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Abstract 

Background To investigate the role of CT radiomics in distinguishing Wilms tumor (WT) from clear cell sarcoma 
of the kidney (CCSK) in pediatric patients.

Methods We retrospectively enrolled 83 cases of WT and 33 cases of CCSK. These cases were randomly strati-
fied into a training set (n = 81) and a test set (n = 35). Several imaging features from the nephrographic phase were 
analyzed, including the maximum tumor diameter, the ratio of the maximum CT value of the tumor solid portion 
to the mean CT value of the contralateral renal vein (CTmax/CT renal vein), and the presence of dilated peritumoral 
cysts. Radiomics features from corticomedullary phase were extracted, selected, and subsequently integrated 
into a logistic regression model. We evaluated the model’s performance using the area under the curve (AUC), 95% 
confidence interval (CI), and accuracy.

Results In the training set, there were statistically significant differences in the maximum tumor diameter (P = 0.021) 
and the presence of dilated peritumoral cysts (P = 0.005) between WT and CCSK, whereas in the test set, no statisti-
cally significant differences were observed (P > 0.05). The radiomics model, constructed using four radiomics features, 
demonstrated strong performance in the training set with an AUC of 0.889 (95% CI: 0.811–0.967) and an accuracy 
of 0.864. Upon evaluation using fivefold cross-validation in the training set, the AUC remained high at 0.863 (95% 
CI: 0.774–0.952), with an accuracy of 0.852. In the test set, the radiomics model achieved an AUC of 0.792 (95% CI: 
0.616–0.968) and an accuracy of 0.857.

Conclusion CT radiomics proves to be diagnostically valuable for distinguishing between WT and CCSK in pediatric 
cases.
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Background
Clear cell sarcoma of the kidney (CCSK) is a rare renal 
malignancy, accounting for approximately 2–5% of pedi-
atric renal tumors, ranking second in prevalence after 
Wilms tumor (WT). Typically, CCSK manifests between 
the ages of 2 and 4 years [1, 2]. Despite its low incidence, 
CCSK frequently leads to bone metastases, resulting in 
a prognosis less favorable than that of WT [3, 4]. Late 
recurrence often occurs in the brain for CCSK cases. 
However, recent advancements in chemotherapy and 
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radiotherapy have significantly improved CCSK out-
comes. Clinically and radiologically, distinguishing CCSK 
from WT can be challenging, with differential diagnosis 
often relying on histopathological analysis and immu-
nophenotyping [5–7]. However, biopsies are limited in 
their ability to capture a small fraction of tumor hetero-
geneity [8]. The diverse histology of CCSK, coupled with 
a lack of reliable immunohistological markers and lim-
ited effectiveness of molecular genetics, often results in 
pathological examinations that do not fully elucidate the 
tumor biological characteristics [4, 9].

Radiomics presents a promising avenue for tumor 
detection and differential diagnosis by unveiling con-
cealed information that extends beyond the capabilities 
of the human eye. It accomplishes this by quantifying 
pixel distribution within medical images, thereby captur-
ing the comprehensive heterogeneity of the entire tumor 
[10]. Prior studies have revealed the valuable utility of CT 
radiomics in pediatric extracranial solid tumors such as 
neuroblastoma and rhabdomyosarcoma [11–14]. While 
radiomics analysis has been extensively applied in the 
context of adult renal tumors in previous literature [15, 
16], the use of texture analysis based on medical imaging 
to identify pediatric renal malignancies remains limited, 
with only one previous study investigating ultrasound-
based texture analysis in this domain [5]. Recent study 
has demonstrated that specific qualitative and semi-
quantitative imaging features derived from contrast-
enhanced CT can effectively differentiate between cases 
of CCSK and WT [7]. Consequently, the application 
of radiomics analysis to contrast-enhanced CT images 
holds substantial promise for providing additional imag-
ing biomarkers that facilitate the differentiation of CCSK 
from WT.

Hence, the primary objective of this study was to differ-
entiate between CCSK and WT in pediatric patients uti-
lizing radiomics features derived from contrast-enhanced 
CT images.

Methods and Materials
Patients
This retrospective study received approval from the Insti-
tutional Review Board of Children’s Hospital of Chong-
qing Medical University, and patient informed consent 
requirements were waived. All methods were performed 
in accordance with the relevant guidelines and regula-
tions or declaration of Helsinki. Patients diagnosed with 
WT and CCSK between March 2011 and October 2022 
were retrospectively enrolled (Fig.  1A). Inclusion crite-
ria included: (1) Confirmation of CCSK or WT through 
pathological examination; (2) Undergoing preoperative 
contrast-enhanced CT examinations. Exclusion criteria 
were as follows: (1) The presence of noticeable artifacts 
in CT images; (2) Prior utilization of chemotherapy and 
radiotherapy before pathological diagnosis; (3) Cases 
with unclear pathological diagnoses. Among them, 116 
patients—comprising 83 cases of WT and 33 cases of 
CCSK—were randomly stratified into training and test 
sets using a 7:3 ratio using the open-source software FeA-
ture Explorer (version 0.5.5) [17]. Therefore, there were 
58 cases of WT and 23 cases of CCSK in the training set, 
and there were 25 cases of WT and 10 cases of CCSK in 
the test set.

Examination method
Patients participating in this study were evaluated under 
calm conditions. In cases where patients were unable to 
cooperate with the CT examination, 10% chloral hydrate 
(0.5  mL/kg of body weight) was administered orally, 
or sodium phenobarbital (5  mg/kg of body weight) was 
administered intramuscularly. The scanning parameters 
used were as follows: slice thickness of 5.0  mm, slice 
spacing of 5.0 mm, automatic voltage, and automatic tube 
current. A 320 mg I/mL iodine contrast agent was cho-
sen and administered at a dose of 1.0–2.0  mL/kg. Sub-
sequently, the contrast agent was injected intravenously, 
and the corticomedullary and nephrographic phase scans 

Fig. 1 An overview of the system diagram of patient selection (Figure A) and radiomics workflow (Figure B) in this study
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were conducted 15–30 s and 55–65 s after the injection 
of the contrast agent, respectively.

Region of interest segmentation
The radiomics workflow is demonstrated in Fig.  1B. 
The corticomedullary phase CT images were retrieved 
from the Picture Archiving and Communication System 
(PACS), and image segmentation was conducted using an 
open-source ITK-SNAP software (version 3.6.0). A radi-
ologist, blinded to the patient’s clinical details, manually 
delineated the tumor boundaries. Subsequently, a senior 
radiologist reviewed and verified these areas (Fig. 2). To 
assess the agreement and reproducibility of the radiomics 
features, one of the radiologists randomly selected a total 
of 30 cases for a second round of tumor segmentation, 
and the intra-class correlation coefficient (ICC) between 
the double annotations was calculated.

Extraction and dimensionality reduction of radiomics 
features
Before extracting radiomics features, CT images under-
went resampling to a uniform 1.0  mm*1.0  mm*1.0  mm 
resolution. Additionally, CT images were discretized with 
a binwidth set to 25. These procedures were implemented 
to ensure the reproducibility of radiomics features. 
Radiomics features were derived from corticomedul-
lary phase CT images using the open-source software 
FeAture Explorer (version 0.5.5) [17]. These features 
were categorized into three distinct groups: (1) The first 
group, referred to as first-order features, characterizes 

the distribution of voxel intensity within CT images. This 
group provides insights into voxel symmetry, uniformity, 
and local intensity distribution variations; (2) The second 
group comprises morphological features, which capture 
information about the shape and size of the tumor lesion; 
(3) The third group includes texture features, comprising 
the gray-level co-occurrence matrix (GLCM), gray-level 
run-length matrix (GLRLM), gray-level size zone matrix 
(GLSZM), neighborhood gray-tone difference matrix 
(NGTDM), and gray-level dependence matrix (GLDM). 
In total, 107 radiomics features were extracted for each 
lesion, including 14 shape features, 18 first-order fea-
tures, and 75 texture features.

However, some radiomics features may exhibit minimal 
distinctiveness and contribute little to the final outcome. 
Hence, a necessary step involved downscaling and retain-
ing the most relevant radiomics features in the training 
set. All radiomics features underwent normalization 
using the z-score normalization method. Furthermore, 
radiomics features with an ICC greater than 0.80 between 
double annotations were selectively retained to ensure 
the robustness of the radiomics features. Subsequently, 
to address imbalanced class distribution in the training 
set, the Synthetic Minority Over-Sampling Technique 
(SMOTE) was employed. To mitigate correlations among 
radiomics features, Pearson correlation coefficient (PCC) 
values were calculated for pairwise radiomics features. 
Any radiomics features with a PCC value exceeding 0.90 
were randomly eliminated. Then, the Least Absolute 
Shrinkage and Selection Operator (LASSO) method was 

Fig. 2 Examples of tumor region of interest outlining
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employed for feature selection. The optimal hyperparam-
eter λ, identified through a five-fold cross-validation pro-
cess, was selected based on the minimal predictive error 
(Fig.  3). Finally, a multivariate stepwise logistic regres-
sion was used for selecting the final optimal radiomics 
features with P-values less than 0.05, and the odds ratio 
(OR) and 95% confidence interval (CI) of the selected 
radiomics features were calculated.

Model building
Utilizing radiomics features selected through multivari-
ate stepwise logistic regression along with their corre-
sponding coefficients, we calculated the radiomics score 
(Radscore) and subsequently constructed the radiomics 
model employing a logistic regression algorithm utiliz-
ing the open-source software FeAture Explorer (version 
0.5.5). The tol, c, and max_iter parameters of the logistic 
regression algorithm were 0.01, 1.0, and 100, respectively. 
To assess the model’s performance, we conducted cross-
validation within the training set using a fivefold cross-
validation approach, followed by validation in the test set. 
We employed metrics, including the receiver operating 
characteristic (ROC) curve, area under the curve (AUC), 
95% CI, accuracy, sensitivity, specificity, and F1 score as 
key indicators for evaluating the model’s effectiveness. 
Moreover, we employed calibration curve to evaluate 
the model’s goodness of fit and utilized clinical decision 
curve and clinical impact curve to assess the model’s clin-
ical value.

Image analysis
An experienced pediatric radiologist evaluated several 
imaging features from the nephrographic phase, includ-
ing the maximum tumor diameter, the ratio of the maxi-
mum CT value of the tumor solid portion to the mean 
CT value of the contralateral renal vein (CTmax/CT 
renal vein), and the presence of dilated peritumoral cysts. 

A previous study revealed that CTmax/CT renal vein was 
particularly valuable in distinguishing between CCSK 
and WT in children under 10  years of age using con-
trast-enhanced CT imaging [7]. In this context, CTmax 
referred to the maximum CT value within the most con-
spicuously enhancing region during the nephrographic 
phase of the tumor. Meanwhile, CT renal vein was 
defined as the mean CT value of the contralateral renal 
vein. To mitigate measurement error, each parameter was 
measured three times, with the mean value subsequently 
recorded (Fig. 4A and B). Dilated peritumoral cysts were 
defined as areas within the tumor that exhibited slight 
hypointensity in the un-enhanced phase, followed by the 
appearance of at least three such areas in different direc-
tions during the enhancement phase, which remained 
unenhanced at the tumor margins (Fig. 4C and D).

Statistical analysis
Statistical analysis was conducted using SPSS software 
(version 26.0) and RStudio software (version 4.2.2). Con-
tinuous variables underwent Shapiro–Wilk test and Lev-
ene’s test to verify their adherence to normal distribution 
and homogeneity of variance, respectively. When these 
prerequisites were satisfied, the analysis proceeded using 
Student’s t-test. However, if either the assumption of 
normality or homogeneity of variance was violated, the 
non-parametric Mann–Whitney U test was employed as 
an alternative. For categorical variables, the chi-square 
test was utilized when applicable, and in instances where 
the expected counts were small, the Fisher’s exact test 
was employed. To assess the stability of the radiomics 
model against various assumptions and methodologi-
cal choices, we conducted a sensitivity analysis using a 
stepwise elimination approach on the employed feature 
selection methods. A two-tailed P-value of less than 
0.05 was considered indicative of statistically significant 
differences.

Fig. 3 LASSO screening pathway. Figure A shows the selection of the optimal hyperparamter λ with the minimal binomial deviance, identified 
through a five-fold cross-validation process; Figure B illustrates the selection of radiomics features under the optimal hyperparamter λ
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Results
Basic clinical information
In this study, a total of 116 patients were enrolled, comprising 
83 WT cases and 33 CCSK cases. These patients were further 
stratified into a training set, consisting of 81 cases (58 WT and 
23 CCSK), and a test set, comprising 35 cases (25 WT and 
10 CCSK), following a 7:3 ratio allocation. Table 1 presents 
the basic clinical information for WT and CCSK patients 
in both the training and test sets. Among these patients, 63 
(54.3%) were males, while 53 (45.7%) were females, with a 
mean and standard deviation age of 2.58 years and 2.10 years, 
respectively, spanning from 2  months to 9  years. Both age 

and gender exhibited no statistically significant differences 
between the groups in the training and test sets (P > 0.05).

CT imaging characteristics
In the training set, there were statistically significant dif-
ferences in the maximum tumor diameter (P = 0.021) 
and the presence of dilated peritumoral cysts (P = 0.005) 
between WT and CCSK, whereas in the test set, no sta-
tistically significant differences were observed (P > 0.05). 
However, the CTmax/CT renal vein did not exhibit statis-
tically significant differences between the groups in either 
the training set or the test set (P > 0.05) (Table 1).

Fig. 4 Examples of image analysis. Figure A shows the placement of a circular region of interest on the renal vein contralateral to the mass 
for measuring CT values; Figure B shows the placement of a circular region of interest on the most obviously enhanced part of the tumor 
parenchyma for measuring CT values; Figures C and D show the presence of dilated peritumoral cysts (white arrows)

Table 1 Comparison of basic clinical information and imaging characteristics of WT and CCSK in the training and test sets

WT Wilms tumor, CCSK Clear cell sarcoma of the kidney; std, standard deviation

Characteristics Training set (n = 81) Test set (n = 35)

WT (n = 58) CCSK (n = 23) P value WT (n = 25) CCSK (n = 10) P value

Gender 0.270 0.060

 Male 30 15 10 8

 Female 28 8 15 2

Age (years, mean ± std) 2.48 ± 1.94 2.27 ± 2.18 0.297 3.05 ± 2.20 2.80 ± 2.65 0.465

Maximum tumor diameter (mm, mean ± std) 86.19 ± 30.82 103.43 ± 26.24 0.021 94.54 ± 21.13 88.09 ± 32.06 0.488

Presence of dilated peritumoral cyst 0.005 0.107

 Yes 14 13 5 5

 No 44 10 20 5

CTmax/CT renal vein 0.77 ± 0.21 0.86 ± 0.24 0.091 0.68 ± 0.16 0.77 ± 0.27 0.217
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Radiomics feature extraction and dimensionality reduction
For each lesion, a total of 107 radiomics features 
were initially extracted. The average and standard 
deviation of the ICC values for all radiomics fea-
tures between the double annotations were 0.95 
and 0.06, respectively. Subsequently, one feature 
was eliminated using an ICC threshold of 0.80, and 
an additional 58 features were removed based on a 
PCC threshold of 0.90 (Fig.  5). Then, nine radiom-
ics features were selected through LASSO pathway 
(Fig. 3). Finally, four optimal radiomics features with 
P-values less than 0.05 were retained (Table  2). The 
inter-correlation of the selected radiomics features 
are demonstrated in Supplementary Fig.  1. Based on 

the following formula, Radscore was computed for 
both the training and test sets. There was a  statisti-
cal difference in Radscore between CCSK and WT in 
both the training and test sets (P < 0.05) (Fig. 6). The 
selected radiomics features and calculated Radscore 
did not differ significantly between training set and 
test set (P > 0.05) (Supplementary Fig. 2).

Radscore = -0.076-A × 0.751-B × 0.937-C × 0.759-D × 1.462

A = firstorder_Median

B = glcm_MaximalCorrelationCoeffcient

C = glszm_ZoneEntropy

D = shape_SurfaceAreatoVolumeRatio

Fig. 5 Heatmaps of radiomics features before and after Pearson correlation analysis. Figures A and B show heatmaps of radiomics features 
before Pearson correlation analysis in the training and test sets, respectively; Figures C and D show heatmaps of radiomics features after Pearson 
correlation analysis in the training and test sets, respectively
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Discriminative efficacy of radiomics model
The radiomics model exhibited strong performance 
in the training set, with an AUC of 0.889 (95% CI: 
0.811–0.967), along with an accuracy of 0.864, a sensi-
tivity of 0.739, and a specificity of 0.914. Furthermore, 
when assessed via fivefold cross-validation in the train-
ing set, the model consistently displayed a high AUC of 
0.863 (95% CI: 0.774–0.952), along with an accuracy of 
0.852, a sensitivity of 0.696, and a specificity of 0.914. In 
the test set, the radiomics model maintained favorable 

performance, achieving an AUC of 0.792 (95% CI: 0.616–
0.968), an accuracy of 0.857, a sensitivity of 0.600, and 
a specificity of 0.960. Additional evaluation metrics can 
be found in Table 3. The ROC and calibration curves for 
the radiomics model in both the training and test sets are 
depicted in Fig. 7, indicating favorable diagnostic perfor-
mance and goodness of fit. Additionally, Fig. 8 shows the 
clinical decision curves and clinical impact curves for the 
radiomics model in both sets, which demonstrated the 
clinical utility of the radiomics model. When the stepwise 

Table 2 The final selected radiomics features and their corresponding coefficients following the multivariate stepwise logistic 
regression

CI Confidence interval, glcm Gray-level co-occurrence matrix, glszm Gray-level size zone matrix, OR Odds ratio

Categories Subcategories Coefficient OR (95%CI) P value

firstorder Median -0.751 0.472 (0.237–0.941) 0.033

glcm MaximalCorrelationCoeffcient -0.937 0.392 (0.216–0.713) 0.002

glszm ZoneEntropy -0.759 0.468 (0.247–0.887) 0.020

shape SurfaceVolumeRatio -1.462 0.232 (0.091–0.590) 0.002

Fig. 6 The distribution of Radscore. Figures A and B show the Radscore of each case in the training and test set, respectively; Figures C and D show 
the comparison of Radscore between groups in the training and test set, respectively
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elimination approach was applied on the employed fea-
ture selection methods, there was no significant differ-
ence in the diagnostic performance of the radiomics 
models, indicating the robustness of the radiomics model 
against various feature selection methods (Table 4).

Discussion
In this study, we investigated the effectiveness of radiom-
ics features extracted from corticomedullary phase CT 
images in distinguishing between CCSK and WT in pedi-
atric patients. Initially, we conducted an analysis of the 
qualitative and semi-quantitative imaging characteristics 
of CCSK and WT. Our findings revealed that, within the 
training set, there were statistically significant differences in 
the maximum tumor diameter and the presence of dilated 
peritumoral cysts between WT and CCSK. However, no 
statistically significant differences were observed in the test 
set, and this may be caused by small sample size in the test 
set. Nonetheless, Radscore exhibited significant differences 
between CCSK and WT in both the training and test sets. 
This underscores the added value of radiomics features 
in the differentiation of CCSK and WT. Furthermore, the 
constructed radiomics model demonstrated favorable diag-
nostic performance, a good fit, and clinical utility.

In conventional imaging, CCSK can appear quite simi-
lar to WT. WT typically manifests as large masses, often 
exhibiting necrosis and hemorrhage within the tumor. 
These tumors tend to have less intense imaging charac-
teristics [18]. In contrast, CCSK often presents with more 
congested vessels and intensified tumors, sometimes dis-
playing "tiger spot" changes [7]. Additionally, CCSK has a 
propensity for extra-renal metastases, particularly in the 
bones and brain. In this study, while the maximum tumor 
diameter and CTmax/CT renal vein did not show statis-
tically significant differences, the presence of the dilated 
peritumoral cysts exhibited statistical significance in the 
training set. This finding may be attributed to factors 
such as dilated tubules or changes in the tumor capsule 
[19]. However, due to the limited sample size in the test 
set, there were no statistically significant differences in 
these imaging findings between CCSK and WT. Further 
studies with larger sample sizes are still needed to vali-
date the diagnostic potential of these imaging findings.

However, our study revealed significant differences in 
the Radscore between CCSK and WT in both the train-
ing and test sets. This suggests that quantitative radiom-
ics features derived from contrast-enhanced CT images 
are more adept at capturing the imaging differences 

Table 3 Evaluation parameters of the radiomics model

AUC  Area under the curve, CI Confidence interval, MCC Matthews correlation coefficient, PPV Positive prediction value, NPV Negative prediction value, CV Cross-
validation

Parameters Training set fivefold CV in the training set Test set

AUC (95% CI) 0.889 (0.811–0.967) 0.863 (0.774–0.952) 0.792 (0.616–0.968)

Accuracy 0.864 0.852 0.857

MCC 0.662 0.627 0.634

Sensitivity 0.739 0.696 0.600

Specificity 0.914 0.914 0.960

PPV 0.773 0.762 0.857

NPV 0.898 0.883 0.857

Youden Index 0.653 0.609 0.560

F1 score 0.756 0.728 0.706

Fig. 7 Diagnostic performance of the radiomics model. Figure A show the receiver operating characteristic curves of the radiomics model 
in the training and test set; Figures B and C illustrate the calibration curves of the radiomics model in the training and test set, respectively
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between CCSK and WT compared to visual analysis, 
and they play a pivotal role in the differential diagnosis of 
these two diseases. Traditional qualitative or semi-quan-
titative imaging features often fall short in capturing the 
full extent of heterogeneity within the tumor. In recent 
years, radiomics has emerged as a promising approach 

for quantitatively evaluating tumor phenotypes [20, 21]. 
In our study, we employed a CT radiomics approach for 
the first time to differentiate between CCSK and WT. In 
the clinical practice, accurate identification of CCSK and 
WT can potentially lead to the avoidance of unnecessary 
4-week administration of Vincristin/Actinomycin D in 

Fig. 8 Clinical utility of the radiomics model. Figures A and B show the clinical decision curves of the radiomics model in the training and test set, 
respectively; Figures C and D illustrate the clinical impact curves of the radiomics model in the training and test set, respectively

Table 4 A comparison of radiomics model performance when the stepwise elimination approach was applied on the employed 
feature selection methods

AUC  Area under the curve, CI Confidence interval, ICC Intraclass correlation coefficient, PCC Pearson correlation coefficient, LASSO Least Absolute Shrinkage and 
Selection Operator

Statistical 
method 
eliminated

Training set Test set

AUC 95% CI Accuracy Sensitivity Specificity AUC 95% CI Accuracy Sensitivity Specificity

ICC 0.889 0.811–0.967 0.864 0.739 0.914 0.792 0.616–0.968 0.857 0.600 0.960

PCC 0.889 0.811–0.967 0.864 0.739 0.914 0.792 0.616–0.968 0.857 0.600 0.960

LASSO 0.905 0.831–0.978 0.901 0.739 0.966 0.764 0.592–0.936 0.714 0.800 0.680

Multivariate 
stepwise logis-
tic regression

0.901 0.826–0.976 0.889 0.826 0.914 0.784 0.604–0.964 0.829 0.600 0.920

Combined 0.889 0.811–0.967 0.864 0.739 0.914 0.792 0.616–0.968 0.857 0.600 0.960
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CCSK patients, thereby enhancing the clinical manage-
ment of these patients.

In previous studies, first-order histogram features of 
renal tumors have exhibited variations among different 
pathological types [15, 22, 23]. For instance, Deng et al. 
[23] investigated the role of CT texture analysis in distin-
guishing the pathological staging of major renal cell car-
cinomas. They found that first-order entropy could help 
differentiate clear cell from papillary renal tumors, and 
skewness and kurtosis were also identified as valuable in 
distinguishing clear cell renal carcinomas from eosino-
philic tumors. However, in other studies focusing on tex-
ture analysis of non-renal tumors, second-order features, 
such as GLSZM or GLDM, appear to play a significant 
role in characterizing the heterogeneity of non-renal 
tumors [14, 24, 25]. These studies have demonstrated that 
certain GLDM texture metrics of intratumor and peri-
tumor fat can quantitatively and distinctly distinguish 
between urothelial carcinoma and micropapillary carci-
noma [24]. In our study, the final selection of radiomics 
features predominantly comprised texture features. This 
emphasizes the diagnostic potential of inhomogeneity 
and heterogeneity within image voxels. The chosen tex-
ture features mainly reflect attributes related to geomet-
ric patterns, the presence of image gray values, and the 
coexistence of image gray values, respectively.

Prior studies have indicated that the choice of feature 
selection methods can have varying impacts on the effi-
cacy of constructing models in radiomics research [26, 
27]. In our investigation, we opted for PCC, LASSO, and 
stepwise logistic regression to select radiomics features 
in order to enhance the model’s generalizability. Previ-
ous investigation has proposed that employing simpler 
statistical techniques for radiomics feature selection may 
enhance the model’s robustness and reproducibility [28]. 
Furthermore, the performance of the radiomics model 
can also fluctuate depending on the choice of machine 
learning methods [25]. In our preliminary experiments, 
we explored various machine learning algorithms, 
including support vector machine and random forest, 
but ultimately, the model constructed using the logistic 
regression algorithm exhibited superior performance.

From a therapeutic perspective, this study offers 
several clinical advantages. Firstly, it helps in avoiding 
preoperative biopsies that can potentially disseminate 
tumor cells [29]. Secondly, it mitigates diagnostic bias 
in needle biopsies stemming from the spatial heteroge-
neity within tumors [30]. Lastly, Wilde et al. [31] dem-
onstrated that stage I WT had the potential for renal 
preservation since tumor cells did not invade the renal 
sinus and blood vessels, allowing for unit-preserving 
nephrectomy. Similarly, stage I CCSK could benefit 

from less intensive chemotherapy [32], offering more 
clinical treatment options. In our investigation, the 
radiomics model exhibited superior diagnostic efficacy 
in distinguishing CCSK from WT. This was validated 
not only through calibration curves but also clinical 
decision curves and clinical impact curves.

This study has several limitations. Firstly, it is impor-
tant to acknowledge that both CCSK and WT are clini-
cally rare, with CCSK being even rarer than WT. Over 
an 11-year period, this study included a relatively small 
sample size of 83 children with WT and 33 children 
with CCSK, which may raise concerns about the statis-
tical power and generalizability of the findings. Never-
theless, our study underscores the clinical significance 
of CT radiomics in distinguishing between CCSK and 
WT. Secondly, the use of SMOTE, like any data aug-
mentation method, can introduce certain biases and 
potentially inflate model performance. To address this 
concern, it’s crucial to assess the model’s performance 
on independent datasets to gauge the potential biases 
introduced by SMOTE. In this study, we employed 
five-fold cross-validation in the training set and fur-
ther validated the model’s performance in the test set. 
The results highlighted the model’s favorable diagnostic 
performance. Lastly, given the relative rarity of WT and 
CCSK and the associated challenges in case collection, 
this study did not incorporate external validation. As a 
result, the model’s generalization capability remains to 
be confirmed, and the next step involves the collection 
of multi-center data for external validation purposes.

In summary, quantitative radiomics features derived 
from corticomedullary phase CT images are instrumental 
in the differentiation between CCSK and WT. They out-
perform qualitative or semi-quantitative imaging features 
obtained through visual analysis. The radiomics model 
can aid in the differentiation of malignant tumors in pedi-
atric patients. It yields clinical advantages under various 
risk thresholds, potentially offering additional diagnostic 
biomarkers for pediatric malignant renal tumors.
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