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Abstract 

Background Medical image segmentation is an important processing step in most of medical image analysis. Thus, 
high accuracy and robustness are required for them. The current deep neural network based medical segmentation 
methods have good effect on image with balanced foreground and background, but it will loss the characteristics 
of small targets on image with imbalanced foreground and background after multiple convolutions.

Methods In order to retain the features of small targets in the deep network, we proposed a new medical image 
segmentation model based on the U-Net with squeeze-and-excitation and attention modules which form a spiral 
closed path,callled as Spiral Squeeze-and-Excitation and Attention NET (SEA-NET) in this paper. The segmentation 
model used squeeze-and-extraction modules to adjust the channel information to enhance the useful information 
and used attention modules to adjust the spatial information of the feature map to highlight the target area for small 
target segmentation when up-sampling. The deep semantic information is integrated into the shallow feature map 
by the attention model. Therefore, the deep semantic information cannot be scattered by continuous up-sampling. 
We used cross entropy loss + Tversky loss function for fast convergence and well processing the imbalanced data sets. 
Our proposed SEA-NET was tested on the brain MRI dataset LPBA40 and peripheral blood smear images.

Conclusions On brain MRI data, the average value of the Dice coefficient we obtained reached 98.1% . On the periph-
eral blood smear dataset, our proposed model has a good segmentation effect on adhesion cells.

Results The experimental results proved that the proposed SEA-Net performed better than U-Net, U-Net++, etc. 
in medical image segmentation.

Keywords Sample, Article, author

Introduction
As medical image segmentation is the basic processing 
step in most of medical image analysis, medical image 
segmentation is required to have high segmentation 
accuracy and good stability. Therefore, it is necessary to 

develop automatic segmentation methods for medical 
images. However, traditional medical image segmen-
tation methods cannot meet these requirements. Tra-
ditional automatic extraction methods need to adjust 
different parameters for different types of images, and 
can not be segmtioned across different types of images. 
Moreover, it is difficult to meet the needs of clinical and 
brain research in terms of extraction precision, extrac-
tion speed and extraction stability. The method pro-
posed in this paper can solve these problems well. It can 
achieve high precision, fast and stable medical image 
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segmentation without adjusting parameters. In recent 
years, the deep learning techniques have achieved rapid 
progress. Among them, the convolutional neural network 
(cnn) has great potential in the field of image process-
ing due to automatic feature extraction, strong nonlin-
ear expression ability, and no manual intervention. In 
the field of image segmentation, the common CNN 
models include FCN [1], PSP-Net [2] , mask-RCNN [3], 
U-Net [4] and so on. Among them, the extremely light-
weight model U-Net is probably the most widely used 
model in medical image segmentation. U-Net has a sim-
ple structure, but its segmentation result is good. Many 
researchers chose it as the baseline to design model for 
various medical image segmentation. Cicek [5] extended 
the U-Net model to 3D image segmentation, and then 
applied it to brain tumor segmentation. Zhang [6] 
replaced each sub-block of U-Net with a staggered block, 
and then applied it to retinal segmentation. Zahangir [7] 
proposed R2U-Net that combined residual connections 
and cyclic connections to replace sub-blocks in U-Net. 
The improved model was verified on skin disease images 
and lung images. Oktay [8] proposed Attention U-Net 
that set attention gating between skip and connections 
to highlight more useful deep semantic features to com-
pensate for low-level semantic features. However, If the 
feature of the small target is eliminated from the deep 
semantic features through multiple convolutions, atten-
tion to gating will not work on the low-level features of 
the small target. The output of the attention gated is still 
directly combined with the deep feature map, without 
considering the semantic gap between the shallow fea-
ture map and the deep feature map. Zhou [9] improved 
the skip-connection part and introduced deep supervi-
sion ideas based on U-Net. Huang [10] changed the skip 
connections into a full-scale skip connections. Jha [11] 
proposed Double U-Net structure. The first U-Net uses 
the pre-trained VGG-19 as the encoder, and the sec-
ond U-Net uses ASPP to capture more information. It 
obtained good results on four different medical images. 
C. Guo [12] proposed spatial attention u-net and applied 
it to blood vessel extraction. M. Z. [13] applied U-net++ 
to the segmentation of brain tumors. Jieneng Chen [14] 
proposed TransUNet, which adopts hybrid CNN-Trans-
former and combines skip-connection to achieve better 
performance in medical image segmentation. A. Lin [15] 
proposes DS-TransUNet by using doubleSwin Trans-
former combined with U-shaped structure.

Unlike natural pictures, medical images usually have 
only one or two segmentation targets, and the propor-
tion of target images is small. This kind of data is called 
category imbalance. If most of the training images are 
imbalanced images, the model may be able to learn the 
characteristics of small targets slowly. If there are both 

category imbalance and category balance images in train-
ing data, the model will tend to learn the characteristics 
of category balance. To obtain the global information of 
the big target, the network will be deepened. Multiple 
convolution operations will cause small target features 
to be lost. Since the shallow feature map contains the 
boundary information of the target and the global infor-
mation of the small target, U-Net proposed a jump con-
nection to combine the shallow feature maps from the 
encoding path and the deep feature maps of the same 
scale from the decoding path. However, simple jump con-
nections cannot make full use of shallow feature maps. 
The deep semantic information is scattered after multi-
ple upsampling operations. To solve these problems, we 
applied the Resnet based Squeeze-and-Excitation module 
( SE-Res module) and attention module (A module ) into 
the U-Net, and proposed a new network model called 
SEA-Net. In SEA-Net, our main contributions are as 
follows:

• We replaced the copy-skip path with the attention 
path in U-Net model. Unlike Attention U-Net [8], 
this path is the only path that provides deep seman-
tic information for the decoding. It combined deep 
semantics and shallow semantics to adjust the spa-
tial information of the shallow feature map to high-
light the target area, and provides more useful spatial 
semantic information for the decoding process.

• We added a SE-Res path parallel to the above atten-
tion path in the U-Net. The SE-Res path adjusted the 
channel information weight of the shallow feature 
map to remove redundant channel information, and 
to provide more channel semantic information for 
the decoding process.

• We proposed a hybrid function (cross entropy loss + 
Tversky loss) to handle the imbalance of data catego-
ries while ensuring that the model can still converge 
quickly.

Methods
Related work
Attention mechanism The attention mechanism in deep 
learning draws on the idea of human visual attention 
mechanism. It focuses on important points in a large 
amount of information, highlights key information, and 
ignores other unimportant information. The calcula-
tion of the attention mechanism can be divided into two 
steps. The first step is calculating the attention distribu-
tion on all information. The second step is calculating 
the weighted average of the input information according 
to the attention distribution. Various attention mecha-
nism models have been proposed to tasks such as natural 
language processing [16], image classification [17], and 
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machine translation [18]. Hu [19] proposed the Squeeze 
and Excitation module (SE), which performs attention 
operations in the channel dimension to allow the model 
to focus on the useful channel features for the task. Woo 
[20] proposed the CBAM module to capture global fea-
ture dependence based on spatial attention and channel 
attention. Wu [21] proposed a self-attention mechanism 
to capture the long and short distance relationship of pix-
els. Gao [22] proposed GCNet that combined the advan-
tages of Non-local [23] and SENet [24]. GCNet [22] can 
effectively model the global context and is as lightweight 
as SENet. By calculating the relationship between two 
positions, the attention mechanism obtains long-range 
dependence and a wider receptive field, highlights the 
target area, and improves local constraints in the convo-
lution process. While improving the performance of the 
model, the attention mechanism increases the interpret-
ability of the neural network structure.

Resnet The deeper the network is, the richer the feature 
information we can obtain. However, simply deepening 
the network will cause problems such as network degra-
dation and gradient disappearance. The residual network 
(Resnet) [24] was proposed to make the deep network 
can be well trained. It can increase the accuracy of the 
model by adding considerable depth. The residual block 
inside the residual network uses skip connections, which 
alleviates the problems of network degradation and gra-
dient disappearance caused by the deepening of the deep 
neural network. The idea of skip connect is to express 
the output as a linear superposition of a nonlinear trans-
formation of the input and the output. Specifically, skip 
connection protects the integrity of the information by 
directly detouring the input information to the output. 
The entire network only needs to learn the difference 
between input and output. It simplifies learning objec-
tives and difficulty. The residual block has a simple struc-
ture and is optimized easily, so it is often embedded in 
various deep convolutional networks. Diakogiannis [25] 
proposed ResUNet-a for remotely sensed data; Ibtehaz 
[26] replaced the simple skip connection in traditional 
U-Net with residual path. Resnet has two structures, 
one is concatenated by two 3 × 3 convolutional layers; the 
other is concatenated by three convolutions of kernel size 
1 × 1, 3 × 3, and 1 × 1. Researchers will choose the appropri-
ate resdual block structure according to the requirements 
in the task.

Category imbalance In deep learning, most data sets 
have the problem of category imbalance. In medical 
image segmentation, the imbalance between foreground 
and background is particularly serious. There are only 
one or two targets in a image, and the pixel ratio of the 
targets is relatively small, which will make it difficult 
to train the network. Some researchers tried to use a 

reasonably designed loss function to achieve accurate 
segmentation of small targets. Field [27] proposed Dice 
loss to increase the weight of the foreground area. Seyed 
Sadegh [28] proposed a generalized loss function of Tver-
sky exponent to find a better balance between accuracy 
and recall. The improved loss function can solve the 
problem of data imbalance while retaining all the infor-
mation of the image.

Methodology
The structure of the proposed segmentation model is an 
encoding- decoding architecture. The overall network 
architecture is shown in Fig. 1. We will introduce the pro-
posed SEA-Net model from encoder, decoder, and two 
skip paths.

Encoder The left side in Fig.  4 is the encoder. The 
encoder has 8 convolutional components including 4 × 4 
convolutional layer, BN and leaky Relu activation layer to 
provide wider receptive field. Since the pooling operation 
will cause loss of feature information, we use a convolu-
tion operation with stride of 2 to achieve downsampling. 
Both shallow information and deep information are 
important for medical image segmentation. We hope to 
obtain more feature maps of different scales to improve 
the segmentation performance of the model. Therefore, 
the number of convoluation layer of our encoder is twice 
that of the original U-Net network. The encoder obtains 
multi-scale feature information through layer-by-layer 
convolution. The shallow feature map has insufficient 
receptive fields, but has more detailed information of 
image such as the characteristics of small target and the 
boundary of the target. The deep feature map has less 
detailed information of image but has a wide receptive 
field, so it is important for object positioning. Therefore, 
the decoder needs to better integrate multi-scale feature 
maps.

Decoder The right side in Fig.  1 is the decoder. The 
encoding-decoding architecture is a symmetrical struc-
ture. After the encoder is down-sampled 8 times, the 
decoder needs to go through 8 up-sampling to restore 
the image resolution. The up-sampling process of the 
original U-Net is that the deep feature map first achieves 
scale expansion through an up-sampling operation such 
as nearest field interpolation, and then combines the cor-
responding scale feature map from the encoding path as 
the input of the next up-sampling operation.

There are semantic dissimilarities between deep feature 
maps and shallow feature images, and the deepened net-
work loses a lot of image details. Simple skip connection 
cannot solve these problems well. The proposed SEA-Net 
can solve the above problems by redesigning two parallel 
skip paths in the decoder.
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Figure  2 shows the detailed internal structure of the 
attention block in Fig.  2. Figure  3 shows the detailed 
internal structure of the SE-Res module in Fig.  1. The 
attention module and the SE-Res module of the same 
level has the same input. The G in Fig. 2 corresponds to 
the deep feature map, and x corresponds to the shallow 
feature map. Before going into the attention block, the 
deep feature map first is expanded through deconvolu-
tion with kernel size of 4 × 4 and stride of 2 and becomes 
the input G of the attention path. Then G with deep 
semantic information guides the feature map x at the 

same level from the coding path to redistribute feature 
weights through the attention path. x is also used as the 
input of SE-Res path to adjust the channel information 
weight through the SE module. Finally, the output Ẋ of 
the attention path is concatenated to the output Ẍ of the 
SE-Res path to generate the input G of the next attention 
path. This structure not only ensures that the shallow fea-
ture map and the deep feature map are not directly con-
nected to avoid the feature fusion of semantic gap in the 
U-Net, but also ensures that features of the small targets 
lost by attention module can be recovered by adding the 

Fig. 1 The overall architecture of the SEA-Net model. In the figure, A represents the attention module, and S represents the compression excitation 
module. They form a closed spiral path between the encoder and decoder in U-Net

Fig. 2 The internal structure diagram of the attention module
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shallow feature map back. Thus, the semantic informa-
tion of small targets is not diluted by accumulated con-
volutional neural operations, and at the same time it can 
make full use of the multi-scale feature information to 
retain more shallow semantic information.

Attention path The attention path we added is not 
only used for deep semantic integration into the decod-
ing path, it can also suppress noises in medical images. 
It used deep semantic information to adjust the weight 
ratio of the target area and non-target area, highlights the 
target area, and provides more useful feature information 
to the model.

In the Fig. 2, x and G first go through a convolutional 
layer with a convolution kernel of 1 × 1 followed by a BN 
layer for channel number adjustment and cross-chan-
nel feature integration. Next, the two feature maps are 
superimposed to highlight the objects of model learning 
followed by a Relu activation function to suppress the 
non-target region. Then the value of the attention coeffi-
cient is concentrated between 0 and 1 through the convo-
lution layer, BN layer and the sigmoid activation function 
layer. Finally, the obtained attention coefficient matrix 
is multiplied with the original x to output a new feature 
map with adjusted weights.

SE-Res path The internal structure of SE-Res path is 
shown in Fig. 3. The SE module is embedded in residual 
block. The residual block is divided into convolution 
paths and shortcuts connection. The convolution path 
consists of 3 convolution blocks with convolution layer, 
batch normalization layer, and activation function Relu 
layer. The SE module is added between the BN layer of 
the third convolution block and the shortcut connection.

The SE module is proposed to focus on the relation-
ship between feature channels. The model automati-
cally learns the importance of different channel features 
through the SE block. The squeeze operation is to calcu-
late the average of all information on the two-dimensional 

feature map of each channel through the global average 
pooling layer. Squeeze operation can eliminate the inter-
ference of spatial information. The extraction operation 
is implemented by two full connections (FC) and one 
Sigmoid activation layer. The first FC layer compresses n 
channels into n/8 channels to reduce the calculation. The 
second FC layer restores n channels. The weight coeffi-
cient of each channel is trained by FC using channel cor-
relation. The output of the sigmoid layer is multiplied to 
the output of last BN in Resblock.

Since there is a semantic gap between the shallow fea-
ture map of the encoder and the corresponding deep 
feature map of the decoder, we did not set the SE block 
separately on the skip connection. The shortcut connec-
tion adds the input feature map x to the output of SE, and 
finally activates it through the Relu layer.

Training
Loss function The most commonly used loss function in 
medical image segmentation is the pixel-by-pixel cross-
entropy loss. Researchers use a cross-entropy loss func-
tion to measure the gap between the predicted mask 
output by the model and the true label. The expression is 
as follows:

Where m represents the number of samples, p
(

xij
)

 
represents the category of the pixel, and q

(

xij
)

 repre-
sents the probability of the corresponding category of the 
pixel. The cross-entropy loss function evaluates the class 
prediction of each pixel individually, and then averages 
all pixels. All pixels in the image are learned indiscrimi-
nately. However, the problem of imbalanced categories 
often occurs in medical images, that is, the proportion 
of target pixels is much smaller than that of non-target 

(1)LCE = −
1

m

m

i=1

n

j=1

p xij log q xij

Fig. 3 The internal structure diagram of the SE-Res path. The SE module is located between the last BN output and the shortcut connection
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areas. Only using the cross-entropy function as the loss 
function will result in biased training towards the cat-
egory with more pixels. For small objects, it is difficult 
for the model to learn its characteristics, which reduces 
the effectiveness of the network. In order to solve the 
problem of data imbalance, we added Tversky loss on the 
basis of cross entropy loss. Tversky coefficient is a gener-
alized function of Dice coefficient and Jaccard coefficient. 
The formula is as follows:

When α = β = 0 , the Tversky coefficient is the Dice 
coefficient. When α = β = 1 , the Tversky coefficient 
is the Jaccard coefficient. |A ∩ B| means false positive, 
|B ∩ A| means false negative. α and β can control the 
trade-off between false positives and false negatives.

Since the cross entropy will be much smaller than Tver-
sky loss after several rounds of training, the total loss 
function of this model is:

� can be adjusted as needed. We take 10 on the brain 
MRI dataset LPBA40.

Implementation details The optimizer we chose is 
adam, where beta1 is 0 and beta2 is 0.9. The learning 
rate parameter is set to 0.0001. The brain MRI dataset 
LPBA40 is trained for 10 epochs, and the blood smear 
data set is trained for 50 epochs. The training time of 
this model on an NVIDIA gtx 1080Ti GPU ranges from 
1 hour to 3 hours.

Experiments
Datasets Our model was validated on two datasets. One 
is the public T1-weighted brain MRI data set LPBA40 for 
brain tissue extraction. LPBA40 dataset was obtained on 
the LONI website of the University of Southern Califor-
nia Los Angeles, and its spatial resolution is 0.86×1.5×
0.86. The dataset has 40 normal human brain scan data. 
The ratio of the number of training sets to the number 
of test sets in this data set is 3: 1. The other data set is a 
self-built blood smear image data set for white blood cell 
extraction. There are 316 blood smear images with spatial 
resolution of 640×800. Each image contains 1-10 white 
blood cells. In the dataset, 19 blood smear images includ-
ing adhesion cells are used as test set A. The remaining 
images are divided into training set and test set B, the 
ratio of which is 3: 1.

Evaluation metrics In order to evaluate the perfor-
mance of the model, three evaluation indicators need 
to be calculated in the image segmentation task. They 
are Dice coefficient, sensitivity, and specificity. Dice 

(2)LT (A,B) =
|A ∩ B|

|A ∩ B| + α|A− B| + β|B− A|

(3)L = LCE + �× LT

coefficient was used to measure the similarity between 
prediction mask and label:

Sensitivity represents the ability of segmentation meth-
ods to correctly recognize target area:

Specificity represents the ability of the methods to cor-
rectly recognize non-target area.

where TP is true positive, FP is false positive, and FN is 
false negative. Values of Dice coefficient, sensitivity, and 
specificity range from 0 to 1. The larger the values of 
these three evaluation coefficients are, the more accurate 
the segmentation results are.

Accuracy is the proportion of correct predictions in all 
predictions.

Results
Table 1 lists the experimental evaluation results of vari-
ous brain segmentation methods on LPBA40. Besides 
the methods we proposed, the methods to participate in 
the comparison experiment include the baseline method 
(U-Net [4]), the state-of-the-art brain segmentation 
method (Attention U-Net [8], U-Net++ [13], and 3D 
U-Net [5]) and the classic brain segmentation method 
(BET [29], ROBEX [30]). On LPBA40, the Dice coef-
ficient value of the classic brain segmentation method 
BET is the lowest among the methods participating in 
the comparison. Although the Dice coefficient value 

(4)Dice =
2TP

2TP + FP + FN

(5)sensitivity =
TP

TP + FN

(6)specificity =
TN

TN + FP

(7)Accuracy =
TP + TN

TP + FN + FP + FN

Table 1 The mean of the three evaluations of the public dataset 
of LPBA40 with different brain extraction methods

Methods Dice(%) Sensitivity(%) Specificity(%)

SEA-Net 98.15 98.40 99.63
U-Net 97.51 99.43 99.17

Attention U-Net 97.47 98.24 99.38

U-Net++ 96.55 99.82 98.73

3D U-Net 96.16 98.11 98.93

BET 92.01 98.97 96.82

ROBEX 96.74 96.22 99.49
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of another classic segmentation method ROBEX ranks 
fourth among these methods, its sensitivity-specificity 
is not balanced. The training time of U-Net++ and 3D 
U-Net is 5 times that of U-Net, but their performance 
is lower than its baseline model U-Net on LPBA40. The 
Dice coefficient value of Attention U-Net is lower than 
baseline U-Net. Therefore, simply adjusting the spa-
tial of the coding matrix will not effectively improve the 
segmentation task. Attention U-Net does not solve the 
semantic gap generated by the direct combination of 
deep feature maps and shallow feature images. By con-
trast, the attention path added in SEA-Net retained both 
deep and shallow features in the image, thus SEA-Net 
obtained the highest Dice coefficient value and specific-
ity value in the data set LPBA40, and the sensitivity also 
ranked second in the automatic brain extraction lgorithm 
comparison experiment.

In Fig. 4, we can see that our segmentation results are 
very close to ground truth. SEA-Net also can accurately 
obtain the boundaries of brain tissue. Other brain seg-
mentation methods have more serious over segmentation 
and under segmentation.

The dataset LPBA40 we used are 2-dimensional slices 
of 3-dimensional brain MRI images. Therefore, part of 
the brain MRI image needs to be segmented in a very 
small brain tissue area. This type of picture is shown in 
Fig.  5. The target area occupies a very small proportion 
in the entire image, so the target information is eas-
ily lost. In Fig. 5, only the SEA-Net model we proposed 
and U-Net model segment the brain tissue successfully, 
the other methods output a completely black image, 
and U-Net obviously led to over-segmentation. In Fig. 6, 
it can be seen that the SEA-NET segmentation is too 
smooth.

Fig. 4 The overlay mask map of each segmentation algorithm participating in the comparison experiment. Red represents over-segmentation 
and green represents under-segmentation. The original image is from a slice of the coronal section of the 23rd case in the data set LPBA40

Fig. 5 The output mask of one of the slices in the 23rd case of LPBA40 and their corresponding input images and labels for each method 
participating in the comparison experiment
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SEA-Net has a very good performance on the data set 
LPBA. The model is proved to be able to deal with the 
imbalanced images in LPBA40 well. Since the LPBA40 
data set contains both category-balanced images and 
category-imbalanced images, in order to eliminate the 
interference of category-balanced images and deter-
mine its segmentation effect on small targets, we also 
chose a data set with imbalanced categories in medi-
cal images (the peripheral blood smear image). The 

peripheral blood smear image dataset has a high reso-
lution, but the segmented target white blood cells are 
small in both size and number, and there are many 
adhesion cells.

Table  2 lists the experimental evaluation results of 
peripheral blood smear images by various methods. 
In addition to our proposed method, other methods 
involved in the comparison experiment include the 
baseline method (U-Net [4]), the most advanced cell 
segmentation method (Attention U-Net [8], U-Net 
++ [10]). We also added an accuracy measure to show 
whether the number of white blood cells dividing is cor-
rect. SEA-Net’s Dice coefficient improved by more than 
2 % over the baseline model and the state-of-the-art 
U-Net++ and Attention U-NET models. We observed 
that in many blood smear images, there were adher-
ent cells or cells clustered together, and both Attention 
U-Net and U-Net ++ + incorrectly identified the two 
units near each other as one unit, which should be the 
cause of the reduced accuracy of Attention U-Net and 

Fig. 6 One of the poorly segmented images in the LPBA40 dataset. It can be seen that for images with jagged edges, SEA-NET segmentation is too 
smooth, and some tiny brain tissue models are not segmented

Table 2 Comparative experiments on white blood cell extraction 
from the peripheral blood smear images

Methods Dice(%) Sensitivity(%) Specificity(%) Accuracy(%)

U-Net 80.14 79.33 99.92 99.83

Attention 
U-Net

80.04 79.80 99.90 98.82

U-Net++ 80.69 81.53 99.53 99.84
SEA-Net 82.35 90.74 99.72 99.83

Fig. 7 The blood smear image, the magnified adhesion cell area and the corresponding mask map obtained by various segmentation methods
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U-Net ++ models. The model we proposed can solve 
this problem well. In addition, compared with the most 
advanced UN ++ and U-Net, which is currently the 
most concerned, the specificity of SEA-Net is slightly 
reduced, but the sensitivity is increased by about 10% , 
achieving a balance of specificity and sensitivity.

Figure  7 shows them in a large-resolution image, our 
proposed method can well complete the segmentation 
of adhesion cells due to the excellent ability to retain 
both the shallow image features (boundary of the blood 
cell) and the deep semantic features (target of the blood 
cell). By contrast, the U-Net focused on rather the deep 
semantic feature than the shallow image features, there-
fore, the boundary between the adhesion cells were 
blurred, leading to wrong detection.

In order to verify the effectiveness of attention path, 
SE-Res path and hybrid function, we made an abla-
tion study. Table  3 liststhe evaluation indexes of abla-
tion experimental mean values of different networks on 
LPBA40 data sets. The bold values in the table indicate 
the best results.

Attention path, SE-Res path, and hybrid function 
have all improved dice and specificity for the baseline 
specificity, of which the mixed loss function has the 
best effect. It was proved that the three modules could 
enhance dice and Specificity of the baseline model. All 
three modules have decreased Sensitivity to different 
degrees, and SEA-Net can alleviate the decrease of Sen-
sitivity index.

Table  4 lists the evaluation indicators of the mean 
value of different network ablation experiments on the 
peripheral blood smear image dataset. Compared with 
the baseline model, each module has different degree of 
improvement on the dice and brings similar improve-
ment effects. Both sensitivity and specificity were 
decreased to varying degrees. SEA-Net improves the end 
result, balancing specificity and sensitivity.

Conclusion
In this paper, we proposed an extended U-Net model 
called SEA-Net, using squeeze and extended model and 
attention model. This model was applied to two differ-
ent medical image data sets including the brain MRI 
data set LPAB40 and the peripheral blood smear data 
set. On the data set LPBA40, the experimental results 
proved that the proposed SEA-Net performed better 
than U-Net, U-Net++, etc. in medical image segmenta-
tion. On the peripheral blood smear data set, SEA-Net 
proved the applicability and accuracy of small target 
segmentation. In the future, we will explore 3D small 
target segmentation tasks.
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