees to build 
models is significantly better than using traditional logis-
tic regression models. In fact, machine learning has been 
widely applied to evaluate the efficacy of NACT on BCa 
[29–31]. In addition,  the diagnostic performance of the 
radiomics signature based on decision tree construction 

Fig. 6 A and B show the diagnostic performance of the joint model and each independent predictor in the training and testing groups, 
respectively. C and D show the validation curves of the model in the training and testing groups, respectively. The closer the solid line is to the 
diagonal of the dashed line, the better the fitting of the model
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in this study is significantly higher than that of the SVM-
based signature constructed by Cain EH et  al. (AUC: 
0.707) [32]. This may be attributed to differences in the 
tissue regions used to obtain radiomic features. Although 
previous studies have demonstrated the correlation 
between peritumoral radiomics and pCR [33], this study 
did not include peritumoral tissue features in model con-
struction. This may be because the information in the peri-
tumoral region may not be sufficient to express the results 
of NACT when compared with the high heterogeneity of 
intratumoral and the wide range of BPE regions. Further 
studies are warranted to investigate the biological signifi-
cance of radiomics features and to develop more accurate 
prediction models for personalized BCa treatment.

There are still limitations in this study. Firstly, this study is 
a single-center retrospective study. Due to sample size limi-
tations, the promotion and application of the model require 
further validation from multiple centers and a more consid-
erable amount of imaging data. Secondly, due to retrospec-
tive design, consistency in pathological evaluation cannot 
be checked. Although it is difficult to ensure that the patho-
logical pCR status of each patient is correct, the pathologi-
cal pCR status used for training and validation models is 
reliable. Finally, the predictive model based on radiomics 
has limited interpretability, which may need to explain the 
model’s decision-making process better. In the future, we 
will further study the biological significance of radiomics 
features to apply them to better clinical decision-making.

In summary, this study using the radiomics method 
demonstrated that BPE provides some value in predicting 
the efficacy of neoadjuvant chemotherapy PCR, thereby 
revealing the potential impact of tumor growth environ-
ment on the efficacy of neoadjuvant chemotherapy. This 
provides new insights for exploring the biological mecha-
nisms of tumor behavior after NACT in the future.
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