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Abstract 

The current approach to diagnosing and classifying brain tumors relies on the histological evaluation of biopsy 
samples, which is invasive, time-consuming, and susceptible to manual errors. These limitations underscore the press-
ing need for a fully automated, deep-learning-based multi-classification system for brain malignancies. This article 
aims to leverage a deep convolutional neural network (CNN) to enhance early detection and presents three distinct 
CNN models designed for different types of classification tasks. The first CNN model achieves an impressive detection 
accuracy of 99.53% for brain tumors. The second CNN model, with an accuracy of 93.81%, proficiently categorizes 
brain tumors into five distinct types: normal, glioma, meningioma, pituitary, and metastatic. Furthermore, the third 
CNN model demonstrates an accuracy of 98.56% in accurately classifying brain tumors into their different grades. To 
ensure optimal performance, a grid search optimization approach is employed to automatically fine-tune all the rele-
vant hyperparameters of the CNN models. The utilization of large, publicly accessible clinical datasets results in robust 
and reliable classification outcomes. This article conducts a comprehensive comparison of the proposed models 
against classical models, such as AlexNet, DenseNet121, ResNet-101, VGG-19, and GoogleNet, reaffirming the superi-
ority of the deep CNN-based approach in advancing the field of brain tumor classification and early detection.

Keywords Brain tumor grading, Hybrid deep learning, Hybrid convolutional neural network, Grid search, 
Hyperparameters

Introduction
Brain tumors stand as one of the leading causes of 
death in the modern world. These tumors can manifest 
in various regions of the brain, often remaining asymp-
tomatic until later stages of life. Symptoms of brain 
disease encompass a wide array of issues, including 
personality changes, memory difficulties, communica-
tion impairments, hearing or speech challenges, chronic 
migraines, and even vision loss [1]. Notable examples of 
brain tumors include meningiomas, gliomas, pituitary 
adenomas, and acoustic neuromas. According to medi-
cal observations, meningiomas, gliomas, and pituitary 
tumors account for approximately 15%, 45%, and 15% of 
all brain tumors, respectively. A brain tumor can have 
long-lasting psychological effects on the patient. These 
tumors originate from primary abnormalities in the brain 
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or central spine tissue that disrupt normal brain func-
tion. Brain tumors are classified into two main categories: 
benign and malignant. Benign tumors grow slowly and 
are non-cancerous; they are relatively rare and do not 
metastasize. In contrast, malignant brain tumors con-
tain cancerous cells, typically originating in one region 
of the brain before swiftly spreading to other areas of 
the brain and spinal cord [2]. Malignant tumors pose a 
significant health risk. The World Health Organization 
(WHO) classifies brain tumors into four grades based 
on their behavior within the brain: grades 1 and 2 are 
considered low-grade or benign tumors, while grades 
3 and 4 are categorized as high-grade or malignant 
tumors. Several diagnostic methods, such as CT scan-
ning and EEG, are available for detecting brain tumors, 
but magnetic resonance imaging (MRI) is the most reli-
able and widely utilized. MRI generates detailed internal 
images of the body’s organs by employing strong mag-
netic fields and radio waves [3]. Essentially, CT or MRI 
scans can distinguish the affected brain region due to 
the tumor from the healthy tissue. Biopsies, clinical tests 
that extract brain cells, can be conducted as a prelude to 
cerebral surgery. Precision is paramount in measuring 
tumor cells or arriving at accurate diagnoses. The emer-
gence of machine learning (ML) presents an opportunity 
to assist radiologists in furnishing precise disease status 
information [4]. The proliferation of novel technolo-
gies, particularly artificial intelligence and ML, has left 
an indelible mark on the medical field, equipping vari-
ous medical departments, including medical imaging, 
with indispensable tools to enhance their operations. As 
MRI images are processed to aid radiologists in decision 
making, a diverse array of automated learning strategies 
is employed for classification and segmentation pur-
poses. While supervised methods for classifying brain 
tumors hold immense promise, they demand specialized 
expertise to optimize the feature extraction and selection 
techniques [5]. In navigating and analyzing vast datasets, 
expert medical professionals benefit from the support 
of machine assistance. Furthermore, the failure to accu-
rately identify life-threatening tumors could potentially 
result in treatment delays for patients. The utilization of 
deep-learning (DL) techniques in detecting brain tumors 
and extracting meaningful insights from data patterns 
has a longstanding history. DL’s capability to classify and 
model brain cancers is widely recognized [6]. Effectively 
treating brain tumors hinges on early and precise dis-
ease diagnosis. Decisions regarding treatment methods 
are influenced by factors such as the tumor’s pathologi-
cal type, grade, and stage at diagnosis. Neuro-oncologists 
have harnessed computer-aided diagnostic (CAD) tools 
for various purposes, including tumor detection, catego-
rization, and grading within the realm of neurology [7].

A glioma is a type of tumor that originates in brain 
tissue, distinct from nerve cells or blood vessels. In 
contrast, meningiomas develop from the protective 
membranes that envelop the brain and central nervous 
system, while pituitary tumors grow within the confines 
of the skull. Among these three tumor types, menin-
giomas are relatively rare and generally benign. Con-
versely, gliomas constitute the most prevalent form of 
malignant brain tumors. Even though pituitary tumors 
may be benign, they can still give rise to significant 
medical complications [8]. Brain tumors rank as a lead-
ing cause of mortality worldwide. Research underscores 
the significance of early and accurate identification, 
coupled with prompt treatment, in improving sur-
vival rates for patients with cancerous tumors. In cer-
tain instances, healthcare professionals may encounter 
the need to differentiate between strokes and tumors. 
Hence, the early detection of brain tumors assumes piv-
otal importance for providing effective care and poten-
tially extending the affected individual’s lifespan [9]. 
Convolutional neural networks (CNNs), distinguished 
by their multi-layered architecture and high diagnos-
tic accuracy when provided with ample input images, 
currently stand as a highly effective approach in image 
processing. Neural networks, including auto-encoders, 
an unsupervised learning technique, are harnessed for 
representation learning [10]. Magnetic resonance imag-
ing (MRI) emerges as an exceptional tool for obtain-
ing clear and detailed visualizations within the human 
body. Unlike X-rays or CT scans that involve ionizing 
radiation, MRI offers significantly enhanced contrast 
between various soft tissues. Moreover, MRI technol-
ogy furnishes detailed images from multiple angles, 
providing radiologists with abundant data on human 
soft-tissue anatomy [11]. The aim of this paper is to 
introduce three fully automatic CNN models designed 
for the multi-classification of brain tumors, utilizing 
publicly available datasets. To the best of the authors’ 
knowledge, this represents the first endeavor in multi-
classifying brain tumors from MRI images using CNNs, 
wherein nearly all the hyperparameters are automati-
cally tuned through the grid search optimizer. The rest 
of this paper is organized as follows: Introduction Sec-
tion: this section provides a comprehensive overview 
of various tumor types and their diagnostic methods; 
Related work Section: in this section, we delve into 
recent articles, examining their methods, outcomes, 
and applications; Materials and methods Section: here, 
we detail the utilization of datasets and describe the 
proposed model architectures; Experimental study 
Section: this section centers on a comparative analy-
sis of the accuracies achieved by our proposed method 
and other state-of-the-art approaches;   Conclusions 
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Section: this section offers the concluding remarks and 
insights related to our proposed model.

Related work
The author’s goal was to devise a classification approach 
that is notably more accurate, cost-effective, and self-
training, utilizing an extensive collection of authentic 
datasets rather than augmented data. The customized 
VGG-16 (Visual Geometry Group) architecture was 
employed to classify 10,153 MRI images into three dis-
tinct classes (glioma, meningioma, and pituitary). The 
network demonstrated a remarkable performance, 
achieving an overall accuracy of 99.5% and precision 
rates of 99.4% for gliomas, 96.7% for meningiomas, and 
100% for pituitaries [12]. The proposed model’s efficacy 
was assessed using three CNN models: AlexNet, Visual 
Geometry Group (VGG)-16, and VGG-19. AlexNet 
achieved a peak detection accuracy of 99.55% using 349 
images sourced from the Reference Image Database to 
Evaluate Response (RIDER) neuro MRI database. For 
brain tumor localization, employing 804 3D MRIs from 
the Brain Tumor Segmentation (BraTS) 2013 database, 
a Dice score of 0.87 was achieved [13]. In the investiga-
tion of brain tumor categorization, an array of deep- and 
machine-learning techniques, including softmax, Ran-
dom Forest, Support Vector Machine (SVM), K-Nearest 
Neighbors, and the ensemble method, were employed. 
These outcomes were compared with existing methods. 
Notably, the Inception-v3 model exhibited the highest 
performance, attaining a test accuracy of 94.34%. This 
advancement holds the potential to establish a promi-
nent role in clinical applications for brain tumor analysis 
[14]. An effective approach was proposed for categoriz-
ing brain MRIs into four classes: normal and three forms 
of malignant brain tumors (glioblastoma, sarcoma, and 
metastatic bronchogenic carcinoma). The method inte-
grates the discrete wavelet transform (DWT) with a 
deep neural network (DNN). Employing a deep neural 
network classifier, one of the DL designs, a dataset of 66 
brain MRIs was classified into the specified categories. 
The integration of DWT, a powerful feature extraction 
technique, principal component analysis (PCA), and the 
classifier yielded commendable performances across all 
evaluation metrics [15]. The author introduced a strategy 
involving a CNN to distinguish brain tumors from 2D 
MRI scans of the brain. This initial separation is subse-
quently followed by the application of conventional clas-
sifiers and DL techniques. In addition, an SVM classifier, 
along with various activation algorithms, such as soft-
max, RMSProp, and sigmoid, were employed to validate 
and cross-check the proposed approach. The implemen-
tation of the author’s suggested solution was executed 

using TensorFlow and Keras in the Python programming 
language, chosen for its robust capabilities in expediting  
tasks. The achieved accuracy rate for the CNN model 
stood at an impressive 99.74% [16]. This paper presents 
a brain tumor classification approach employing open-
access datasets and CNN techniques. The methodology 
utilizes open-access datasets to classify tissue as either 
tumor or non-tumor through a distinctive framework that 
combines discrete cosine transform-based image fusion, 
CNN super-resolution, and a classifier. Employing super-
resolution and the ResNet50 architecture, the framework 
attained an impressive accuracy of 98.14% [17].

A novel approach for dimensionality reduction is pro-
posed, utilizing the Grey Wolf Optimizer (GWO) and 
rough-set theory. This method identifies relevant features 
from extracted images, distinguishing between high-
grade (HG) and low-grade (LG) glioblastoma multiforme 
(GBM) while accommodating feature correlation con-
straints to eliminate redundant attributes. Additionally, 
the article introduces a dynamic architecture for mul-
tilevel layer modeling in a Faster R-CNN (MLL-CNN) 
approach. This is achieved using a feature weight factor 
and a relative description model to construct selected fea-
tures, thereby streamlining the processing and classifying 
of long-tailed files. This advancement leads to improved 
training accuracies for CNNs. The findings illustrate that 
the overall survival prediction for GBM brain growth 
achieves a higher accuracy of 95% and a lower error rate 
of 2.3% [18]. The work involves the classification of 253 
high-resolution brain MR images into normal and path-
ological classes. To efficiently and accurately train deep 
neural models, MR images were scaled, cropped, pre-
processed, and enhanced. The Lu-Net model is compared 
against LeNet and VGG-16 using five statistical met-
rics: precision, recall, specificity, F-score, and accuracy. 
The CNN models were trained on enhanced images and  
validated on 50 sets of untrained data. LeNet, VGG-16, 
and the proposed approach achieved accuracy rates of 88%, 
90%, and 98%, respectively [19]. MIDNet18 outperformed 
AlexNet in categorizing brain tumor medical images. The 
proposed MIDNet18 model demonstrated effective learn-
ing, achieving a binary classification accuracy exceeding 
98%, which is statistically significant (independent-sample 
t-test, p < 0.05). MIDNet18 excelled across all the perfor-
mance indicators for the dataset used in this study [20].

The objective of this study was to facilitate accurate 
early-stage diagnoses by medical professionals. Three DL 
architectures—AlexNet, GoogLeNet, and ResNet50—
were employed to identify brain tumor images. Among 
them, the ResNet50 architecture demonstrated the 
highest accuracy rates. The experimental results yielded 
an accuracy of 85.71%, with the potential for further 
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enhancement in future research [21]. In the realm of 
Alzheimer’s disease diagnosis, the CNN approach was 
utilized to detect patients using MRSI and supplemen-
tary MRI data. High Matthews Correlation Coefficient 
(MCC) scores were achieved, with area-under-the-curve 
values of 0.87 and 0.91 for MRSI and MRI, respectively. 
A comparative analysis highlighted the superiority of 
Partial Least Squares and Support Vector Machines. The 
proposed system automatically selected critical spectral 
regions for diagnosis, corroborating findings with lit-
erature biomarkers [22]. CNNs, ML pipelines inspired 
by biological neural processes, have been extensively 
studied. The author’s approach involved first acquir-
ing an understanding of CNNs, followed by a literature 
search for a segmentation pipeline applicable to brain 
tumor segmentation. Additionally, the potential future 
role of CNNs in radiology was explored. The applica-
tion of CNNs was demonstrated in predicting survival 
and medication responses through analyses of the brain 
tumor shape, texture, and signal intensity [23]. In this 
paper, the state-of-the-art object detection framework 
YOLO (You Only Look Once) was employed to identify 
and classify brain tumors using DL. YOLOv5, a revo-
lutionary object detection algorithm, stood out for its 
computational efficiency. The RSNA-MICCAI brain 
tumor radiogenomics classification BraTS 2021 dataset 
served as the basis. YOLOv5 achieved an 88% precision 
rate [24]. The primary aim of this method is to classify 
brain images as healthy or tumorous using test MRI data. 
MRI-based brain tumor research offers superior internal 
imaging compared to CT scans. The approach involves 
denoising MRI images with an anisotropic diffusion fil-
ter, segmenting using morphological operations, and 
classifying via a five-layer CNN-based hybrid technique, 
outperforming other methods. The developed model, 
utilizing the publicly available KAGGLE brain MRI data-
base, achieved an accuracy rate of 88.1% [25]. The adop-
tion of AI-powered computer systems can assist doctors 
in making more accurate diagnoses. In this research, 
we developed a brain tumor diagnostic system based 
on CNN technology, utilizing Ranger optimization and 
the extensive pre-processing of data from the Efficient-
Netv2 architecture [26]. This research introduces a novel 
topology for a parallel deep CNN (PDCNN) designed to 
extract both global and local features from two parallel 
stages. Overfitting is addressed through the utilization of 
dropout regularization and batch normalization. Unlike 
conventional CNNs that collect features randomly with-
out considering local and global contexts, our proposed 
PDCNN architecture aims to capture a comprehensive 
range of features [27]. This study focuses on the classi-
fication of meningiomas, gliomas, and pituitary tumors 
using MRI imaging. The Dual VGG-16 CNN, equipped 

with a proprietary CNN architecture, constitutes the 
DCTN mode [28]. The importance of the early detection 
of brain tumors cannot be overstated. Biopsies of brain 
tumors, the gold standard for diagnosis, are only possi-
ble during life-altering brain surgery. Methods based on 
computational intelligence can aid in the diagnosis and 
categorization of brain tumors [29]. The author employed 
a DL model to classify MRI scans into glioma and normal 
categories, preceded by the extraction of scan informa-
tion. Convolutional recurrent neural networks (CRNNs) 
were utilized for generating the classifications. This sug-
gested method significantly improved the categorization 
of brain images within a specified input dataset [30]. The 
network was trained and tested using BraTS2019 data. 
The approach was evaluated using the Dice similarity 
coefficient (DSC), sensitivity (Sen), specificity (Spec), and 
Hausdorff distance (HD). The DSCs for the entire tumor, 
tumor core, and enhancing tumor were 0.934, 0.911, and 
0.851, respectively. The subregion Sen values were 0.922, 
0.911, and 0.867. The Spec and HD scores were 1.000, 
1.000, and 3.224, 2.990, 2.844, respectively [31]. The can-
cer region segmentation from brain images is achieved 
using Deep K-Net, a hybrid approach that combines 
K-Net and utilizes Deep Joint Segmentation with Ruzicka 
similarity. The K-Net is trained using a Driving Training 
Taylor (DTT) algorithm. The DTT algorithm optimizes 
the Shepard CNN (ShCNN) for classification [32].

The author provided an overview of contemporary 
computer-aided detection methods that utilize WCE 
images as input, distinguishing them as either diseased/
abnormal or disease-free/normal. We conducted an 
evaluation of approaches designed for the detection of 
tumors, polyps, and ulcers, as these three conditions 
are categorized similarly. Furthermore, because general 
abnormalities and bleeding within the GI tract could be 
indicative of these disorders, we made an effort to shed 
light on the research conducted for the identification of 
abnormalities and bleeding within WCE images [33]. 
Author have included several research studies, each 
accompanied by detailed descriptions of their techniques, 
findings, and conclusions. Additionally, we provide a 
discussion and comparison of previous review articles, 
which serves as a reference point for the current survey, 
while also highlighting its limitations [34]. To enhance 
feature extraction, our proposed deep CNN model intro-
duces an innovative approach by incorporating multiple 
convolutional kernels with varying window widths within 
the same hidden layer. This architecture is designed to be 
lightweight, consisting of 16 convolutional layers, 2 fully 
connected layers (FCN), and a softmax layer serving as 
the output layer. The activation function employed in the 
first 15 layers is MISH, followed by the Rectified Linear 
Unit (ReLU) activation function. This combination not 
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only facilitates profound information propagation but 
also offers self-regularized, smoothly non-monotonic 
characteristics, while effectively mitigating saturation 
issues during training. The authors present a comprehen-
sive set of experimental results, comparing our model’s 
performance against benchmarks like the MICCAI 2015 
challenge and other publicly available datasets. Our 
findings demonstrate that the proposed model excels in 
terms of accuracy, sensitivity, the F1-score, the F2-score, 
and the Dice coefficient [35].

Materials and methods
Materials
The study used four different datasets that can be found 
in freely accessible databases. The Figshare dataset is the 
name of the first dataset. From 19 patients with glioblas-
tomas (G-IV), MRI multi-sequence images were taken 
and added to the Figshare dataset, which is a targeted 
collection of data. There are a total of 70,221 images con-
tained within this collection. The name of the second 
collection of data is the Repository of Molecular Brain 
Neoplasia Data (REMBRANDT) [36]. This set of data has 
MRI images of gliomas with grades II, III, and IV from 
133 patients, and it has 109,021 images in total.

The Cancer Genome Atlas Low-Grade Glioma data-
set is the third dataset that was analyzed (TCGA-LGG) 
[37], and it has 242,185 MRI images of patients with 
low-grade gliomas (G-I and G-II) and incorporates data 
from 198 patients. These three datasets are part of the 
Cancer Imaging Archive (TCIA) project [38]. In each 
instance, multimodal imaging was performed, including 
T1-contrast-enhanced and FLAIR images [39]. The last 
collection of data used in this investigation consists of 
3067 T1-weighted, contrast-improved images from 243 
patients with three different types of brain tumors: glio-
mas (1427 slices), meningiomas (709 slices), and pituitary 
tumors (931 slices). Figure 1 depicts the different grades 
of brain tumors from the dataset. Totally, 3165 images 
are collected for the Classification-1 mode, 1743 of which 
are malignant tumors and 1422 of which are not. For the 
Classification-2 mode, 4195 images are collected. There 
are 910 normal images, 985 glioma images, 750 menin-
gioma images, 750 pituitary images, and 800 metastatic 
images. For the Classification-3 mode, we obtain a total 
of 4720 images: 1712 G-II, 1296 G-III, and 1712 G-IV. 
Table 1 represents the dataset split-up details for the pro-
posed model.

Methods
Convolutional neural network
The CNN is the neural network DL model that is most 
frequently employed. A common CNN model has two 
components: classification and feature extraction. A 

CNN architecture has five key layers: the input layer, 
convolution layer, pooling layer, fully connected layer, 
and classification layer. The CNN provides the extraction 
and classification of features using successively arranged 
trainable layers. Convolutional and pooling layers are 
typically included in the feature extraction phase of a 
CNN, whereas fully connected and classification layers 
are typically included in the classification part. This pro-
posed study suggests creating three fully automatic CNN 
models for classifying different types of brain tumors 
using MRI images. Grid search optimization tunes the 
key hyperparameters of the CNN models automatically. 
The primary of these CNN models determines whether a 
particular MRI image of a patient has a tumor or not, as 
it is employed to diagnose brain tumors. Throughout this 
study, this mode will be referred to as “Classification 1” 
(C-1). According to Fig. 2, the proposed CNN model for 
C-1 consists of thirteen weighted layers: one input layer, 
two convolution layers, two ReLU layers, one normaliza-
tion layer, two max-pooling layers, two fully connected 
layers, one dropout layer, one softmax layer, and one clas-
sification layer.

The initial CNN model is meant to classify an image 
into two groups, and it has two neurons in the output 
layer. Finally, a softmax classifier is fed the output of the 
fully connected layer (a two-dimensional feature vector) 
to determine whether a tumor is present or not. Table 2 
illustrates detailed information on the CNN model. 
There are five distinct forms of brain tumors that are dis-
tinguished by the second CNN model: benign, malignant, 
meningioma, pituitary, and metastatic. Throughout this 
study, this mode will be referred to as “Classification 2” 
(C-2). As shown in Fig. 3, the proposed CNN model for 
C-2 contains a total of 25 weighted layers: 1 input layer, 6 
convolution layers, 6 ReLU layers, 1 normalization layer, 
6 max-pooling layers, 2 fully connected layers, 1 drop-
out layer, 1 softmax layer, and 1 classification layer. The 
output layer of the second CNN model has five neurons 
as a result of the model’s intention to classify each given 
image into five distinct categories. The final prediction of 
the tumor type is made using a softmax classifier, which 
receives as input the five-dimensional feature vector gen-
erated by the final fully connected layer. Table  3 illus-
trates detailed information on the CNN model. The third 
proposed CNN framework divides glioma brain tumors 
into three grades, which are called G-II, G-III, and G-IV. 
Throughout this study, this mode will be referred to as 
“Classification 3” (C-3). As can be seen in Fig. 4, the pro-
posed CNN model for C-3 consists of a total of sixteen 
weighted layers: one input layer, three convolution layers, 
three ReLU layers, one normalization layer, three max-
pooling layers, two fully connected layers, one dropout 
layer, one softmax layer, and one classification layer. The 
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most recent CNN model has three neurons in the out-
put layer because it is meant to divide every image into 
three groups. The final fully connected layer, which is a 
three-dimensional feature vector, is sent to the softmax 
classifier as an input. The softmax classifier then makes a 
final prediction about the tumor grade. Table 4 illustrates 
detailed information on the CNN model.

Performance metric evaluation
It is essential to analyze the classification performance in 
image classification research to provide a rational founda-
tion for the outcomes of the investigation. Many different 

performance evaluation metrics have been used for an 
extended period in studies involving image classification 
and that have evolved into standard performance evalu-
ation metrics in studies that are similar to the prior. The 
proposed model used different parametric methods for 
evaluation, such as precision, sensitivity, and accuracy. 
These measures, which are generally acknowledged as 
standard performance evaluation metrics in image classifi-
cation research, are also employed in this article in order 
to measure the accuracy and reliability of the classification 
process. Furthermore, the receiver operation characteris-
tic (ROC) curve area, also known as the AUC of the ROC 

Fig. 1 a Manual tumor segmentation; b WHO grade II (first row), grade III (second row), and grade IV (third row) brain tumors
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curve, is used to evaluate the models’ performance. The fol-
lowing are the equations containing the corresponding for-
mulas for each of these measurements:

(1)Accuracy =
∅+ β

∅+ β + α + γ

(2)Specificity =
β

β + α

(3)Precision =
∅

∅+ α

where ø is true positive, β is true negative, α is false posi-
tive, and γ is false negative.

Experimental Study
We implemented the proposed classification model in 
MATLAB2021a on a computer with the specifications of 
32 GB RAM and an Intel E3-1245v6 @3.70GHz CPU.

Optimization of the Hyperparameters
There have been several developments in the field of med-
ical image processing that have led to the increased use 
of CNNs, and, as a result, some challenges have arisen in 
their use. The designs designed to obtain more effective 
outcomes are deeper, and the input images are becoming 
higher-quality, which leads to an increase in the amount 
of processing resources required. Sufficient hardware and 
tuning the network’s hyperparameters are essential for 
lowering these computing costs and maximizing results. 
As a result, the proposed CNN models have nearly all of 
their essential hyperparameters automatically set using 
the grid search optimization technique. When the search 
space for possible values is small, grid search optimiza-
tion is a great way to improve a CNN’s hyperparameter 
optimizations. The grid search can select the superior 
one by training the network through a wide range of 
possible combinations. CNN models have architectures 
that are quite complicated and that have a lot of hyper-
parameters. In most cases, these hyperparameters can 

(4)Sensitivity =
∅

∅+ γ

Table 1 Number of MRI images in the dataset

Dataset Split-Up

Classification No. of Images in the 
Group

Total 
No. of 
ImagesMode Group

I Malignant 1743 3165

Non-malignant 1422

II Benign 910 4195

Glioma 985

Meningioma 750

Pituitary 750

Metastatic 800

III G-II 1712 4720

G-III 1296

G-IV 1712

Fig. 2 Proposed CNN model architecture for “C-1” mode
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be arranged into two distinct categories: architectural 
hyperparameters and fine-adjustment hyperparameters. 
Architectural hyperparameters include the following: 
the number of convolutional pooling layers, the number 
of fully connected layers, the number of filters, the filter 

sizes, and the activation function. The regularization, 
momentum, minibatch size, and learning rate are among 
the fine-adjustment hyperparameters. In the current 
analysis, the hyperparameters of the architecture are ini-
tially tuned using Algorithm 1.

Table 2 Detailed information on CNN model employed for “C-1” mode

Layer Name CNN Layer Activations Parameters (Trainable) Total No. of 
Trainable 
Parameters

Input 227 × 227 × 3 227 × 227 × 3 nil 0

Convolutional 128 (6 × 6 × 3), stride of (4,4), with (0 0 0 0) padding 56 × 56 × 128 6 × (6 × 3) × 128 weights, 1 × 1 × 128 bias 13,954

Activation layer Activation layer-1 56 × 56 × 128 nil 0

Normalization Normalization (cross-channel) 56 × 56 × 128 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 28 × 28 × 128 nil 0

Convolutional 96 (6 × 6 × 128), stride of (1,1), and (2 2 2 2) padding 31 × 31 × 96 2 × (2 × 128) × 96 weights, 1 × 1 × 96 bias 49,246

Activation layer Activation layer-2 31 × 31 × 96 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 15 × 15 × 96 nil 0

Fully_connected 512 Fully_connected 1 × 1 × 512 512 × 21,700 weights, 512 × 1 bias 11,060,714

Dropout 30% 1 × 1 × 512 nil 0

Fully_connected 2 Fully_connected 1 × 1 × 2 512 × 2 weights, 2 × 1 bias 1026

Softmax Softmax 1 × 1 × 2 nil 0

Classification Tumor or non-tumor nil nil 0

Fig. 3 Proposed CNN model architecture for “C-2” mode
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Algorithm 1. Architectural hyperparameters will be optimized using 
a grid search algorithm

After determining the architectural hyperparameters, 
Algorithm 2 is used to optimize the fine-adjustment hyper-
parameters. In this proposed study, the grid search is 
carried out on the training set employing a fivefold cross-
validation method. The dataset is split into five different 
sets. Four of these sets are used for training, and the fifth 
set is used for testing. For the Classification-1 mode, there 
are 3165 images, for the Classification-2 mode, there are 
4195 images, and for the Classification-3 mode, there are 
4720 images. For each classification mode, the dataset is 
randomly split into a training set, a validation set, and a test 
set, with the ratio being 60:20:20. Basically, the grid search 
method goes through each possible setting for each param-
eter and finds the one that gives the best performance. In 
order to obtain the highest possible degree of accuracy 
with Algorithm 1, there are five parameters that need to be 
improved.

Table 3 Detailed information on CNN model employed for “C-2” mode

Layer Name CNN Layer Activations Parameters (Trainable) Total No. of 
Trainable 
Parameters

Input 227 × 227 × 3 227 × 227 × 3 nil 0

Convolutional 128 (6 × 6 × 3), stride of (4,4), with (0 0 0 0) padding 56 × 56 × 128 6 × (6 × 3) × 128 weights, 1 × 1 × 128 bias 13,952

Activation layer Activation layer-1 56 × 56 × 128 nil 0

Normalization Normalization (cross-channel) 56 × 56 × 128 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 28 × 28 × 128 nil 0

Convolutional 96 (6 × 6 × 128), stride of (1,1), and (2 2 2 2) padding 27 × 27 × 96 6 × (6 × 128) × 96 weights, 1 × 1 × 96 bias 442,464

Activation layer Activation layer-2 27 × 27 × 96 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 13 × 13 × 96 nil 0

Convolutional 96 (2 × 2 × 96), stride of (1,1), and (2 2 2 2) padding 16 × 16 × 96 2 × (2 × 96) × 96 weights, 1 × 1 × 96 bias 36,960

Activation layer Activation layer-3 16 × 16 × 96 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 8 × 8 × 96 nil 0

Convolutional 24 (6 × 6 × 96), stride of (1,1), and (2 2 2 2) padding 7 × 7 × 24 6 × (6 × 96) × 24 weights, 1 × 1 × 24 bias 82,968

Activation layer Activation layer-4 7 × 7 × 24 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 3 × 3 × 24 nil 0

Convolutional 24 (6 × 6 × 24), stride of (1,1), and (2 2 2 2) padding 2 × 2 × 24 6 × (6 × 24) × 24 weights, 1 × 1 × 24 bias 20,760

Activation layer Activation layer-5 2 × 2 × 24 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 1 × 1 × 24 nil 0

Convolutional 32 (4 × 4 × 4), stride of (1,1), and (2 2 2 2) padding 2 × 2 × 32 4 × (4 × 24) × 32 weights, 1 × 1 × 24 bias 12,320

Activation layer Activation layer-6 2 × 2 × 32 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 1 × 1 × 32 nil 0

Fully_connected 512 Fully_connected 1 × 1 × 512 512 × 32 weights, 512 × 1 bias 16,896

Dropout 30% 1 × 1 × 512 nil 0

Fully_connected 5 Fully_connected 1 × 1 × 5 512 × 5 weights, 5 × 1 bias 2565

Softmax Softmax 1 × 1 × 5 nil 0

Classification Benign, glioma, pituitary, metastatic, and meningioma nil nil 0
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Algorithm 2. Architectural hyperparameters will be optimized using 
a grid search algorithm

Many possible combinations for these parameters, 
including 4, 4, 7, 5, and 4, correspondingly. As a result, 
the total number of possible permutations to be exam-
ined is 4 × 4 × 7 × 5 × 4, which equals 2240. Because 
2240 combinations need to be checked using the fivefold 
cross-validation technique, the grid search algorithm cre-
ated to optimize the CNN model hyper-parameters is 
carried out 11,200 times. Similar to the first algorithm, 
the second algorithm has four parameters that need to be 
optimized to achieve the highest level of accuracy. A wide 
range of permutations are possible in these parameters, 

for example, 4, 4, 5, and 4. As a result, the total number of 
possible permutations that need to be examined is 4 × 4 
× 5 × 4, which equals 320. Because 320 different possible 
combinations need possible combinations that need to 
be tested using the fivefold cross-validation method, the 
grid search technique developed to improve the correc-
tion hyperparameters of the CNN model is carried out a 
total of 1600 times. As shown in Tables  5, 6 and 7, the 
grid search optimization algorithm found the best possi-
ble values for the hyperparameters of the C-1, C-2, and 
C-3 modes.

Optimized Convolutional Neural Network Outcomes
The fivefold cross-validation approach for the C-1 
mode is utilized to conduct the proposed model’s per-
formance analysis. The dataset is partitioned into five 
different sets, four of which are utilized for training 
purposes, while the fifth set is placed to use for testing 
purposes. There are five total iterations of the experi-
ments, and the classification performance of the mode 
is evaluated for each fold, and then the overall model’s 
average classification performance is computed. High 
accuracy results from the training and validation phases 
are meaningless if the trained and hyperparameter-
tuned CNN is not tested on its ability to predict sam-
ples that have not yet been seen. Hence, to assess the 
effectiveness of the trained CNN to assess the trained 

Fig. 4 Proposed CNN model architecture for “C-3” mode
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CNN’s effectiveness on predicting samples, a test data-
set is randomly allocated and segregated alongside the 
training and validation datasets. If this step is skipped, 
the high accuracy may result from biased dataset 
assignment. Table  8 displays the results of randomly 
splitting the 3165 images from the study into the train-
ing, validation, and test sets in the ratio of 60:20:20 for 
the C-1 mode.

A total of 299 images are taken randomly from the 
dataset for each category, and then those images are used 
for testing. The activations of the CNN’s convolution 
layers can be displayed for a better view of the features 

that the CNN has learned due to its training. With this 
representation, the researcher may easily observe the 
network’s progress. Figures 5 and 6 each depict the acti-
vations of the first and second convolutional layers. One 
of the images in the grid serves as a representation of the 
channel’s outcome. White areas represent highly posi-
tive activations, while grey areas represent moderately 
activated channels. While the first convolutional layer 
of the CNN is used to learn features such as color and 
edges, the second convolutional layer is used to learn 
more complex information, such as the borders of brain 
tumors. The succeeding (deeper) convolutional layers 

Table 4 Detailed information on CNN model employed for “C-3” mode

Layer Name CNN Layer Activations Parameters (Trainable) Total No. of 
Trainable 
Parameters

Input 227 × 227 × 3 227 × 227 × 3 nil 0

Convolutional 128 (6 × 6 × 3), stride of (4,4), with (0 0 0 0) padding 56 × 56 × 128 6 × (6 × 3) × 128 weights, 1 × 1 × 128 bias 13,952

Activation layer Activation layer-1 56 × 56 × 128 nil 0

Normalization Normalization (cross-channel) 56 × 56 × 128 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 28 × 28 × 128 nil 0

Convolutional 96 (6 × 6 × 128), stride of (1,1), and (2 2 2 2) padding 27 × 27 × 96 6 × (6 × 128) × 96 weights, 1 × 1 × 96 bias 46,752

Activation layer Activation layer-2 27 × 27 × 96 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 13 × 13 × 96 nil 0

Convolutional 96 (2 × 2 × 96), stride of (1,1), and (2 2 2 2) padding 16 × 16 × 96 2 × (2 × 96) × 96 weights, 1 × 1 × 96 bias 36,864

Activation layer Activation layer-3 8 × 8 × 96 nil 0

Max_pooling (2 × 2) with stride of (2,2), and (0 0 0 0) padding 6 × 6 × 256 nil 0

Fully_connected 512 Fully_connected 1 × 1 × 512 512 × 6144 weights, 512 × 1 bias 3,146,240

Dropout 30% 1 × 1 × 512 nil 0

Fully_connected 3 Fully_connected 1 × 1 × 3 512 × 3 weights, 3 × 1 bias 1539

Softmax Softmax 1 × 1 × 2 nil 0

Classification G-II, G-III, G-IV nil nil 0

Table 5 The grid search-yielded optimal results for the 
hyperparameters for the C-1 mode

Hyperparameters Changes in Parameter Values Maximal Value

Layers of maximum 
pooling and CNN

(1, 2, 3, 4) 2

Number of layers 
that are completely 
connected

(1, 2, 3, 4) 2

Total number of filters (8, 16, 24, 32, 48, 64, 96, 128, 
256)

64, 96, 128

Intensity of filtration (3, 4, 5, 6, 7) 6, 6

Role of activation (ReLU, ELU, Leaky ReLU) ReLU

Size of minibatch (4, 6, 16, 24, 32, 64) 32

Rate of change (0.78, 0.77, 0.95, 0.96) 0.95

Rate of learning (0.0002, 0.00043, 0.002, 0.004) 0.0002

R2—regularization (0.0002, 0.00043, 0.002, 0.004) 0.0002

Table 7 The grid search-yielded optimal results for the 
hyperparameters for the C-3 mode

Hyperparameters Changes in Parameter Values Maximal Value

Layers of maximum 
pooling and CNN

(1, 2, 3, 4) 3

Number of layers 
that are completely 
connected

(1, 2, 3, 4) 2

Total number of filters (8, 16, 24, 32, 48, 64, 96, 128, 
256)

64, 96, 128

Intensity of filtration (3, 4, 5, 6, 7) 6, 6, 4

Role of activation (ReLU, ELU, Leaky ReLU) ReLU

Size of minibatch (4, 6, 16, 24, 32, 64) 32

Rate of change (0.78, 0.77, 0.95, 0.96) 0.95

Rate of learning (0.0002, 0.00043, 0.002, 0.004) 0.004

R2—regularization (0.0002, 0.00043, 0.002, 0.004) 0.002
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build up their features by merging the features learned by 
the earlier convolutional layers.

Figure  5 shows 96 of the 128 channels in the CNN’s 
first convolutional layer running in C-1 mode. This layer 
contains a total of 128 channels. Figure 6 shows an image 
of the second convolutional layer of the network, which 
has 96 channels. Every layer of the CNN is composed of 
channels, which are arrays in two dimensions. One of 
the images in Fig. 5 represents the output of each chan-
nel in the first convolutional layer. In these images, strong 
positive activations are shown by white pixels, and strong 
negative activations are shown by black pixels. Similarly, 
grey pixels on the input image indicate channels that are 
not highly active. Figure  7 depicts the activations of a 
particular channel and the channel with the most signifi-
cant activation in the first convolutional layer. The pres-
ence of white pixels in the channel of Fig. 7 demonstrates 
that this channel is highly activated at the tumor’s loca-
tion. Although the CNN was never instructed to learn 
about tumors, it is possible to conclude that it has picked 
up on the fact that tumors have distinguishing qualities 
that allow it to differentiate between different categories 
of images.

These CNNs are able to discover helpful character-
istics on their own, unlike earlier artificial neural net-
work methods that typically required manual design to 
fit a particular mode. In this proposed article, learning 
to recognize tumors improves the ability to distinguish 
between a tumor image and non-tumor image. After 
the process of classification has been completed, the 
efficiency of the CNN models must be evaluated using 
different reliable approaches. The metrics, like the speci-
ficity, sensitivity, precision, and accuracy measures, as 
well as the area under the ROC curve, are used to per-
form the performance evaluation of the proposed model. 
The proposed CNN’s loss and accuracy plots for the C-1 
mode are shown in Fig. 8. After 340 iterations, the model 
proposed for C-1 was able to classify with a 99.53% accu-
racy. It is pretty clear, as shown in Fig.  8, that approxi-
mately 250 iterations are required to reach an almost 
perfect level of accuracy. Figure 9 depicts the confusion 
matrix for the Classification-1 mode. As can be seen 
in Fig. 10, the area under the ROC curve has a value of 
0.9995 for its AUC. The results presented here demon-
strate that the recommended CNN model is capable of 
identifying brain tumors. Table 9 shows the measures of 

Table 6 The grid search-yielded optimal results for the hyperparameters for the C-2 mode

Hyperparameters Changes in Parameter Values Maximal Value

Layers of maximum pooling and CNN (1, 2, 3, 4) 6

Number of layers that are completely connected (1, 2, 3, 4) 2

Total number of filters (8, 16, 24, 32, 48, 64, 96, 128, 256) 16, 24, 32, 48, 64, 96, 128

Intensity of filtration (3, 4, 5, 6, 7) 6, 6, 4, 6, 2, 6

Role of activation (ReLU, ELU, Leaky ReLU) ReLU

Size of minibatch (4, 6, 16, 24, 32, 64) 64

Rate of change (0.78, 0.77, 0.95, 0.96) 0.95

Rate of learning (0.0002, 0.00043, 0.002, 0.004) 0.0002

R2—regularization (0.0002, 0.00043, 0.002, 0.004) 0.002

Table 8 Training, validating, and testing phases of proposed CNN model

Dataset Split-Up Training, Validation, and Testing Modes

Classification No. of Images in the 
Group

Total No. of Images Training Mode 
(60%)

Validation Mode 
(20%)

Test 
Mode 
(20%)Task Group

I Malignant 1743 3165 1899 633 633

Non-malignant 1422

II Benign 910 4195 2517 839 839

Glioma 985

Meningioma 750

Pituitary 750

Metastatic 800

III G-II 1712 4720 2832 944 944

G-III 1296

G-IV 1712
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the accuracy, such as the true positive (TP), true negative 
(TN), false positive (FP), false negative (FN), accuracy 
(Acc), specificity (Sp), sensitivity (Se), and precision (Pr). 
Figure 10 depicts the ROC curve for the Classification-1 
(C-1) task.

Figure  11 shows the results of the classification and 
the predicted probabilities for each of the four tests 
conducted in C-1 mode. Implementing the fivefold 
cross-validation method for the C-2 mode evaluates 
the effectiveness of the proposed framework. The data-
set is partitioned into five sets, four of which are utilized 

for training purposes, while the fifth set is placed for 
testing purposes. There are five total iterations of the 
experiments. The classification performance of the job is 
evaluated for each fold, and then the overall model’s aver-
age classification performance is computed. As indicated 
in Table 8, there are sufficient images for the C-2-mode 
training, validation, and test sets to be randomly divided 
in a ratio of 60:20:20 for a sample size of 4195. From the 
dataset of each class that will be used to test the model, 
158 images are randomly selected to be removed. The 
accuracy and loss plots of the suggested CNN model for 

Fig. 5 First CNN activation layer for C-1 mode

Fig. 6 Second CNN activation layer for C-1 mode
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the C-2 task are displayed in Fig. 12. The proposed CNN 
method for the C-2 mode achieves a 93.81% accuracy in 
classification after 294 iterations. As shown in Fig. 13, the 
area under the ROC curve has a value of 0.9981. These 
findings demonstrate the proposed CNN model’s capa-
bility to classify brain tumor types. Figure  14 depicts a 
confusion matrix, and Table  9 lists the many measures 
of precision, such as TP, TN, FP, FN, Acc, Sp, Se, and Pr. 
According to Table  9, an accuracy of 97.26% is attained 
when classifying a glioma, 97.50% when classifying a 
meningioma, 96.86% when classifying metastasis, 97.99% 
when classifying a healthy brain, and 95.59% when clas-
sifying the pituitary tumor type for the C-2 mode. 

Figure 14 depicts the ROC curve for the Classification-2 
(C-2) task.

The fivefold cross-validation process for the C-3 mode 
is utilized to evaluate the efficacy of the proposed models. 
The dataset is partitioned into five different sets, out of 
which four are used for training and the fifth is used for 
testing. There are five total iterations of the experiments. 
Following an analysis of the classification performance 
of the mode for each fold, an average classification per-
formance for the model is computed. For the C-3 mode, 
sufficient images can be randomly divided into training, 
validation, and test sets in the proportions 60:20:20, as 
indicated in Table 8, randomly excluding three hundred 

Fig. 7 C-1-mode strongest and moderate images from original input image

Fig. 8 C-1-mode accuracy and loss curves
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and five images from the dataset of each class to be uti-
lized to evaluate the model. The loss and accuracy graphs 
of the proposed CNN for the C-3 mode are shown in 
Fig.  15. Figure  16 depicts the confusion matrix for the 
C-3 mode. The proposed approach for the C-3 mode 
obtains a classification accuracy of 98.16% after 344 iter-
ations. Figure  17 depicts the ROC curve for the Classi-
fication-3 (C-3) task. Table  9 shows that an accuracy of 
98.16% is reached when classifying grade II, 100% when 

classifying grade III, and 98.17% when classifying grade 
IV for brain tumor grades in the C-3 mode. The three 
different classification outcomes of the proposed CNN 
model were compared with other conventional CNN 
approach outcomes to evaluate the proposed system clas-
sification ability. To achieve this goal, the same experi-
ments were performed with the same dataset, utilizing 
well-known and popular pretrained CNN models, such 
as AlexNet, DenseNet121, ResNet-101, VGG-16, and 

Fig. 9 C-1 confusion matrix

Fig. 10 C-1-mode average of ROC curve
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Table 9 Proposed CNN model parameter metric outcomes for all classification modes

Metrics Classes TP TN FP FN Acc Sp Se Pr Total

I Malignant 268 326 3 0 99.50 99.09 100.00 98.89 268

Non-malignant 326 268 0 3 99.50 100.00 99.09 100.00 329

II Benign 183 598 8 8 97.99 98.68 95.81 95.81 191

Glioma 132 650 10 12 97.26 98.48 91.67 92.96 144

Meningioma 138 643 6 14 97.50 99.08 90.79 95.83 152

Pituitary 160 598 24 11 95.59 96.14 93.57 86.96 171

Metastatic 127 643 11 14 96.86 98.32 90.07 92.03 141

III G-II 332 574 9 8 98.16 98.46 97.65 97.36 340

G-III 248 679 0 0 100.00 100.00 100.00 100.00 248

G-IV 330 580 8 9 98.17 98.64 97.35 97.63 339

Fig. 11 The results of classification and predictions for the probabilities of four different test images for the C-1 mode

Fig. 12 C-2-mode accuracy and loss curves
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Fig. 13 C-2-mode average of ROC curve

Fig. 14 C-2 confusion matrix

GoogleNet. Table  10 illustrates the performance metric 
outcome comparison of the proposed CNN model with 
existing CNN approaches. Figure 18 depicts the graphi-
cal representation of the proposed and existing models’ 
result comparison.

The results shown in Table  10 illustrate that the 
proposed CNN models outperform other networks in 
every classification mode. The pretrained DenseNet121 

model, which obtains a 93.89% classification accuracy 
in the brain tumor detection test (C-1 mode), is the 
model that is closest to the suggested model. The pre-
trained VGG-16 model obtains an 89.19% accuracy in 
the brain tumor-type classification mode (C-2 mode). 
It is the model that is closest to the proposed CNN 
model. After the proposed CNN model, the pretrained 
GoogleNet model achieves a classification accuracy of 
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95.12%, making it the best network available for grad-
ing tumors (C-3 mode). It is clear that the proposed 
CNN models are better than the pretrained networks, 
which were built and trained using generic datasets and 
methods for a wide range of image classification tasks. 
Table  11 illustrates the proposed and existing model 
outcome comparison. The proposed CNN models, con-
versely, were designed to deal with more specific issues, 
like identifying and defining various types and stages of 
brain tumors. Finally, MRI images of brain tumors are 
used to train and evaluate the proposed models.

Conclusions
In this research, we propose a multi-classification 
method for identifying brain tumors at an early stage 
using (CNN) models, in which nearly all the hyperpa-
rameters are automatically optimized via grid search. 
By using publicly available medical imaging datasets, 
three reliable CNN models have been designated 
to perform three distinct brain tumor classification 
tasks. A high level of accuracy, such as 99.53%, can be 
attained in the process of detecting brain tumors. In 
addition, a remarkable accuracy of 93.81% is achieved 

Fig. 15 C-3-mode accuracy and loss curves

Fig. 16 C-3 confusion matrix
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Fig. 17 C-3-mode average of ROC curve

Table 10 Performance metric outcome comparison of the proposed CNN model with existing CNN approaches

CNN Models C-1 Mode C-2 Mode C-3 Mode

Acc (%) AUC Acc (%) AUC Acc (%) AUC 

GoogleNet 74.21 0.8108 77.89 0.8212 95.12 0.9617

AlexNet 89.23 0.8989 84.24 0.8501 91.08 0.9772

DenseNet121 93.89 0.9412 77.67 0.8122 86.07 0.8809

ResNet101 93.29 0.9442 76.45 0.8115 86.42 0.881

VGG-16 88.87 0.9201 89.19 0.8112 84.87 0.8663

Proposed CNN approach 99.53 0.9994 93.81 0.9984 98.56 0.9993

Fig. 18 Graphical illustration of proposed and existing models’ outcome comparison
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when classifying brain MR images into the catego-
ries of glioma, meningioma, pituitary, normal brain, 
and metastatic. The final step is grading glioma brain 
tumors, which can be performed with an accuracy of 
98.56% for grades II, III, and IV. A good number of 
medical images are used to train and test the CNN 
models that are being proposed. Results from the 
proposed CNN models and comparisons with cur-
rent methods show that CNN models made with the 
proposed optimization framework work well. In this 
work, CNN models were made that can help clinicians 
and radiologists check primary screenings for multi-
ple types of brain tumors.
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